
Department of Computer Science, University of Crete 5/5/2011

CS556: Distributed Systems

Spring 2011 – Panagiota Fatourou

Student Projects
General Project Deadline: June 17

Theory Projects
1. Distributed Counting

a. J. Aspnes, M. Herlihy, and N. Shavit. Counting networks. Journal of the
Association for Computing Machinery, 41(5):1020-1048, September 1994.

b. M. D. Riedel and J. Bruck, “Tolerating Faults in Counting
Networks”, http://citeseer.ist.psu.edu/102978.html

2. Distributed Directory Protocols
a. M. Demmer and M. Herlihy, “The arrow distributed Directory Protocol”,

pp.119-133, DISC 1998.

b. D. Peleg and E. Reshef, “Low Complexity Variants of the Arrow
Distributed Directory”, Journal of Computer and System Sciences,
Vol. 63, Issue 3, November 2001, pp. 474-485.

3. Structured P2P Systems I
a. Ion Stoica�, Robert Morris, David Karger, M. Frans Kaashoek, Hari

Balakrishnan, “Chord: A Scalable Peer-to-peer Lookup Service for
Internet Applications”, SIGCOMM’01, August 2731, 2001, San Diego,
California, USA.

b. A. Rowstron and P. Druschel, "Pastry: Scalable, decentralized object
location and routing for large-scale peer-to-peer systems". IFIP/ACM
International Conference on Distributed Systems Platforms (Middleware),
Heidelberg, Germany, pages 329-350, November, 2001.

4. Distributed Storage
a. A. Muthitacharoen., R. Morris, T.M. Gil, and B. Chen, “Ivy: A read/write Peer-

to-Peer File System”, Proceedings of 5th Symposium on Operating Systems
Design and Implementation, Boston, MA, December 2002.

b. J. Kubiatowicz, D. Bindel, Y. Chen, S. Cwerwinski, P. Eaton, D. Geels, R.
Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao,
“Oceanstore: an architecture for global scale persistent storage”, ASPLOS,
pp. 190 -201, November 2000.

5. Interval Routing
a. T. Eilam, S. Moran, and S. Zaks, “A Simple DFS-Based Algorithm for

Linear Interval Routing”, pp. 37-51, WDAG 1997.
b. Bakker E. M., van Leeuwen, J., Tan R.B., “Linear Interval Routing”,

Algorithms Review 2, pp. 45-61, 1991.
6. Scheduling in Networks

a. K. S. Lui and S. Zaks, “Scheduling in Synchronous networks and the
greedy algorithm”, pp. 66-80, WDAG 1997.

b. T/L/ Casavant and J. G. Kuhl, “A taxonomy of scheduling in general-
purpose distributed computer systems”, Readings in Distributed Systems,
T. Casavant and M. Singhal (eds.), IEEE Computer Society Press, 1994,
pp. 31-51.

Department of Computer Science, University of Crete 5/5/2011

7. Replication
a. Rivka Ladin, Barbara Liskov, Liuba Shrira: Lazy Replication: Exploiting

the Semantics of Distributed Services. PODC 1990: 43-57
b. Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Paul Johnson, Liuba

Shrira, Michael Williams: Replication in the Harp File System. SOSP
1991: 226-238

8. Clock Synchronization
a. T. Srikanth and S. Toueg, “Optimal Clock Synchronization”, J. of the

ACM, 34(3): 626-645, 1987.
b. J. Welch and N. Lynch, “A new fault-tolerant algorithm for clock

synchronization”, Information and Computation, 77(1): 1-36, 1988.
9. Byzantine quorum systems

a. D. Malkhi and M.K. Reiter, “Byzantine Querum Systems”, Distibuted
Computing, 11:203-213, 1998.

b. D. Malkhi, M.K. Reiter, and A. Wool, “The load and availability of
Byzantine quorum systems”, ACM Symposium on Principles of
Distributed Computing, p. 249-257, 1997.

10. Replicated DataBases
a. A. El Abbadi and S. Dani, “A dynamic accessibility protocol for replicated

data bases”, Data and Knowledge Engineering, 6:319-332, 1991.
b. E. El Abbadi and S. Toueg, “Maintaining Availability in partitioned

replicated data bases”, ACM Transactions on Database Systems, 14(2):
264-290, 1989.

11. Replicated Data
a. D. K. Gifford, “Weighted Voting for Replicated Data”, 7th Symposium on

Operating Systems Principles, pp. 150-159, December 1979.
b. S. Jajodia and D. Mutcler, “Dyanamic Voting”, ACM SIGMOD Int.

Conference on Management of Data, pp. 227-238, May 1987.
12. Dynamic Networks

a. B. Awerbuch, I. Cidon, and S. Kutten, “Optimal maintenance of replicated
information”, 31st IEEE Symposium on Foundations of Computer Science,
pp. 492-502, October 1990.

b. S. Kutten and A. Porat, “Maintenance of a Spanning Tree in Dynamic
Networks”, 13th Symposium on Distributed Computing (DISC), pp. 342-
355, 1999.

13. Self-stabilization
a. L. Higham and Z. Liang, “Self-Stabilizing Minimum Spanning Tree

Construction on Message-Passing Networks”, 15th Symposium on
Distributed Computing (DISC), pp. 194-208, 2001.

b. T. Herman and T. Masuzawa, “Stabilizing Replicated Search Trees”, 15th
Symposium on Distributed Computing (DISC), pp. 315-329, 2001.

14. P2P Systems II
a. J. Aspnes and G. Shah, “Skip Graphs”, ACM Transactions on Algorithms,

Vol. 3, No 4, November 2007.

b. Gabarro, J., Martınez, C., and Messeguer, X. 1996. A Top-Down Design
of a Parallel Dictionary using Skip Lists. Theoretical Computer Science
158, 1–2 (May), 1–33.

15. P2P Systems III

Department of Computer Science, University of Crete 5/5/2011

a. Castro, M., Druschel, P., Hu, Y. C., and Rowstron, A. 2002. Topology-
aware routing in structured peer-to-peer overlay networks. In Proceedings
of the International Workshop on Future Directions in Distributed
Computing (FuDiCo), Schiper, A. Shvartsman, H. Weatherspoon, and B.
Zhao, Eds. Lecture Notes in Computer Science, vol. 2584. Bertinoro, Italy,
103–107.

b. Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Shenker, S. 2001.
A Scalable Content-Addressable Network. In Proceedings of the ACM
Symposium on Communications Architectures and Protocols
(SIGCOMM). San Diego, CA, USA, 161–172.

Paper Understanding - Reports
Each student should deeply understand the material presented in the papers s/he has
undertaken. Most specifically, each student should:

o know the algorithms and the techniques presented in the paper;

o be able to answer to questions of the style «Why is each line of the code useful in the
algorithms s/he will present and what could go wrong if any line was removed»;

o invest time on the algorithm s/he studies, devise his/her own bad scenarios of execution
and understand how the algorithms cope with these scenarios;

o study/devise a big number of examples to deeply understand how the algorithms work; (it
is these examples that give a concrete idea of how deeply the student has understood the
technical part of the paper);

o invest some time to understand the high level idea of the analysis of the algorithms
included in the paper;

Each student should provide an intuitive description of the algorithms, their correctness and
their complexity in his/her report.

Reports
Your report should not exceed 12 full pages. Extra pages will be evaluated negatively.
Your report must include the most important, according to your opinion, results of the
papers you study. Also, you may show several examples to demonstrate in-depth
understanding of your subject.

Your report should have approximately the following structure:

1. Introduction (approximately 1-2 pages): Abstract description of the problem and
its significance. Abstract description of the results presented in later sections. A
paragraph on the organization of the rest of the material in the report.

2. Model (approximately 2 pages): Presentation of the model (the system parameters,
definitions needed to describe and analyze the algorithm, etc.).

3. Technical part of the paper (approximately 8 pages): In this section, we describe
the algorithms, their correctness and their analysis in accordance with the
instructions given above. In cases a paper presents a series of results, and there is
not enough room for all of them, the student should choose which of them to
include in the paper.

4. Epilogue: A summary and a description of open problems (if any) (at most 1
page).

Department of Computer Science, University of Crete 5/5/2011

Your report will be graded based on the following criteria:

1. how much it convinces that you understand the results presented in the studied
papers in depth,

2. whether it is well-structured,

3. selected results you have decided to include (for instance, these must no be only
the easier results presented in the papers)

4. how much it differentiates from the original papers,

5. how many examples you have studied (some of them should be of your own), and
how well you explain the algorithms, techniques and proofs you have included,

6. how well written it is (the degree of formalism, how correct are the material you
have included in it)

7. the extent to which all of these objectives are achieved without having
circumvented the limit of 14 pages.

We do not present the results of the two papers in order. We rather try to discover
similarities and differences between those results and structure the report so that
related results are presented and discussed together. So, the final report is more kind
of a survey where in addition to the presentation of the results, the different
algorithms are compared and contrast. The structure of the report is very important.

Ideas for Programming Projects
You can choose any of the ideas presented below or you should suggest your own
project. In either case, you should submit a project proposal of 2-3 pages providing
more details on which project you are going to implement and describing the
difficulties that you are going to face and solve in your project.

Project proposal due: May 16, 2011
Final Project due: June 17, 2011

1. Distributed Social Network

Implementation of some kind of a distributed social network application. Quoting
from Wikipedia: “A social network is a social structure made up of individuals (or
organizations) called "nodes", which are tied (connected) by one or more specific
types of interdependency, such as friendship, kinship, common interest, financial
exchange, dislike, or relationships of beliefs, knowledge or prestige”. All these are
parameters specified by each node.

The general idea is the following. Each node must be able to join the social
network and exit from the social network. During its presence to the network each
node can specify or modify various parameters. The distributed system must be
able to correlate nodes with common parameters and form “groups of relevance”.
Exiting at any arbitrary time from the social network may cause a lot of problems
and have several implications, according to the services you will choose to
implement and the algorithms you selected to implement them. These problems or
implications must be clearly identified and their solutions must be described.

Department of Computer Science, University of Crete 5/5/2011

You can choose the functionality of your distributed social network so that it takes
into consideration the constraints of the project described below.

2. Library of Collaborating Tools

Implementation of a library of collaborating tools, such as:

■ Distributed Calendar (like the google calendar but probably with enhanced
functionality)

■ Distributed Meeting Arrangement (like doodle but with enhanced
functionality)

■ Distributed Meeting and Sharing (like facebook). The nodes can chat with
each other, form chat-rooms or chat-groups, send messages to multiple
recipients, etc. When chatting with each other, it is required the messages to
be displayed in the same order in both participants. The same is required
when talking to chat-rooms or chat-groups.

■ Distributed Editor (like recent version of emacs). Users can create and edit
documents, which can be concurrently edited by several other users.

Choose some of the above items so that the result should be a comprehensive
project.

3. Middleware

Implementation of middleware that provides some of the following functionality:

■ Naming service. Obviously, each node has to define a “name” when it
enters the network. This service requires implementing a mechanism that
permits to some node to find the information of any other node by
searching its “name” and this must be implemented in a distributed way.

■ Group creation, node joining and exiting, and communication. Maintaining
the groups of relevance in a distributed way, when nodes can join and exit
the network arbitrarily, is challenging.

■ Security service: The security service may include the following: (1)
authentication of principals, (2) access control on the reception of remote
method invocations, (3) security of communication between clients and
servers, (4) facilities for non-repudiation, etc.

■ Trading service: Allows the location of objects by their attributes, i.e., it is
kind of a directory service. Its database contains a mapping from service
types and their associated attributes onto remote memory references of
objects. Clients make queries specifying the type of service required,
together with other arguments specifying constraints on the values of
attributes, and preferences for the order in which to receive matching
offers.

■ Transaction and concurrency control services.

■ Persistent state service.

■ Any other functionality you would like to suggest.

4. Publish-Subscribe System

Department of Computer Science, University of Crete 5/5/2011

Implementation of a publish-subscribe system. Some node wants to publicly share
a piece of information (e.g., to announce an event) with any other member
included in the groups of relevance it participates. Implement algorithms that
efficiently diffuses the information (e.g., efficient broadcasting, or mobile agents,
or gossiping protocols)

5. Distributed Hash Tables

Implementation of a P2P system, structured or unstructured.

6. Distributed Data Structures

Implementation of a library of distributed data structures for distributed memory
machines.

7. Consistency and Replication

Implementation of a quorum system where quorums are appropriately formed to
guarantee consistency.

 A Revision Control System. It is used when a team of people participating to the
same project want to concurrently update the same files. Changes may be
identified by a number or letter code, termed the "revision". Each revision is
associated with a timestamp and the person making the change. Revisions can be
compared, restored, and with some types of files, merged. Revisions can be made
either to independent files or to the whole project.

8. Distributed Memory Allocator or Garbage Collection

A distributed memory allocator is a distributed algorithm that efficiently allocates
memory requested by different nodes.

The garbage collector attempts to reclaim memory occupied by objects that are no
longer in use by the program. Distributed Garbage Collection, is a particular case
of Garbage Collection, where references to some object can be held by remote
clients. Mechanisms, e.g. leases, exist so that an object can be identified either as
useful or as garbage.

You can choose to implement any of the projects described above and you are
encouraged to propose and implement any other service you want (which is related to
the topics of this course, i.e. it incorporates any class of distributed algorithms
discussed during the lectures or the student’s presentations). Your choice should be so
that at least three of the following list of algorithms should be implemented in the
project:

1. Broadcast and/or multicast through spanning tree construction

2. Mobile Agents

3. Gossiping Protocols

4. Mutual Exclusion

5. Leader Election

6. Distributed Snapshots

7. Timestamps

8. Resource allocation algorithms

Department of Computer Science, University of Crete 5/5/2011

9. Concurrency control

10. Resource discovery

11. Agreement protocols

12. Replication and consistency protocols

13. Distributed shared memory protocols

The implementation of your project should take into account issues like fault
tolerance, performance, scalability, and other challenges that we have discussed in
class.

