
System Models

Architectural System Model
� An architectural model of a distributed system is

concerned with the placement of its parts and the
relationships between them.

� Examples
� Client-server
� Peer-to-peer

� Interaction Model
� Deals with performance and the difficulty to set time

limits (e.g., in message delivery).

� Failure Model
� Gives a precise specification of the faults of the

processes and the links.
� Defines reliable communication and correct processes.

Architectural Models
� The architecture abstracts the functions of the

individual components of the distributed system.
� ensure that the structure will meet present and likely

future demands

� make the system reliable, manageable, adaptable, and
cost-effective

� Classification of processes
� Servers, clients, peers

� Identifies responsibilities, helps to assess their
workloads, determines the impact of failures in each of
them.

Software Layers
� Software architecture refers to services offered and requested

between processes located in the same or different computers.
� structuring of software as layers or modules
� Service layers

� Distributed service
� One or more server processes
� Client processes

� Platform -> the lowest level hardware and software layers
� Examples: Intel x86/Windows, Intel x86/Solaris, PowerPC/MAC OS,

Intel x86/Linux
� Middleware

� masks heterogeneity & provides a convenient programming model
� Provides useful building blocks:

� Remote method invocation, communication between a group of processes,
notification of events, partitioning, placement and retrieval of data or
objects, replication, transmission of multimedia data in real time

Software and hardware service layers
in distributed systems

Applications, services

Computer and network hardware

Platform

Operating system

Middleware

Clients invoke individual servers

Server

Client

Client

invocation

result

Serverinvocation

result

Process:
Key:

Computer:

A distributed application based on peer
processes

Application

Application

Application

Peer 1

Peer 2

Peer 3

Peers 5 N

Sharable
objects

Application

Peer 4

Variations

Derived from the consideration of the
following factors:

� Use of multiple servers and caches to
increase performance and resilience

� Use of mobile code and mobile agents
� User’s need for low-cost computers with

limited hardware resources that are simple
to manage

� Requirement to add and remove mobile
devices in a convenient manner

A service provided by multiple
servers

Server

Server

Server

Service

Client

Client

- Partition the set of
objects and
distribute them
between themselves

- maintain replicated
copies

- Web

- SUN Network
Information Service

Web proxy server

Client

Proxy

Web

server

Web

server

server
Client

A cache is a storage facility of recently used data objects that is closer to
the objects themselves.

Web proxy servers provide a shared cache of web resources for the client
machines at a site or across several sites.

•Increase availability

•Increase performance

•Reduce the load on the wide-area network and web server

Mobile Code - Web applets
a) client request results in the downloading of applet code

Web
server

Client
Web
serverApplet

Applet code

Client

b) client interacts with the applet

- Good interactive response

Mobile Agents
• A mobile agent is a running program that travels from

one computer to another in a network carrying out a
task on someone’s behalf.

• A mobile agent may make many invocations to local
resources at each site it visits (e.g., access to
individual database entries).

Might be used to:
• install software on the computers of an organization

• compare the prices of products of vendors

Negative aspects

• mobile agents are a potential security threat to the resources

• they can be themselves vulnerable (they may not be able to
complete their tasks if they are refused access to the
information needed)

Design Requirements for Distributed
Architectures
Performance Issues
� Responsiveness

� The speed of a remote invocation depends on:
� The load and performance of the server and network
� Delays in all the software components (client and server

operation systems and middleware, code of the process that
implements the service)

� Transfer of data is slow
� Throughput

� Rate at which computational work is done
� Fairness

� Balancing of Computational Loads
� Applets remove load from the server
� Use several computers to host a single service

Design Requirements for Distributed
Architectures

� Quality of Service

� Reliability (the ability of a system to perform and maintain its
function in every circumstance).

� Performance

� Adaptability (the ability of a system to adapt itself
efficiently and fast to changed circumstances)

� Resource Availability

� Some applications handle time-critical data – streams of
data that are required to be processed or transferred from
one process to another at a fixed rate.

Design Requirements for Distributed
Architectures

� Caching and Replication
� Cached copies of resources should be kept up-to-date when

the resource at a server is updated.
� A variety of cache-coherency protocols are used to suit

different applications.
� Web Caching Protocol

� Web browsers and proxy servers cache responses to client
requests from web servers

� The cache-consistency protocol can provide browsers with
fresh copies of the resources held by the web server, but for
performance reasons the freshness condition can be relaxed.

� A browser or proxy can validate a datum with the server.
� Web servers assign approximate expiry times to their

resources
� The expiry time of the resource and the current time at the

server are attached to the response.

Design Requirements for Distributed Architectures

� Dependability Issues
� Dependable applications should continue to function correctly in the

presence of faults in hardware, software and networks.
� Attributes

� Availability – readiness for correct service
� The ratio of the total time a functional unit is capable of being used

during a given interval to the length of the interval

� Reliability
� the probability that a device will perform its intended function during a

specified period of time under stated conditions
� Replication

� Multiple computers – multiple communication paths
� Several replicas of a data item
� Retransmission of messages, etc.

� Safety – absence of incorrect behavior
� Integrity – absence of improper system alteration
� Maintainability – ability to undergo modifications and repairs

� correct defects, meet new requirements, make future maintenance
easier, cope with a changed environment)

Fundamental Models
� A model contains only the essential ingredients needed to

understand and reason about some aspects of a system’s behavior.
� A system model has to address the following:

� What are the main entities in the system?
� How do they interact?
� What are the characteristics that affect their individual and collective

behavior?
� Purpose

� Make explicit all the relevant assumptions about the system we are
modeling

� Make generalizations concerning what is possible or impossible, given
those assumptions.
� General purpose algorithms
� Desirable properties

� Interaction
� Communication takes place with delays
� Maintaining the same notion of time across all nodes of a distributed

system is difficilt.
� Failure

Interaction Model
� The behavior and state of distributed systems

can be described by a distributed algorithm
� A definition of the steps to be taken by each of the

processes, including the transmission of messages
between them.

� Messages are transmitted to transfer
information between processes and to coordinate
their activity.

� The computing rates of processes and the timing
of the transmission of messages cannot in general
be predicted.

� Each process has its own state, consisting of the
set of data that it can access and update (i.e., its
local variables).

Processes and Channels

process p process q

Communication channel

send

Outgoing message buffer Incoming message buffer

receivem

Formal Model of Message-Passing Systems

� There are n processes in the
system: p0, .., pn-1

� Each process is modeled as
a state machine.

� The state of each process is
comprised by its local variables and a set of arrays.
For instance, for p0, the state includes six arrays:
� inbuf0[1], …, inbuf0[3]: contain messages that have been

sent to p0 by p1, p2 and p3, respectively, but p0 has not yet
processed.

� outbuf0[1], …, outbuf0[3]: messages that have been sent by
p0 to p1, p2, and p3, respectively, but have not yet been
delivered to them.

Formal Model of Message-Passing Systems

� The state of process pi excluding the outbufi[l]
components, comprises the accessible state of pi.

� Each process has an initial state in which all inbuf
arrays are empty.

� At each step of a process, all messages stored in
the inbuf arrays of the process are processed, the
state of the process changes and a message to each
other neighboring process can be sent.

� A configuration is a vector C = (q0, .., qn-1) where qi
represents the state of pi.
� The states of the outbuf variables in a configuration

represent the messages that are in transit on the
communication channels.

� In an initial configuration all processes are in initial states.

Formal Model of Message-Passing Systems

� Computation event, comp(i)
� Represents a computation step of process pi in which pi’s transition

function is applied to its current accessible state.
� Delivery Event, del(i,j,m)

� Represents the delivery of message m from processor pi to
processor pj (i.e., message m is placed in one of the inbuf buffers of
pj)

� The behavior of a system over time is modeled as an execution, which is
a sequence of configurations alternating with events.

� This sequence must satisfy a variety of conditions.
� Safety condition

� Holds in every finite prefix of the execution (it states that nothing bad
has happened yet)

� Liveness condition
� Holds a certain number of times (it states that eventually something good

must happen)

Performance of Communication Channel

� Latency
The delay between the start of a message’s transmission

from one process and the beginning of its receipt by
another.

� Bandwidth
Total amount of information that can be transmitted over

it in a given time. The latency includes:
� Time taken for the first of a string of bits transmitted

through the network to reach its destination + delay in
accessing the network + time taken by the OS
communication services at both sender and receiver

� Jitter
The variation in the time taken to deliver a series of

messages.

Computer Clocks and Timing Events

� Local clocks

� Clock drifts from perfect time and their
drift rates differ from one another

� Clock Drift Rate: the relative amount that
a computer clock differs from a perfect
reference clock.

� Even if clocks are set at the same time
initially, they would eventually vary unless
corrections are applied periodically.

Interaction (Timing) Models
� (Partially-Fully) Synchronous Systems

� There is a fixed upper bound ∆ on the time for messages to
be delivered (communication is synchronous).

� There is a fixed upper bound Φ on the rate at which one
processor’s clock can run faster than another’s (processors
are synchronous).

� If Φ=1 and ∆=1, we talk about a fully synchronous system.
Then,
� The sequence of alternating configurations and events can be

partitioned into disjoint rounds.
� A round consists of a deliver event for every message in an

outbuf variable, until all outbuf variables are empty, followed by
one computation event for every processor.

� Asynchronous Systems
There is no fixed upper bound on how long it takes for a

message to be delivered or how much time elapses between
consecutive steps of a processor. Clock drift rates may be
also arbitrary.

Real-Time Ordering of Events
send

receive

send

receive

m1 m2

2

1

3

4
X

Y

Z

Physical
time

A
m3

receive receive

send

receive receive receive
t1 t2 t3

receive

receive

m2

m1

� Relative order in which events take place in a system: there are
relationships between events in distributed systems (causality)

� Logical clock, logical timestamp

A receives the
messages in the
wrong order!

Logical Clocks

Omission and arbitrary failures
Class of failure Affects Description

Fail-stop Process Process halts and remains halted. Other processes may
detect this state.

Crash Process Process halts and remains halted. Other processes may
not be able to detect this state.

Omission Channel A message inserted in an outgoing message buffer never
arrives at the other end’s incoming message buffer.

Send-omission Process A process completes a send,but the message is not put
in its outgoing message buffer.

Receive-omissionProcess A message is put in a process’s incoming message
buffer, but that process does not receive it.

Arbitrary
(Byzantine)

Process or
channel

Process/channel exhibits arbitrary behaviour: it may
send/transmit arbitrary messages at arbitrary times,
commit omissions; a process may stop or take an
incorrect step.

Timing failures

Class of Failure Affects Description
Clock Process Process’s local clock exceeds the bounds on its

rate of drift from real time.
Performance Process Process exceeds the bounds on the interval

between two steps.
Performance Channel A message’s transmission takes longer than the

stated bound.

Masking Failures – Reliability of one-to-
one Communication

� A service masks a failure, either by hiding it all
together or by converting it into a more
acceptable type of failure.
� Checksums are used to mask corrupting messages -> a

corrupted message is handled as a missing message
� Message omission failures can be hidden by re-

transmitting messages.
� The term reliable communication is defined in

terms of validity and integrity as follows:
� Validity: any message in the outgoing buffer is

eventually delivered to the incoming message buffer
� Integrity: the message received is identical to one sent,

and no messages are delivered twice.

