
Basic Algorithms

Formal Model of Message-Passing Systems

� There are n processes in the
system: p0, .., pn-1

� Each process is modeled as
a state machine.

� The state of each process is
comprised by its local variables and a set of arrays.
For instance, for p0, the state includes six arrays:
� inbuf0[1], …, inbuf0[3]: contain messages that have been

sent to p0 by p1, p2 and p3, respectively, but p0 has not yet
processed.

� outbuf0[1], …, outbuf0[3]: messages that have been sent by
p0 to p1, p2, and p3, respectively, but have not yet been
delivered to them.

Formal Model of Message-Passing Systems

� The state of process pi excluding the outbufi[l]
components, comprises the accessible state of pi.

� Each process has an initial state in which all inbuf
arrays are empty.

� At each step of a process, all messages stored in
the inbuf arrays of the process are processed, the
state of the process changes and a message to each
other neighboring process can be sent.

� A configuration is a vector C = (q0, .., qn-1) where qi
represents the state of pi.
� The states of the outbuf variables in a configuration

represent the messages that are in transit on the
communication channels.

� In an initial configuration all processes are in initial states.

Formal Model of Message-Passing Systems

� Computation event, comp(i)
� Represents a computation step of process pi in which pi’s transition

function is applied to its current accessible state.
� Delivery Event, del(i,j,m)

� Represents the delivery of message m from processor pi to
processor pj (i.e., message m is placed in one of the inbuf buffers of
pj)

� The behavior of a system over time is modeled as an execution, which is
a sequence of configurations alternating with events.

� This sequence must satisfy a variety of conditions.
� Safety condition

� Holds in every finite prefix of the execution (it states that nothing bad
has happened yet)

� Liveness condition
� Holds a certain number of times (it states that eventually something good

must happen)

Formal Model of Message-Passing Systems
Complexity Measures

� The message complexity of an algorithm for
either a synchronous or an asynchronous
message-passing system is the maximum,
over all executions of the algorithm, of the
total number of messages sent.

� The time complexity of an algorithm for a
synchronous message-passing system is the
maximum number of rounds, in any
execution of the algorithm, until the
algorithm has terminated.

Formal Model of Message-Passing Systems
Complexity Measures
Measuring the time complexity of asynchronous algorithms
� A timed execution is an execution that has a nonnegative real

number associated with each event, the time at which that
event occurs.

� The times must start at 0, must be strictly increasing for
each individual processor, and must increase without bound if
the execution is infinite.

� We define the delay of a message to be the time that
elapses between the computation event that sends the
message and the computation event that processes the
message.

� Assumption: The maximum message delay in any execution is
one unit of time.

� The time complexity of an asynchronous algorithm is the
maximum time until termination until termination among all
timed executions of the algorithm in which every message
delay is at most one time unit.

Broadcast on a Spanning Tree
� A distinguished processor, pr, has a message <M> it wishes to send to
all other processors.

� Copies of the message are to be sent along a tree which is rooted at
pr, and spans all the processors in the network.

� The spanning tree is maintained in a distributed fashion:

� Each processor has a distinguished channel that leads to its
parent, as well as a set of channels that lead to its children.

Broadcast on a Spanning Tree
State of process pi, i ∈∈∈∈ {0, …, n-1}
� a variable parenti,which holds either a processor index or nil
� a variable childreni,which holds a set of processor indices
� a variable terminatedi,which indicates whether pi is in a

terminated state
� the inbuf and outbuf tables of pi

Initial State
� all terminated variables are false.
� The inbuf tables are empty, for all processes.
� The outbuf tables are empty for all processes other than pr;

outbufr[j] contains Μ for all j ∈ childrenr.

Complexities?
� Communication Complexity?
� Time Complexity?

Broadcast on a spanning tree - Time Complexity

Synchronous System
� Lemma: In every execution of the broadcast algorithm in

the synchronous model, every process at distance t from pr
in the spanning tree receives <M> in round t.

� Proof: By induction on the distance t of a process from pr.
� t = 1. Each child of pr receives <M> from pr in the first

round.
� Assume that every process at distance t-1 ≥ 1 from pr

receives the message <Μ> in round t-1.
� Let p be any process in distance t from pr. Let p’ be the

parent of p in the spanning tree. Since p’ is at distance t-1
from pr, by the induction hypothesis, p’ receives <M> in
round t-1. By the description of the algorithm, p receives
<M> from p’ in the next round.

Broadcast on a spanning tree - Time Complexity

Asynchronous System
� Lemma: In every execution of the broadcast algorithm in

an asynchronous model, every process at distance t from
pr in the spanning tree receives <M> in time t.

� Proof: By induction on the distance t of a process from pr.
� t = 1. From the description of the algorithm, <M> is initially

in transit to each process pi at distance 1 from pr. By the
definition of time complexity for the asynchronous model,
pi receives <M> by time 1.

� Assume that every process at distance t-1 ≥ 1 from pr
receives the message <Μ> by time t-1.

� Let p be any process in distance t from pr. Let p’ be the
parent of p in the spanning tree. Since p’ is at distance t-1
from pr, by the induction hypothesis, p’ receives <M> by
time t-1. By the description of the algorithm, p receives
<M> from p’ by time t.

Broadcast on a spanning tree

� Theorem 1: There is a synchronous broadcast
algorithm with message complexity n-1 and time
complexity d, when a rooted spanning tree with
depth d is known in advance.

� Theorem 2: There is an asynchronous broadcast
algorithm with message complexity n-1 and time
complexity d, when a rooted spanning tree with
depth d is known in advance.

Convergecast
Problem
� Collect information from the nodes of the tree to the root.
� Each processor pi starts with a value xi.
� We wish to forward the maximum value among these values to

the root pr.

� Theorem: There is an asynchronous convergecast algorithm
with message complexity n-1 and time complexity d, when a
rooted spanning tree with depth d is known in advance.

Flooding and Building a Spanning Tree

Problem

� Broadcast without a preexisting spanning tree,
starting from a distinguished processor pr.

Solution

� Flooding

� Assume that m is the number of edges and n is
the number of processes. How many messages
does the flooding algorithm send?

� Can we modify the flooding algorithm to
construct a spanning tree?

Flooding and Building
a Spanning Tree:
The F-SpanningTree
Algorithm

The F-SpanningTree Algorithm

Two steps in the
construction of the
spanning tree.

Correctness

Why is every node
reachable from the root?

Why is there no cycle?

The F-SpanningTree Algorithm
� Theorem: There is an asynchronous algorithm to find a

spanning tree of a network with m edges and diameter D,
given a distinguished node, with message complexity O(m) and
time complexity O(D).

� What kind of tree is the output of F-SpanningTree when the
system is synchronous?

� Theorem: In every execution of F-SpanningTree in the
synchronous model, the algorithm constructs a BFS tree
rooted at pr.

� What kind of tree can be
the output of
F-SpanningTree when
the system is asynchronous?

Synchronous Systems

� We define a directed spanning tree of a directed graph G = (V,E) to
be a rooted tree that consists entirely of directed edges in E, all
edges directed from parents to children in the tree, and that
contains every vertex of G.

� A directed spanning tree of G with root node pr is breadth-first
provided that each node at distance d from pr in G appears at depth
d in the tree (that is at distance d from pr in the tree).

� Every strongly connected digraph has a breadth-first directed
spanning tree.

� Given that the G is a strongly connected directed graph and given
that we have a distinguished node pr, how can we design a
synchronous algorithm that computes the directed BFS tree?

� How can a process learn which nodes are its children?
� What is the communication complexity of the algorithm in this case?
� What is the time complexity of the algorithm in this case?
� How can pr learn that the construction of the spanning tree has

terminated?

Constructing a Depth-First Search
Spanning Tree for a Specified Root
Brief Description
� Each node maintains a set, called unexplored, of “unexplored”

neighboring nodes and a set of nodes that will be its children
in the constructed spanning tree.

� Initially, the root sends <Μ> to one of its neighbors and
deletes this neighbor from unexplored.

� When a node pi receives <Μ> for the first time from some
node pj, pi marks pj as its parent node in the spanning tree.
Then, pi chooses one of the nodes in unexplored and forwards
<M> to it. If pi does not receive <Μ> for the first time, it
sends a message of type <already> to pj and removes pj from
unexplored. If unexplored is empty, pi sends a message of
type <parent> to its parent node.

� When a node pi receives a message of type <parent> or
<already>, it sends <M> to one of the nodes in unexplored. If
pi has received <Μ> or a message of type <parent> or <already>
from all its neighbors, pi terminates.

Constructing a Depth-First
Search Spanning Tree for a
Specified Root: The DFS-ST
Algorithm

The DFS-ST Algorithm

children0 = {}

children1 = {}

children2 = {}

children3 = {}

parent0 = nil

parent1 = nil

parent2 = nil

parent3 = nil

unexplored0 = {2}

unexplored1 = {0,2}

unexplored2 = {0,1,3}

unexplored3 = {2}

The DFS-ST Algorithm
Correctness
� Lemma: In every execution of DFS-ST in the

asynchronous model, DFS-ST constructs a DFS tree of
the network rooted at pr.

Communication Complexity
� Lemma: The communication complexity of DFS-ST is

O(m).
� Proof: Each node/process sends <Μ> at most once in

each of the edges that are incident to it.
� Each node that receives <Μ> sends at most one message

as a response on each of the edges that are incident to
it.

� Thus, the number of messages sent is at most 2m.

The DFS-ST Algorithm

Time Complexity
Lemma: The time complexity of DFS-ST is O(m).
Proof
� Since the time pr executes its first step and before pr

terminates, there is always exactly one message in
transit.

� No more than two messages are ever send on each edge.
� There are m edges in the graph.

Theorem: There is an asynchronous algorithm to find a
depth-first search spanning tree of a network with m
edges and n nodes, given a distinguished node, with
message complexity O(m) and time complexity O(m).

Constructing a DFS Spanning Tree
without a Specified Root

� How can we build a spanning tree when there is no
distinguished node?

Brief Description
� Each processor that wakes up spontaneously

attempts to build a DFS spanning tree with itself
as the root, using a separate copy of DFS-ST.

� If two DFS trees try to connect to the same
node, the node will join the DFS tree whose root
has the higher identifier.

� pm: the node with the maximal identifier among
the nodes that wake up spontaneously.

Constructing
a DFS
Spanning
Tree without
a Specified
Root

Constructing a DFS Spanning Tree
without a Specified Root
Correctness
� <leader> messages with leader id m are never dropped

because of discovering a larger leader id, by definition of m.
� <already> messages with leader id m are never dropped

because they have the wrong leader id.
� <parent> messages with leader id m are never dropped

because they have the wrong leader id.
� messages with leader id m are never dropped because the

recipient has terminated.
� Thus, the instance of DFS-ST for leader id m completes, and

correctness of DFS-ST implies correctness of Algorithm 4.

� Message complexity?
� Time complexity?

Constructing a DFS Spanning Tree
without a Specified Root

� Theorem: Algorithm 4 finds a spanning
tree of a network with m edges and n
nodes, with message complexity O(nm) and
time complexity O(m).

Leader Election in Rings

The Leader Election Problem

� Each process should eventually decide that it is
either the leader or it is not the leader.

� Exactly one process should decide that it is the
leader.

� The leader process may be responsible for
achieving synchronization in future activities of
the system:

� token re-creation

� recovery from deadlock

� play the role of the root node in the construction
of a spanning tree, etc.

The Leader Election Problem – More formally

� An algorithm is said to solve the leader
election problem if it satisfies the
following conditions:
� The terminated states are partitioned into

elected and not-elected states. Once a process
enters an elected (respectively, not-elected)
state, its transition function will only move it to
another (or the same) elected (respectively,
not-elected) state.

� In every admissible execution, exactly one
process (the leader) enters an elected state
and all the remaining processes enter a not-
elected state.

The Leader Election Problem

Assumptions

� Ring topology

� The n processes have a consistent
notion of left and right
� For every i, 1 ≤ i ≤ n, pi’s channel to pi+1 is

labeled 1, also known as left or clock-wise, and
pi’s channel to pi-1 is labeled 2, also known as
right or counter-clock-wise (addition and
subtraction here are modulo n).

Model - Rings
� An algorithm is anonymous if the processes do

not have unique identifiers that can be used by
the algorithm.
� Every process has the same state machine.

� Otherwise, the algorithm is called eponymous (or
non-anonymous).

� If n is not known to the algorithm, the algorithm
is called uniform
� The algorithm looks the same for every value of n.

� In an anonymous non-uniform algorithm, for each
value of n, there is a single state machine, but
there can be different state machines for
different ring sizes.
� n can be explicitly present in the code.

Leader Election in Anonymous
Synchronous Rings
Theorem: There is no non-uniform anonymous algorithm for

leader election in synchronous rings.
Lemma: For every round k of the admissible execution of an

anonymous leader election algorithm in a ring, the states of all
the processors at the end of round k are the same.

Proof: By induction on k.
� Base case: Straightforward since all processes begin in the

same state.
� Induction Hypothesis: Assume the lemma holds for round k-1.
� Induction Step: Since all processes are in the same state in

round k-1, they all send the same messages ml to the left and
mr to the right.

� In round k, all processes receive message mr on its left edge
and ml on its right; because they execute the same program,
they are in the same state at the end of round k.

Leader Election in Eponymous Asynchronous
Rings
An O(n2) Algorithm
Description of the algorithm:
� Each process sends a message with its identifier to its

left neighbor and then waits for messages from its right
neighbor.

� When is receives such a message, it checks the identifier
in the message:
� If it is greater than its own identifier, it forwards the

message to the left.
� Otherwise, it shallows the message.

� If a processor receives a message with its own identifier,
it declares itself a leader by sending a termination
message to its left neighbor and terminating.

� A processor that receives the termination message,
forwards it to the left and terminates as non-leader.

Leader Election in Eponymous
Asynchronous Rings

Communication Complexity?

� No process sends more than n messages.

� Is there an execution at which Θ(n2)
messages are sent?

An Algorithm with Communication
Complexity O(nlogn) – Main Ideas

� The k-neighborhood of a process pi in the ring is
the set of processes that are at distance at most
k from pi in the ring (either to the left or to the
right).

Main Ideas

� The algorithm works in phases:
� kth phase, k ≥ 0: a process tries to become a winner for

the phase; a process becomes a winner if it has the
largest id in its 2k-neighborhood.

� Only processes that are winners in the kth phase
continue to compete in the (k+1)st phase.

An Algorithm with Communication Complexity
O(nlogn)- Description
� In phase k, a process pi that is a phase k-1 winner

sends <probe> messages with its identifier to the
2k-neighborhood (one in each direction).

� A <probe> is shallowed by a processor if it contains
an identifier that is smaller than its own identifier.

� If the message arrives at the last process in the
neighborhood, then that last process sends back a
<reply> message to pi.

� If pi receives replies from both directions, it
becomes a phase k winner, and it continues to
phase k+1.

� A processor that receives its own <probe> message
terminates the algorithm as the leader and sends a
termination message around the ring.

An Algorithm with Communication Complexity O(nlogn)
- Pseudocode

� A message of type <probe> contains the id j of the process
that sends it, the phase number k and a hop counter d.

� A message of type <reply> contains the id j and the number of
the current phase k.

An Algorithm with Communication Complexity
O(nlogn) - Analysis
� Lemma: For each k ≥ 1, the number of processes

that are phase k winners is at most n/(2k+1).

� Proof:
� Between two winners of phase k there are 2k other

processes in the ring.

� Remarks
� There is just one winner after log(n-1) phases.

� The total number of messages is:

� 5n + Sum_{k=1}^{\lceil log(n-1) \rceil+1} 4*2k*n/(2k-1+1)
< 5n + 8n(logn+2)

� Theorem: There is an asynchronous leader election
algorithm whose message complexity is O(nlogn).

Leader Election in Synchronous Rings
� The reception of no message in a round is a piece of

information. Does this help?
An O(n) Upper Bound
The Non-Uniform Algorithm
� Elects the processor with the minimal identifier as the leader.
� It works in phases, each consisting of n rounds.
� In phase i ≥ 0, if there is a processor with id i, it is elected as

a leader and the algorithm terminates.
� Phase i includes rounds ni+1, ni+2, …, ni+n.
� At the beginning of phase i, if a process has id i, and it has not

terminated yet, the process sends a message around the ring
and terminates as a leader.

� If the process does not have id i, and it receives a message in
phase i, it forwards the message and terminates as the non-
leader.

Leader Election in Synchronous Rings –
The Uniform Algorithm
� Processes wake up either spontaneously in an arbitrary round

or upon receiving a message from some other processor.
� Messages that originate from different processes are

forwarded at different rates.
� A message that originates at a processor with identifier i is

delayed 2i-1 rounds at each processor that receives it,
before it is forwarded clockwise to the next processor (slow
message).

� There is a wake-up phase.
� Each process that wakes up spontaneously sends a “wake-up”

message around the ring (fast message).
� A process that receives a wake-up message before starting

the algorithm does not participate in the algorithm and will only
act as a relay, forwarding or shallowing messages.

� The leader is elected among the set of participating processes.

Leader Election in Synchronous Rings – The
Uniform Algorithm
� Lemma 1: Only the process with the smallest id among the

participating processes receives its own message back.
� To calculate the number of messages sent during an admissible

execution of the algorithm we divide them into three
categories:
� Category 1: First phase messages (fast messages)
� Category 2: Second phase messages (slow messages) sent

before the message of the eventual leader enters its second
phase (i.e., as long as it is fast).

� Category 3: Second phase messages sent after the message of
the eventual leader enters its second phase.

� Lemma 2: The total number of messages in the first category
is at most n.

� Proof: At most one 1st phase message is forwarded by each
process.

Leader Election in Synchronous Rings – The
Uniform Algorithm
� Let r be the first round in which some process starts

executing the algorithm, and let pi be one of these processes.
� Lemma 3: If a process pj is in (clock-wise) distance k from pi,

then a first-phase message is received by pj no later than
round r+k.

� Lemma 4: The total number of messages in the second
category is at most n.

� Proof: The message of the future leader enters in its 2nd

phase at most n rounds after the first message of the
algorithm is sent.

� Thus, a message <i> of the 2nd category is sent at most n/2i

times.
� Worst Case: All processes participate and the identifiers are

as small as possible (that is, 0, ..., n-1).
� Then, the number of messages of category 2 is

Sum_{i=1 to n-1} n/2i ≤ n.

Leader Election in Synchronous Rings – The
Uniform Algorithm
� Let pi be the eventual leader and let pj be any other

participating process (pi < pj).

� At most n * 2idi rounds are needed for <idi> to return to pi →

messages of the 3rd category are sent only during n*2idi rounds.

� Message <idj> is forwarded at most:

� n*2idi / 2idj = n / 2idj-idi

� Hence, the total number of messages transmitted in this
category is at most:

� Sum_{j=0 to n-1} n/2idj-idi.

� In the worst case, all processes participate and the identifiers
are as small as possible. Then, the total number of messages is:

� Sum_{j=0 to n-1} n/2j ≤ 2n.

Algorithms in General Synchronous Graphs

� We consider an arbitrary connected graph G = (V,E) having n
nodes. Sometimes, we will assume that the graph is a
strongly-connected digraph.

� The number n of nodes and the diameter, diam, of the
network can be either known or unknown to the processes, or
an upper bound on these quantities might be known.

� Processes have unique identifiers. The identifier of process
pi is denoted by idi.

� The indices 1, … ,n have been assigned to the processes
(nodes) in order to name them.

� Unlike what happens in rings, these indices have now no
connection to their position in the graph.

� The processes do not know their indices (each process knows
only its id).

Leader Election in General Synchronous Graphs

Brief Description
� Every process maintains a record of the maximum pid it has

seen so far (initially its own).
� At each round, each process propagates this maximum on all of

its outgoing edges.
� After diam rounds, if the maximum value seen is the process’s

own pid, the process elects itself the leader.
� Otherwise, it is a non-leader.
State of pi
� idi: identifier of pi

� max-idi: maximum pid that pi has seen so far, initially equal to idi

� statusi ∈ {UNKNOWN, LEADER, NON-LEADER}, initially
UNKNOWN

� roundsi: an integer, initially 0

Leader Election in General Synchronous Graphs

� Initially, idi is contained in all outbuf tables of
process pi, ∀ i.

Actions of pi in each round
roundsi = roundsi + 1;
let U be the set of UIDs that arrive from neighboring

processes;
max-uidi = max({max-uidi} ∪ U)
if (roundsi == diam) then

if (max-uidi = idi) then statusi = LEADER;
else statusi = NON-LEADER;

if (roundsi < diam) then
send max-uidi to all neighbors;

Leader Election in General Synchronous Graphs

� Let imax be the index of the process with the maximum
identifier and let idmax be that pid.

Theorem

� In each execution of the FloodMax algorithm, process imax
outputs leader and each other process outputs non-leader,
within diam rounds.

Proof

� For each 0 ≤ k ≤ diam and for each process j, after k rounds,
if the distance from imax to j is at most k, then max-idj =
idmax.

� To prove the claim, we should first prove the following:
� For every k and j, after k rounds, roundsj = k.

� For every k and j, after k rounds, max-idj ≤ idmax.

Leader Election in General Synchronous Graphs

Complexity
� Time Complexity?
� Communication Complexity?

Reducing the Communication Complexity -
Algorithm OptFloodMax

� How can we decrease the communication
complexity in many cases (without necessarily
decreasing the order of magnitude in the worst
case)?

O(diam) rounds

O(diam*|E|) messages

Leader Election in General Synchronous Graphs

� The state of pi includes an additional variable, called new-infoi,
initially TRUE.

� Initially, idi is contained in all outbuf tables of process pi, ∀ i.

Actions of process pi in each round

roundsi = roundsi + 1;
let U be the set of pids that arrive from neighboring processes

if (max(U) > max-idi) then new-infoi = TRUE;

else new-infoi = FALSE;

max-uidi = max({max-uidi} ∪ U)

if (roundsi == diam) then

if (max-uidi = idi) then statusi = LEADER;

else statusi = NON-LEADER;

if (roundsi < diam AND new-infoi == TRUE) then

send max-uidi to all neighbors

Leader Election in General Synchronous Graphs
Theorem

� In each execution of the OptFloodMax algorithm, process imax outputs
leader and each other process outputs non-leader, within diam rounds.

Proof – Main Ideas

� Lemma 1: For any k, 0 ≤ k ≤ diam, and any i,j, where j ∈ nbrsi, the following
holds: after k rounds, if max-idj < max-idi then new-infoi = TRUE.

� Proof: By induction on k.

� Base case: The claim holds trivially since all new-info variables are initialized
to TRUE.

� Induction Step: Consider any particular processes i and j, where j ∈ nbrsi.

� If max-idi increases in round k, by the code, new-infoi gets set to TRUE
(which suffices).

� If max-idi does not increase in round k, the induction hypothesis implies that
either max-idj was already sufficiently large (i.e., as large as max-idi) or else
new-infoi == TRUE just before round k.

� In the former case, max-idj remains sufficiently large because the value
never decreases. In the latter case, the new information is sent from i to j
at round k, which causes max-uidj to become sufficiently large.

Leader Election in General Synchronous Graphs

� Lemma 2: For each k, 0 ≤ k ≤ diam, after k rounds, the values of
variables: id, max-id, status, and rounds, are the same in the states
of both algorithms.

� Proof: By induction on k.

� Consider any particular processes i and j, where j ∈ nbrsi.

� If new-infoi == TRUE before round k, then i sends the same
information to j in round k in OptFloodMax as it does in FloodMax.

� If new-infoi == FALSE before round k, then i sends nothing to j in
round k in OptFloodMax, but sends max-idi to j in round k in
FloodMax. However, Lemma 1 implies that, in this case, max-idj ≥
max-idi before round k. So, the message has no effect in FloodMax.

� Thus, i has the same effect on max-uidj in both algorithms.

� Since this is true for all i and j, it follows that the max-id values
remain identical in both algorithms.

Shortest Paths
� We consider a strongly connected directed graph, with the possibility

of unidirectional communication between some pairs of neighbors. We
assume that each directed edge e = <i,j> has an associated non-
negative real-valued weight, which we denote by weight(e) or weighti,j.

� The weight of a path is defined to be the sum of the weights on its
edges.

� A shortest path from some node i to some node j is a path with
minimum weight (among all paths that connect i and j).

Problem

� Find a shortest path from a distinguished source node pr in the
digraph to each other node in the digraph.

� We assume that every process initially knows the weight of all its
incident edges.

� The weight of an edge appears in special weight variables at both endpoint
processes.

� We assume that each process knows n.

Shortest Paths

� We require that each process should
determine:

� its parent in a particular shortest paths tree,
and

� the total weight of its shortest path from pr.

� If all edges are of equal weight, then a
BFS tree is also a shortest paths tree.

� We assume that the weights on the edges
can be unequal.

Shortest Paths
The SynchBellmanFord Algorithm – Process i

� Each process pi maintains a variable disti where it stores the
shortest distance from pr it knows so far. Initially, distr = 0
and disti = ∞ for each i ≠ r.

� Another variable parenti, stores the incoming neighbor pj
that precedes pi in a path whose weight is disti. Initially,
parenti = nill, for each i.

� At each round, process pi sends disti to all its outgoing edges.

� Then, each process pi updates its disti by a “relaxation step”,
in which it takes the minimum of its previous dist value and all
the values distj + weightj,i, where j is an incoming neighbor.

� If disti is changed, the parenti variable is also updated
accordingly.

� After n-1 rounds, disti contains the shortest distance, and
parenti the parent of pi in the shortest path tree.

Shortest Paths
Correctness

It is not hard to see that, the following is true after k
rounds:

� Every process pi has its disti and parenti variables
corresponding to a shortest path among the paths from pr
to pi consisting of at most k edges.
� If there is no such paths, then disti = ∞ and parenti is

undefined.

Complexity

� Number of messages? (n-1)*|E|

� Time Complexity? (n-1) rounds

Minimum SpanningTree
� A spanning forest of an undirected graph G = (V,E) is a forest

(i.e., a graph that is acyclic but not necessarily connected)
that consists entirely of undirected edges in E and that
contains every vertex of G .

� A spanning tree of an undirected graph G is a spanning forest
of G that is connected.

� If there are weights associated with the edges in E, then the
weight of any subgraph of G (such as a spanning tree or
spanning forest of G) is defined to be the sum of the weights
of its edges.

Problem

� Find a minimum weight spanning tree for the entire network.

o Each process is required to decide which of its incident edges
are and which are not part of the minimum spanning tree.

Minimum SpanningTree versus Shortest-Path
Trees

22

1

1

22

1

2

1

1

shortest path tree for p1 minimum spanning tree

Minimum SpanningTree – Basic Theory
Main Ideas

� Start with the trivial spanning forest that
consists of n individual nodes and no edges.

� Repeatedly merge components by
connecting edges until a spanning tree is
produced.

� In order to end up with a minimum spanning
tree, the merging should occur with care.

� Lemma 1: Let G = (V,E) be a weighted
undirected graph, and let {(Vi, Ei): 1 ≤ i ≤ k}
be any spanning forest for G, where k > 1.
Fix any i, 1 ≤ i ≤ k. Let e be an edge of
smallest weight in the set

{e’: e’ has exactly one endpoint in Vi}.

Then, there is a spanning tree for G that
includes ∪j Ej and e, and this tree is of
minimum weight among all spanning trees for
G that include ∪j Ej.

1

1

1

1 1

1 1

2

2

2

2

p0

p5p4

p2

p7
p6

p3

p1

p0

p5
p4

p2

p7p6

p3

p1

1

1

1

11

Minimum SpanningTree
Proof of Lemma 1

� By contradiction. Suppose that there exists a
spanning tree T that contains ∪j Ej, does not
contain e, and is of strictly smaller weight
than any other spanning tree that contains ∪j
Ej and e.

� Consider the graph T’ obtained by adding e to
Τ. Clearly, T’ contains a cycle which has
another edge e’≠e that is outgoing from Vi.

� By the choice of e, weight(e) ≤ weight(e’).

� Now, consider the graph T’’ constructed by
deleting e’ fromΤ’.

� Then T’’ is a spanning tree for G, it contains
∪j Ej and e and its weight is no greater than
that of Τ.

� This contradicts the claimed property of T.

1

1

1

1 1

1 1

2

2

2

2

p0

p5p4

p2

p7
p6

p3

p1

p0

p5
p4

p2

p7p6

p3

p1

1

1

1

11

e

2

1
e

e’

Minimum SpanningTree
General Strategy for MST

� Start with the trivial spanning forest that consists of n individual nodes and no
edges.

� Repeatedly do the following:

� Select an arbitrary component C in the forest and an arbitrary outgoing edge
e of C having minimum weight among the outgoing edges of C.

� Combine C with the component at the other end of e, including edge e in the
new combined component.

� Stop when the forest has a single

component.

� What is the parallel version of this algorithm?

� Extend the forest with several edges determined

concurrently.

� Why does the algorithm fail in its parallel version?

� If weights of edges are not distinct, a cycle can be created.

Minimum SpanningTree
Lemma 2: If al edges of a graph G have

distinct weights, then there is exactly one
MST for G.

Proof: Similar to that of Lemma 1.

� Suppose there are two distinct minimum-
weight spanning trees, T and T’, and let e
be the minimum-weight edge that appears
in only one of the two trees. Suppose wlog
that e ∈ T.

� Then the graph T’’ obtained by adding e to
T’ contains a cycle, and at least one other
edge in that cycle, e’, is not in T.

� Since the edge weights are all distinct and
since e’ is in only one of the two trees, we
must have weight(e’) > weight(e), by our
choice of e.

� Then, removing e’ from T’’ yields a spanning
tree with a smaller weight that T’, which is
a contradiction.

p0

p5
p4

p2

p7p6

p3

p1

2

4

5

63

1
e

p0

p5
p4

p2

p7p6

p3

p1

2

4

5

63

7

e’

8

1
e

Minimum SpanningTree
� The algorithm builds the components in levels.

� For each k, the components of level k constitute a spanning forest,
where:

� Each level k component consists of a tree that is a subgraph of the MST.

� Each level k component has at least 2k nodes.

� Every component, at every level, has a distinguished leader node.

� The processes allow a fixed number of rounds, which is Ο(n), to
complete each level.

� The n components of level 0 consist of one node each and no edges.

� Assume inductively that the level k components have been
determined (along with their leaders), k ≥ 0. Suppose that each
process knows the id of the leader of its component. This id is used
as an identifier of the entire component.

� Each process also knows which of its incident edges are in the
component’s tree.

Minimum SpanningTree
To get the level k+1 components:
� Each level k component C conducts a search (along its

spanning tree edges) for an edge e such that e is an outgoing
edge of C and has the minimum weight among all outgoing
edges of C (e is called MWOE). How can we implement this?

� When all level k components have found their MWOEs, the
components are combined along all these MWOEs to form
the level k+1 components.

� This involves the leader of each level k component
communicating with the component process adjacent to the
MWOE, to tell it to mark the edge as being in the new tree;
the process at the other end of the edge is also told to do
the same thing.

� Then a new leader is chosen for each level k+1 component.

Minimum SpanningTree
It can be proved that:
� For each group of level k components that get combined into a

single level k+1 component, there is a unique edge e that is the
common MWOE of two of the level k components in the group.

� We let the new leader be the endpoint of e having the larger
pid.

� The pid of the new leader is propagated throughout the new
component, using broadcast.

Termination
� After some number of levels, the spanning forest consists of

only a single component containing all the nodes in the
network.

� Then, a new attempt to find a MWOE will fail, because no
process will find an outgoing edge.

� When the leader learns this, it broadcasts a message saying
that the algorithm is completed.

Minimum SpanningTree
Claim
� Among each group of level k components that get combined, there

is a unique edge that is the common MWOE of both endpoint
components.

Proof
� Consider the component digraph G’:

� The nodes of G’ are the level k components that combine to
form one level k+1 component.

� The edges of G’ are the MWOEs.
� G’ is a weakly connected digraph

in which each node has exactly one
outgoing edge. (A digraph is weakly
connected if its undirected version
is connected.)

� It can be proved that every weakly
connected digraph in which each node
has exactly one outgoing edge contains
exactly one cycle.

Minimum SpanningTree
� Because of the way G’ is constructed, successive

edges in the cycle must have non-increasing
weights.

� ⇒ the length of this cycle cannot be > 2
� ⇒ the length of the cycle = 2
� ⇒ this corresponds to an edge that is the common

MWOE of both adjacent components.

� Why is it important that the system is
synchronous?
� To ensure that when a process pi tries to determine

whether or not the other endpoint pj of a candidate edge
is in the same component, both pi and pj have up-to-date
component ids.

Minimum SpanningTree
Complexity
� How many levels do we have until

termination?
� How many rounds are executed in each

level?
� What is the time complexity of the

algorithm?
� How many messages are sent at each level?

� What is the communication complexity of
the algorithm?

O(logn). Why?

O(n). Why?

O(nlogn)

O(n+|E|). Why?

O((n+|E|)logn)

Minimum SpanningTree
� The algorithm assumes that the weights of

the edges are all distinct.

� How can we solve the problem without
making this assumption?

� Is there any way to distinguish different
edges that have the same weight?

Asynchronous Systems: Leader Election –
General Undirected Graphs
� The FloodMax algorithm does not extend directly

to the asynchronous setting, because there are no
rounds in the asynchronous model.

� How can we simulate the rounds asynchronously?
� Each process that sends a round k message must

tag that message with its round number k.
� The recipient waits to receive round k messages

from all its neighbors before performing its round
k transition.

� By simulating diam rounds in this way, the
algorithm can terminate correctly.

� Can we simulate OptFloodMax (the optimized
version of FloodMax) in an asynchronous network?
What is the problem encountered?

Asynchronous Systems: Leader Election –
General Undirected Graphs

� Whenever a process obtains a new maximum pid, it sends that
pid to its neighbors at some later time.

� This strategy will indeed eventually propagate the maximum to
all processes.

Problem
� Now the processes have no way of knowing when to stop.

Solutions to the asynchronous leader election problem
� Asynchronous broadcast and convergecast
� Convergecast using a spanning tree
� Using a synchronizer to simulate a synchronous algorithm
� Using a consistent global snapshot to detect termination of an

asynchronous algorithm.

Leader Election in Asynchronous Systems given an
Unrooted Spanning Tree
STtoLeader Algorithm
� A convergecast of <elect> messages is initiated

starting from the leaves of the tree.
� Each leaf node is initially enabled to send

an <elect> message to its unique neighbor.
� Any node that receives <elect> messages from

all but one of its neighbors is enabled to send
an <elect> message to its remaining neighbor.

� In the end,
1. Some particular process receives <elect> messages along all

of its channels before it has sent out an <elect> message
� the process at which the <elect> messages converge elects

itself as the leader.
2. <Elect> messages are sent on some particular edge in both

directions.
� the process with the largest pid among the processes that are

adjacent to this edge elects itself as the leader.

Breadth-First Search Tree

� We assume an undirected, connected graph
with a distinguished node pr.

� Each edge e = (i,j) has been assigned a
weight, denoted by weight(e) or weight(i,j),
which is a non-negative real number known
to both processes that are incident to e.

� How can we modify the Flooding algorithm
in order to construct a BFS spanning tree?

Breadth-First Search Tree
1st Solution: The AsynchBFS Algorithm

Code for process pi
Initially, parenti = nill, disti = 0 if pi = pr and disti = ∞ if pi ≠ pr;

upon receiving no message:
if (pi == pr) and (parenti == nill) then

send <0> to all neighbors;
parenti = pi;

upon receiving <m> from neighbor pj:
if (m+1 < disti) then

disti = m+1;
parenti = pj;
send <disti> to all neighbors except pj;

Breadth-First Search Tree
1st Solution: The AsynchBFS Algorithm
Theorem: In any execution of the AsynchBFS algorithm, the

system eventually stabilizes to a state in which the parent
variables represent a breadth-first tree.

Proof (brief):
� It can be proved that in any reachable configuration the

following is true:
� For each process pi ≠ pr, disti is the length of some path π

from pr to pi in G in which the predecessor of pi is parenti.
� For each message m in any of the inbuf tables of a process pi,

(m+1) is the length of some path π from pr to pi. A similar
statement is true for the messages that are in the outbuf
tables of pi.

� It can also be proved that, in each reachable configuration,
for each pair of neighboring processes i,j, either distj ≤
disti+1, or the message <disti> is in one of the outbuf tables
of pi or in one of the inbuf tables of pj.

Breadth-First Search Tree
1st Solution: The AsynchBFS Algorithm

� Complexities?
Number of messages: Ο(n*m),
Time Complexity: O(diam)

Termination
� How can I use an acknowledgement mechanism to get

termination?
� For each message an acknowledgement is sent.
� Each time process pi receives a message from some

neighboring process pj which causes an update on variable dist
(and therefore results in sending messages with the new value
to the neighboring processes), pi waits for acknowledgments
from all its neighboring processes before it sends its own
acknowledgement to pj.

� Bookkeeping is needed to keep the different sets of
acknowledgments by the same process separate.

Breadth-First Search Tree
1st Solution: The LayeredBFS Algorithm

� The BFS spanning tree is constructed in layers.
� Each layer k consists of the nodes at depth k in the tree.
� The layers are constructed in a series of phases, one for each layer,

all coordinated by process pr.

1st Phase
� Process pr sends <search> messages to all of its neighbors and waits

to receive acknowledgements.
� A process that receives a search message at phase 1 sends a

positive ack.
� This enables all processes at depth 1 to determine their parent,

namely pr, and of course, pr knows its children.
� Inductively, we assume that k phases have been completed and that

the first k layers have been constructed: each process at depth at
most k knows its parent and each process at depth at most k-1
knows its children; pr knows that phase k has been completed.

Breadth-First Search Tree
1st Solution: The LayeredBFS Algorithm
� Phase (k+1): Construction of the (k+1)st level

� Process pr broadcasts a <newphase> message along all the edges of the spanning tree
constructed so far. These messages are intended for the depth k processes.

� Upon receiving a <newphase> message, each depth k process sends out a <search>
message to all its neighbors except its parent and waits to receive acks.

� When a process pj ≠ pr receives its first <search> message in an execution, it
designates pi as its parent and returns a positive ack. If pj receives a subsequent
<search> message, it returns a negative ack.

� Each time pr receives a message of type <search>, it returns a negative ack.

� When a depth k process has received acks for all its <search> messages, it designates
the processes that have sent positive acks as its children.

� The depth k processes convergecast the information that they have completed the
determination of their children back to pr, along the edges of the edges of the depth
k spanning tree.

� They also convergecast a bit, saying whether any depth (k+1) nodes have been found.
Process pr terminates the algorithm after a phase at which no new nodes are
discovered.

Breadth-First Search Tree
1st Solution: The LayeredBFS Algorithm

Theorem

� The LayeredBFS algorithm calculates a BFS spanning tree.

Complexities?

Communication Complexity Time Complexity

AsynchBFS O(m*n) O(diam)

LayeredBFS O(m +n*diam) O(diam2)

�

Asynchronous Systems: Minimum Spanning Tree

Assumptions
� The edge weights are unique.
� Processes do not know n or diam.
� The processes are initially quiscent and

Each process receives a wakeup signal that
makes it starting the execution of the
algorithm.

� The output of the algorithm is the set of
edges comprising an MST; every process is
required to output the set of edges
adjacent to it that are in the MST.

Asynchronous Systems: Minimum Spanning Tree
� Difficulties that arise if we try to run SynchGHS in an

asynchronous network:

� Difficulty 1: When a process pi queries a neighbor process pj to see if
pj is in the same component of the current spanning forest, a situation
could arise whereby pj is actually in the same component as pi but has
not yet learned this (because a message containing the latest component
id has not yet reached it).

� Difficulty 2: The SynchGHS achieves
a message cost of O(nlogn + |E|),
based on the fact that levels are kept
synchronized. Each level k component
has at least 2k nodes -> # of levels = O(logn).

In the asynchronous setting, there is a danger of constructing the
components in an unbalanced way, leading to many more messages,
i.e., the number of messages sent by a component to find its MWOE
can be at least proportional to the number of nodes in the
component.

Asynchronous Systems: Minimum Spanning Tree

� Difficulty 3: In SynchGHS, the levels remain
synchronized, whereas in the asynchronous
setting, some components could advance to
higher levels than others. It is not clear what
type of interference might occur as a result of
concurrent searches for MWOEs by adjacent
components at different levels.

Asynchronous Systems: Minimum Spanning Tree

� The initial components are just the individual nodes. Each
component has a distinguished leader node and a spanning
tree that is a subgraph of the MST.

� Within any component, the processes cooperate in an
algorithm to find the MWOE for the entire component:
� the leader initiate a broadcast
� each node finds its own mwoe
� information about all these edges is convergecast back to the

leader, who can determine the MWOE for the entire
component. This MWOE will be included in the MST.

� The leader sends a message to the processes that are
incident to the chosen MWOE and the two components may
then combine into a new larger component.

� This procedure is repeated until all the nodes in the graph
are included in a single component.

Asynchronous Systems: Minimum Spanning Tree

1 How does a process pi know which of its edges lead outside its
current component?

� Some sort of synchronization is needed to, to ensure that
process pj does not respond that it is in a different
component unless it has current information about its
component name.

2 How is it possible to have just O(logn) phases?

� We will associate a level with each component, as we do in
SynchGHS. As in SychGHS, all the initial single-node
components will have level = 0, and the number of nodes in a
level k component will be at least 2k.

� A level k+1 component will only be formed by combining
exactly two level k components.

3 How can the 3rd difficulty be solved?

� Some synchronization will be required to avoid interference
between concurrent searches for MWOEs by adjacent
components at different levels.

Asynchronous Systems: Minimum Spanning Tree

� The AsynchGHS algorithm combines
components in two different ways:

� merge: This combining operation
is applied only to two components
C and C’ where level(C) = level(C’),
and C and C’ have the same MWOE.
� The result of a merge is a new component of level = k+1.

� absorb: It is applied to two components C and C’
s.t. level(C) < level(C’) and the MWOE of C leads to
a node in C’.
� This enhances C’ by adding C to it; this enhanced version

of C’ is at the same level as C’ was before the
absorption.

Asynchronous Systems: Minimum Spanning Tree

Lemma
� Suppose that we start from an initial situation in which each

component consists of a single node with level = 0, and apply
any allowable finite sequence of merge and absorb operations.
Then after this sequence of operations, either tjere is only
one component, or else some merge or absorb operation is
enabled.

Proof
� Suppose there is more than one components after a sequence

of merge or absorb operations. We show that there is some
applicable operation.

� We consider the “component digraph” G’, whose nodes are the
current components and whose directed edges correspond to
MWOEs.

� In G’ there is a cycle of length 2 ⇒ there are two components
C and C’, whose MWOEs point to each other ⇒ the two
MWOEs must be the same edge in G

� If level(C) = level(C’) ⇒ merge. Otherwise ⇒ absorb

Asynchronous Systems: Minimum Spanning Tree

� For every component of level 1 or greater, we
identify a specific edge which we call its core
edge. This edge is defined in terms of the series
of merge and absorb operations that are used to
construct the component:
� after a merge operation, the core is the common MWOE

of the two original components,
� after an absorb operation, the core is the original

component with the larger level number.
� For each component, the pair <weight of core

edge, component level> is used as a component
identifier.

� The endpoint of the core edge with the highest
pid is designated to be the leader node of the
component.

Asynchronous Systems: Minimum Spanning Tree

� How does a process pi determines if a neighboring
process pj is outgoing from pi’s component?

� If process pj’s current component identifier is
the same as that of pi, then process pi is certain
that pj is in the same component as itself.

� If these ids are different:
� If pj’s latest known level is at least as high as that of pi,

then pj cannot be at the same component as that of pi.
� A node can only have one component identifier for each

level, and when pi is actively searching for its outgoing
edges, it is certain that pi’s component identifier is up-to-
date.

� If the level of pj is strictly less than that of pi, pj
simply delays answering pi until its own level raises to
become at least as great as that of pi.

Asynchronous Systems: Minimum Spanning Tree

� Could this new delay conceivably cause
progress to be blocked?
� We repeat the same argument as previously

(for proving progress), but with the nodes of G’
to be only those components with the current
lowest level, let it be k.

� If some MWOE of such a component leads to a
higher level component ⇒ absorb is possible

� Otherwise, there is a cycle of length 2 in G’.
Thus, two of these components have the same
MWOE ⇒ merge is possible

Asynchronous Systems: Minimum Spanning Tree

� How shall we overcome the 3rd difficulty?

� What happens if a lower level component
C gets absorbed into a higher level
component C’ while C’ is involved in
determining its own MWOE?
1 Process pj has not yet determined its MWOE from the

component at the time the absorb occurs. Then C participates
in the search of the MWOE.

2 Process pj has already determined its mwoe (let it be e). Then,
e ≠ (i,j) (since e leads to a component with a level at least as
large as that of C’) ⇒ weight(e) < weight(i,j).

3 Then e cannot be incident to a node of C. Why is this so?
4 No edge of C can have smaller weight ⇒ merge is correct!!!!

Asynchronous Systems: Minimum Spanning Tree
� <initiate>: it is broadcast throughout a component, starting at the

leader, along the edges of the component’s spanning tree; it triggers
processes to start trying to find their mwoes, and it carriers the
component id

� <report>: it convergecasts information about MWOEs back toward the
leader

� <test>: a proces pi sends a <test> message to a process pj to try to
ascertain whether or not pj is in the same component as pi; this is part
of the procedure by which process pi searchers for its own mwoe.

� <accept> and <reject>: these are sent in response to <test> messages
(<accept> is responding node is in a different component, <reject>
otherwise)

� <changeroot>: it is sent from the leader of a component toward the
component process that is adjacent to the component’s MWOE, after
the MWOE has been determined; it is used to tell that process to
attempt to combine with the component at the other end of the MWOE.

� <connect>: it is sent across the MWOE of a component C when that
component attempts to combine with another component.
� merge occurs when connect messages have been sent both ways along

the same edge
� absorb occurs when a connect message has been sent one way along

an edge that leads to a process at a higher level than the sender.

Asynchronous Systems: Minimum Spanning Tree

� Each process pi classifies its incident edges into three categories:
� branch: edges that have already been determined to be part of the MST
� rejected: edges that have already been determined not to be part of the

MST (because the lead to other nodes within the same component)
� basic: all other edges.

� Messages of type test are sent by a process pi only across basic
edges.

� Process pi tests its basic edges sequentially, lowest weight to
highest .

� When two <connect> messages cross a single edge, a merge operation
occurs ⇒ new core edge, new level, new leader.

� The new leader then broadcast <initiate> messages to begin looking
for the MWOE of the new component. This message informs all
processes about the id of the new component.

� During an absorb (through edge (i,j)), process pj knows whether it
has already found its MWOE. In either case, process pj will
broadcast an <initiate> message to its previous component to tell the
processes in that component the latest component identifier.

Asynchronous Systems: Minimum Spanning Tree

Theorem

� The GHS algorithm solves the MST problem in an
arbitrary connected undirected graph network.

� Proof

� 4 different proofs of correctness for the
algorithm have been proposed.

� All of them are very complicated. None of them is
sufficiently nicely organized to be presented in
class (or even in books)!

� The presentation of a simple, modular proof for
the algorithm is still an open problem!

Asynchronous Systems: Minimum Spanning Tree

Communication Complexity: Ο(m + nlogn)
� Ο(m): number of test-reject messages
� All other messages are charged to the task of

finding the MWOE for a specific component.
� For each level, and for each component C:

� For each node of C there is only one test-accept pair of
messages.

� Ο(|C|) messages of type initiate-report are sent.
� The number of messages of type <changeroot> and

<connect> is also O(|C|).
� Thus, the total number of messages is bounded as follows:

Sum_{C} |C| = Sum_{k: 0 ≤ k ≤logn} (Sum_{C: level(C) = k} |C|) =
Sum_{0}^{logn} n = n logn

Time Complexity: Ο(nlogn)

