
System Models

Architectural System Model

� An architectural model of a distributed system is
concerned with the placement of its parts and
relationships between them.

� Examples
� Client-server
� Peer-to-peer

� The client-server system can be modified by:
� Partition of data or replication at cooperating servers
� Caching of data by proxy servers or clients
� Use of mobile code
� Support of addition/removal of mobile devices

Architectural System Model

� Interaction Model
� Deals with performance and the difficulty to set

time limits (e.g., in message delivery).

� Failure Model
� (gives a precise specification of the faults of the

processes and the links -> reliable communication
– correct processes)

� Security Model
� Possible threats (for processes, links)

Architectural Models
� Architecture is the structure of a system in terms of

separately specified components.
� It abstracts the functions of the individual

components.
� It considers the placement of the components

across the computer network.
� Considers the interrelationships between the

components.
� Classification of processes:

� Servers, clients, peers
� Identifies responsibilities, helps to assess their workloads,

determines the impact of failures in each of them.

Software Layers
� Software architecture refers to services offered and requested

between processes located in the same or different computers.
� Service layers

� Distributed service
� One or more server processes
� Client processes

� Platform -> the lowest level hardware and software layers
� Examples: Intel x86/Windows, Intel x86/Solaris, PowerPC/MAC

OS, Intel x86/Linux
� Middleware

� A layer of software which masks heterogeneity and provides a
convenient programming model to application programmers.

� Provides useful building blocks:
� Remote method invocation, communication between a group of

processes, notification of events, partitioning, placement and retrieval
of data objects, replication, transmission of multimedia data in real
time

Software and hardware service layers in

distributed systems

Applications, services

Computer and network hardware

Platform

Operating system

Middleware

Middleware
Examples
� Remote procedure calling packages

� Sun RPC
� Group Communication Systems

� ISIS
� CORBA
� JAVA RMI

Middleware Limitations
� Some aspects of the dependability of systems require support at

the application level.
� Transfer of large electronic mail messages (or files) from the mail host of

the sender to that of the recipient.
� Using TCP may not be enough since there may occur some major network

interruption.
� The service should provide additional levels of fault tolerance (e.g., a record

of progress, etc.)

� Correct behavior depends upon checks, error-correction
mechanisms and security measures at many levels, some of which
require access to data within the application’s address space.

Clients invoke individual servers

Server

Client

Client

invocation

result

Serverinvocation

result

Process:
Key:

Computer:

A distributed application based on peer

processes
Application

Application

Application

Peer 1

Peer 2

Peer 3

Peers 5 N

Sharable
objects

Application

Peer 4

Variations

� Use of multiple servers and caches to
increase performance and resilience

� Use of mobile code and mobile agents
� User’s need for low-cost computers with

limited hardware resources that are simple to
manage

� Requirement to add and remove mobile
devices in a convenient manner

A service provided by multiple servers

Server

Server

Server

Service

Client

Client

-Partition the set of
objects and distribute
them between themselves

- maintain replicated
copies

- Web (1st approach)

-SUN Network Information
Service (replication of
password file at each site)

Web proxy server

Client

Proxy

Web

server

Web

server

server
Client

A cache is a store of recently used data objects that is closer to the objects
themselves.

Web proxy servers provide a shared cache of web resources for the client
machines at a site or across several sites.

•Increase availability

•Increase performance

•Reduce the load on the wide-area network and web server

Mobile Code - Web applets
a) client request results in the downloading of applet code

Web
server

Client
Web
serverApplet

Applet code

Client

b) client interacts with the applet

- Good interactive response

Mobile Agents
A mobile agent is a running program that travels from one computer to
another in a network carrying out a task on someone’s behalf.

• collecting information

A mobile agent may make many invocations to local resources at each
site it visits (e.g., access to individual database entries).

Might be used to:

• install software on the computers of an organization

• compare the prices of products of vendors

Negative aspects

• mobile agents are a potential security threat to the resources

•they can be themselves vulnerable (they may not be able to complete their
tasks if they are refused access to the information needed)

Other means by which the tasks can be performed

• remote invocations -> Web crawlers

Mobile Devices and Spontaneous

Interoperation
� Mobile devices are hardware computing components that move

between physical locations and thus networks, carrying software
components with them.

� Mobile clients and systems may co-exist on mobile devices
� Bus that moves around on a world tour

� WiFi connectivity when available
� Lower-bandwidth wide-area telecommunications connectivity

elsewhere.

� Mobile transparency
� Variable connectivity
� Spontaneous interoperation (variation of client-server:

associations between devices are routinely created and
destroyed)

Design Requirements for Distributed

Architectures
� Performance Issues

� Responsiveness
� The speed of a remote invocation depends on:

� The load and performance of the server and network
� Delays in all the software components (client and server operation

systems and middleware, code of the process that implements the
service)

� Transfer of data is slow
� Throughput

� Rate at which computational work is done
� Perform work for all users

� Balancing of Computational Loads
� Applets remove load from the server
� Use several computers to host a single service

Design Requirements for Distributed

Architectures
� Quality of Service

� Reliability (the ability of a system to perform and maintain its
function in routine circumstances, as well as hostile and
unexpected circumstances.

� Security
� Performance
� Adaptability (the ability of a system to adapt itself efficiently and

fast to changed circumstances)
� Resource Availability

� Some applications handle time-critical data – streams of data
that are required to be processed or transferred from one
process to another at a fixed rate.

Design Requirements for Distributed

Architectures
� Caching and Replication

� Cached copies of resources should be kept up-to-date when the
resource at a server is updated.

� A variety of cache-coherency protocols are used to suit different
applications.

� Web Caching Protocol
� Web browsers and proxy servers cache responses to client

requests from web servers
� The cache-consistency protocol can provide browsers with fresh

copies of the resources held by the web server, but for
performance reasons the freshness condition can be relaxed.

� A browser or proxy can validate a datum with the server.
� Web servers assign approximate expiry times to their resources
� The expiry time of the resource and the current time at the server

are attached to the response.

Design Requirements for Distributed

Architectures
� Dependability Issues

� Dependable applications should continue to function correctly in the
presence of faults in hardware, software and networks.

� Attributes
� Availability – readiness for correct service
� Reliability is achieved through redundancy – the provision of multiple

resources so that the system and application software can reconfigure to
continue to perform its tasks in the presence of faults.
� Replication

� Multiple computers – multiple communication paths
� Several replicas of a data item
� Retransmission of messages, etc.

� Safety – absence of incorrect consequences
� Integrity – absence of improper system alteration
� Maintainability – ability to undergo modifications and repairs

Fundamental Models
� A model contains only the essential ingredients needed to understand

and reason about some aspects of a system’s behavior.
� A system model has to address the following:

� What are the main entities in the system?
� How do they interact?
� What are the characteristics that affect their individual and collective

behavior?
� Purpose

� Make explicit all the relevant assumptions about the system we are modeling
� Make generalizations concerning what is possible or impossible, given those

assumptions.
� General purpose algorithms
� Desirable properties

� Interaction
� Communication takes place with delays
� Maintaining the same notion of time across all nodes of a distributed system

is difficilt.
� Failure

Interaction Model
� The behavior and state of distributed systems can

be described by a distributed algorithm
� A definition of the steps to be taken by each of the

processes, including the transmission of messages
between them.

� Messages are transmitted to transfer information
between processes and to coordinate their activity.

� The computing rates of processes and the timing of
the transmission of messages cannot in general be
predicted.

� Each process has its own state, consisting of the set
of data that it can access and update (i.e., its local
variables).

Processes and Channels

process p process q

Communication channel

send

Outgoing message buffer Incoming message buffer

receivem

Formal Model of Message-Passing

Systems

� There are n processes in the
� system: p0, .., pn-1

� Each process is modeled as
a state machine.

� The state of each process is comprised by its local variables and a
set of arrays. For instance, for p0, the state contains six arrays:

� inbuf0[1], …, inbuf0[3]: contain messages that have been sent to p0
by p1, p2 and p3, respectively, but p0 has not yet processed.

� outbuf0[1], …, outbuf0[3]: messages that have been sent by p0 to
p1, p2, and p3, respectively, but have not yet been delivered to
them.

Formal Model of Message-Passing

Systems
� The state of process pi excluding the outbufi[l] components,

comprises the accessible state of pi.
� Each process has an initial state in which all inbuf arrays are

empty.
� At each step of a process, all messages stored in the inbuf

arrays of the process are processed, the state of the process
changes and a message to each other neighboring process can
be sent.

� A configuration is a vector C = (q0, .., qn-1) where qi represents
the state of pi.

� The states of the outbuf variables in a configuration represent the
messages that are in transit on the communication channels.

� In an initial configuration all processes are in initial states.

Formal Model of Message-Passing

Systems
� Computation event, comp(i)

� Represents a computation step of process pi in which pi’s
transition function is applied to its current accessible state.

� Delivery Event, del(i,j,m)
� Represents the delivery of message m from processor pi to

processor pj.
� The behavior of a system over time is modeled as an execution,

which is a sequence of configurations alternating with events.
� This sequence must satisfy a variety of conditions.

� Safety conditions
� Hold in every finite prefix of the execution (states that nothing bad

has happened yet)
� Liveness conditions

� Hold a certain number of times (states that eventually something
good must happen)

Performance of Communication Channel

� Latency
The delay between the start of a message’s transmission from

one process and the beginning of its receipt by another.
� Bandwidth

Total amount of information that can be transmitted over it in a
given time. The latency includes:

� Time taken for the first of a string of bits transmitted
through the network to reach its destination + delay in
accessing the network + time taken by the OS
communication services at both sender and receiver

� Jitter
The variation in the time taken to deliver a series of

messages.

Computer Clocks and Timing Events

� Local clocks
� Clock drifts from perfect time and their drift

rates differ from one another
� Clock Drift Rate: the relative amount that a

computer clock differs from a perfect
reference clock.

� Even if clocks are set at the same time
initially, they would eventually vary unless
corrections are applied periodically.

Interaction (Timing) Models
� (Partially-Fully) Synchronous Systems

� There is a fixed upper bound ∆ on the time for messages to be
delivered (communication is synchronous).

� There is a fixed upper bound Φ on the rate at which one
processor’s clock can run faster than another’s (processors are
synchronous).

� If Φ=1 and ∆=1, we talk about a fully synchronous system. Then,
� The sequence of alternating configurations and events can be

partitioned into disjoint rounds.
� A round consists of a deliver event for every message in an outbuf

variable, until all outbuf variables are empty, followed by one
computation event for every processor.

� Asynchronous Systems
There is no fixed upper bound on how long it takes for a message to

be delivered or how much time elapses between consecutive
steps of a processor. Clock drift rates may be also arbitrary.

Real-Time Ordering of Events

send

receive

send

receive

m1 m2

2

1

3

4
X

Y

Z

Physical
time

A
m3

receive receive

send

receive receive receive
t1 t2 t3

receive

receive

m2

m1

Relative order in which events take place in a system, there are relationships between
events in distributed systems (causality)

Logical clock, logical timestamp

A receives the messages
in the wrong order!

Omission and arbitrary failures
Class of failure Affects Description

Fail-stop Process Process halts and remains halted. Other processes may
detect this state.

Crash Process Process halts and remains halted. Other processes may
not be able to detect this state.

Omission Channel A message inserted in an outgoing message buffer never
arrives at the other end’s incoming message buffer.

Send-omission Process A process completes a send,but the message is not put
in its outgoing message buffer.

Receive-omissionProcess A message is put in a process’s incoming message
buffer, but that process does not receive it.

Arbitrary
(Byzantine)

Process or
channel

Process/channel exhibits arbitrary behaviour: it may
send/transmit arbitrary messages at arbitrary times,
commit omissions; a process may stop or take an
incorrect step.

Timing failures

Class of Failure Affects Description
Clock Process Process’s local clock exceeds the bounds on its

rate of drift from real time.
Performance Process Process exceeds the bounds on the interval

between two steps.
Performance Channel A message’s transmission takes longer than the

stated bound.

Masking Failures – Reliability of one-to-

one Communication
� A service masks a failure, either by hiding it all

together or by converting it into a more acceptable
type of failure.
� Checksums are used to mask corrupting messages -> a

corrupted message is handled as a missing message
� Message omission failures can be hidden by re-transmitting

messages.
� The term reliable communication is defined in terms

of validity and integrity as follows:
� Validity: any message in the outgoing buffer is eventually

delivered to the incoming message buffer
� Integrity: the message received is identical to one sent, and

no messages are delivered twice.

Communication

Layered Protocols
� Layers, interfaces, and protocols in the OSI model.

2-1

Layered Protocols

� International Standards Organization (ISO)
� Developed a reference model that clearly identifies the

various levels involved, gives them standard names, and
points out which level should do which job.

� Open systems Interconnection Reference Model
� Protocols: rules determining how an open system

can communicate with another open system.
� Connection-oriented protocols: Before exchanging

data the sender and receiver first explicitly establish
a connection, and possibly negotiate the protocol
they will use

� Connectionless protocols: No setup in advance is
needed.
� Dropping a letter in a mailbox

Layered Protocols

� A typical message as it appears on the network.

2-2

Layered Protocols

Physical Layer
� Undertakes the actual transmission of the message.

� How many volts to use for 0 and 1?
� How many bits per second can be sent?
� Can transmission take place in both directions simultaneously?
� Size and shape of the network connector
� Number of pins and meanings of each

Data Link Layer
� Provide mechanisms to detect and correct errors during the bit

transmission
� Bits are grouped into units called frames.
� A special bit pattern is placed at the beginning and at the end of

each frame to mark it.
� A checksum is computed by adding up all the bytes in the frame

in a certain way.
� Frames are assigned sequence numbers

Data Link Layer

� Discussion between a receiver and a sender in the data link layer.

2-3

Layered Protocols

Network Layer
� The choosing of the best path from the sender to the receiver is

called routing.
� Routing is the major task of the network layer.
� Example of Connectionless protocol: IP

� No connection setup.
� Each IP packet is routed to its destination independently of all

others.
� No internal path is selected and remembered.

� Example of Connection-oriented protocol – ATM Virtual
Channels
� A unidirectional connection from the source to the destination is

established.
� A collection of virtual channels between two hosts comprise a

virtual path.

Transport Protocols

� Delivers messages without loss.
� Each message is broken into pieces called

packets
� A sequence number is assigned to each

packet
� Transport Layer Header

� Which packets have been sent
� Which have been received
� How many more the receiver has room to accept
� Which should be retransmitted

TCP & Client-Server TCP (TCP for

Transactions, T/TCP)

a) Normal operation of TCP.
b) Transactional TCP.

2-4

Higher Level Protocols

Session Layer
� Provides dialog control, to keep track of which party is currently

talking
� Provides synchronization facilities

� Insert checkpoints into long transfers, so that in the event of a
crash, it is necessary to go back only to the last checkpoint

Presentation Layer
� Is concerned with the meaning of the bits

� It is possible to define records such a name, address, amount of
money, and other valuable info that might be contained in a
message, and have the sender notify the receiver that a message
contains a particular record in a certain format.

� Makes communication easier between machines with different
internal representations

Application Protocols

� Contains a collection of standard network
applications, like e-mail, file transfer, terminal
emulation, etc.

� FTP
� FTP protocol versus ftp program

� HTTP (HyperText Transfer Protocol)
� Remotely manage and handle the transfer of Web

pages
� Web browsers and web servers
� JAVA RMI

Middleware Protocols

� Middleware is an application.
� However, it often contains many general-purpose

protocols that warrant their own layers.
� Various ways to establish authentication
� Distributed commit protocols

� Atomicity: in a group of processes, either all processes carry
out a particular operation, or that operation is not carried out at
all.
� Transactions – Fault-tolerant applications

� Distributed Locking
� Reliable multicast services

Middleware Protocols

2-5

Conventional Procedure Call

a) Parameter passing in a local procedure call: the stack before the
call to read

b) The stack while the called procedure is active

C call

count = read(fd,buf,nbytes)

• Call by value

• Call by reference

• Call by copy/restore

RPC versus Calling a System Call - Read data from a file

Remote file
� The programmer calls read

� the read routine is extracted from
the library by the linker (it is now called
client stub)
� it packs the parameters into a
message and requests that
message to be sent to the server
� The read procedure is again a kind
of interface. The work hidden under it
is however different.
� When the message arrives at the
server, the OS passes it up to a server
stub.
�The server stub unpacks the
parameters and calls the server
procedure in the usual way.

Local file
�The programmer calls read
� The read routine is extracted
from the library by the linker
� It is a short procedure that calls a
system call
� The read procedure is a kind of
interface between the user code
and the local OS.

Client and Server Stubs

� Principle of RPC between a client and server program.

Steps of a Remote Procedure Call

1. Client procedure calls client stub in normal way
2. Client stub builds message, calls local OS
3. Client's OS sends message to remote OS
4. Remote OS gives message to server stub
5. Server stub unpacks parameters, calls server
6. Server does work, returns result to the stub
7. Server stub packs it in message, calls local OS
8. Server's OS sends message to client's OS
9. Client's OS gives message to client stub
10. Stub unpacks result, returns to client

Passing Value Parameters (1)

� Steps involved in doing remote computation through RPC

2-8

Packing parameters into a message is called parameter marshalling.

Passing Value Parameters (2)

a) Original message on the Pentium
b) The message after receipt on the SPARC
c) The message after being inverted. The little numbers in boxes indicate the

address of each byte

Each machine has its own representation for numbers, characters, and other
data items. IBM mainframes use the EBCDIC character code, whereas IBM
PCs use ASCII

Intel Pentium numbers their bytes from right to left (little endian), Sun SPARC
number them the other way (big endian).

Passing Reference Parameters
� How are pointers or in general references passed?
� With the greatest of difficulties if at all.
� Possible Solutions

� Forbid pointers
� Copy the object pointed to by the pointer into the message and

send it to the server
� The server copies it at some place in its memory space, and calls

the routine passing a pointer to it.
� When the routine ends, the server copies back the object’s value

into one parameter of the message and sends the message to
the client.

� If the stubs know whether the object is an input or output
parameter to the server, one of the two copies can be avoided.

� The above approach does not work with complex objects (i.e,
dynamic arbitrary data structures).

Parameter Specification and Stub Generation
a) A procedure
b) The corresponding message:

• A character is placed in the rightmost
byte of a word

• A float is transmitted as a whole word
• An array as a group of words

equal to the array length, preceded
by a word giving the length.

Parameter Specification and Stub Generation

The caller and the callee agree on:
� The format of the messages
� The representation of simple data structures

� integers are represented in two’s complement, characters in 16-
bit Unicode, floats in IEEE standard #754 format, etc.

� Stubs for the same RPC protocol but different procedures
generally differ only in their interface to the applications.

� An interface consists of a collection of procedures that can be
called by a client, and which are implemented by a server.

� Interfaces are often specified by means of an Interface Definition
Language (IDL),
� then compiled into a client stub and a server stub, along with the

appropriate compile-time or run-time interfaces.

Doors

The principle of using doors as the Inter Process
Communication (IPC) mechanism.

• A door is a generic
name for a procedure
in the address space
of a server process
that can be called by
processes co-located
with the server.

•Benefit : they allow
the use of a single
mechanism (namely
procedure calls) for
communication in a
distributed system.

Asynchronous RPC (1)

a) The interconnection between client and server in a traditional RPC
b) The interaction using asynchronous RPC

2-12

Asynchronous RPC (2)

� A client and server interacting through two asynchronous RPCs
� Combining two asynchronous RPCs is referred as a deferred

synchronous RPC.

2-13

Writing a Client and a Server

� The steps in writing a client and a server in DCE RPC.

2-14

Binding a Client to a Server

� Client-to-server binding in DCE.

2-15

