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What kind of paper is this?

zA New big idea?
zA Measurement paper?
zAn Experiences/Lessons Learnt paper?
zA System Description?
zA Performance Study?
zA Refute-Conventional-Wisdom paper?
zA Survey paper?
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Back to Basics – CS 101 ☺

zWhat is a hash table?
zWhat is it good for?
{Wise systems folk say:  “A hash table and a 

level of indirection” is all you need to build an 
OS!!
{Helps keep track of state in the system
zProcess tables
zPage tables
zEtc.
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New Big Idea!

z(Remember – this is Sigcomm 2001)
zCreate a big distributed, Internet-scale

Hash Table
{Could prove useful for distributed systems

zDistributed apps that might use this?

zSo how DO we build a LARGE distributed 
indexing system?
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Ideas

zDo not impose a rigid, hierarchical naming 
structure 
{Use uniform hash function

zD-dimensional Cartesian coordinate space 
on d-torus
zCoordinate space partitioned dynamically 

across nodes
zEach node maintains its own “zone” within 

the space



© Mema Roussopoulou 6

Hash Table Operations

zLookup (key) Æ (key, value) pair
z Insert (key, value) pair
zDelete (key, value) pair
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Lookup = Routing in a CAN

zFollow straight line path through the 
Cartesian space from source to 
destination coordinates.
zTo find destination coordinates, hash key 

to a point in the space
z In d-D space, average routing path length 

is (d/4)(n1/d) hops and each node has 2d 
neighbors.



© Mema Roussopoulou 8

Lookup = Routing in a CAN
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What state does a node maintain?
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What state does a node maintain?

z Its zone boundaries
zZone boundaries of its neighbors
z IP address of its neighbors
zPossible zone boundaries of neighbors’

neighbors 

zWhat determines how much state a node 
maintains?
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Inserting an index entry

z Insert (K1, V1) pair by hashing K1 onto 
point in coordinate space
zRoute “Store (K1, V1)” request to that 

point
zStore at node that owns the zone where 

point lies
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Deleting an Index Entry

zSame as insertion
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CAN Construction

zWhat happens at a high level when a node 
joins the CAN?
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Node Joins

z1) Node picks a random point in 
coordinate space
z2) Finds IP address of a node already in 

CAN Æ sends it JOIN(P) request
z3) Request routed to node O with zone 

containing P
z 4) Node O splits.  New node takes half 

with P
z5) O’s old neighbors notified/updated
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Node Departures

zGracefully: zone handover to neighbor with 
smallest zone.

z Ungracefully: all neighbors of the failed node 
execute a takeover algorithm so that the zone 
merges with the smallest neighboring zone. 
{How do we detect a node has failed? (next slide) 

z Departures Æ imbalance in zone loads 
{ Background zone reassignment algorithm to make 

more uniform
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Soft State

zA very well-known mechanism in 
distributed systems – what is it?
zWhen is it used in CAN?
{Periodic keepalive messages 
zmy zone coordinates
zmy neighbors’ zone coordinates
zmy neighbors’ IP addresses
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Theoretical performance

zO(d) state maintained per node
zO(d(n1/d)) path length between any two 

nodes
{Avg lookup latency = (avg CAN path length) * 

(avg IP latency of a CAN hop)
zCan we do better?  
zYes, lots of design improvements!
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It’s all about the Tradeoffs

zSystems design is all about tradeoffs
{Cannot win everywhere

zWhat do the proposed design 
improvements tradeoff?
zFor each improvement, ask 
{What do we gain?
{What do we lose?
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Multi-dimensioned coordinate spaces

z Path length 
scales 
O(d(n1/d) )

z Per node state 
increases 

zMore fault-
tolerance
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Multiple Realities

zMaintain multiple, independent coordinate 
spaces (realities)
zEvery node has a different zone in every 

reality and a different set of neighbors.
zNode routes to neighbor who is (across all 

realities) closest to the destination.



© Mema Roussopoulou 21

Multiple Realities

z Data replication 
=> data 
availability (fault-
tolerance)

z Routing to point P 
translates to 
routing to P on 
every reality

z Increased per-
node-state
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Better CAN routing metrics

zEach node measures net-level RTT to 
each neighbor
zChoose neighbor with max progress/RTT
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Overloading coordinate zones

zMultiple peers (up to MAXPEERS) share 
the same zone.
z Increased state : all peers in same zone 

but only one peer (the RTT-closest) from 
each neighbor zone.
zThe index entries of a zone may be either 

partitioned or replicated across the peer 
nodes.
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Overloading coordinate zones
z Reduced path length
{ It’s like we have fewer nodes in the system

z Reduced per-hop latency 
{Can choose from a lot of possible neighbor peers

z Improved fault-tolerance 
z BUT more complexity

z Note Table 2:  what is the number of dimension 
here?
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Multiple hash functions

z Assign same key to 
many points in space 
with the use of k 
different hash 
functions

z A query can be sent 
towards the closest 
node or all k 
directions.
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Topologically-sensitive construction

zThere are m landmarks (well-known set of 
machines, e.g. the DNS root name 
server).
zEach node orders the landmarks in order 

of increasing RTT to them.
zCoord space is partitioned into m! portions 

(one for each landmark ordering)
zNodes now join at a random point IN the 

corresponding portion of space.
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Topologically-sensitive construction

z Improves the 
path latency.

z Coordinate
space is no 
longer uniformly 
populated
=>Background 
load balancing 
techniques.
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On Topologically-sensitive construction

zLandmarks chosen 5 hops away  --
Agree?
zUneven distribution of zones -- what to 

do?
zHow would you continue from here?
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More Uniform Partitioning

zOn a JOIN request, instead of splitting zone
{Node checks neighbors’ zone sizes
{Forwards request to neighbor with largest zone

z A uniform hash function guarantees that volume 
of a node’s zone is indicative of the size of the 
(key,value) database the node will have to store.

z So uniform partitioning helps balancing the load
{ Is this correct?  (what about hot spots?)
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More Uniform Partitioning
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Caching and Replication

z Caching: huge technique in distributed systems 
and for the Web 
{Whole careers based on caching!

z Node maintains a cache of the data keys it 
recently accessed. More requests = higher 
availability
{How long do we cache something?  

z Replication: node that is overwhelmed by 
requests for a particular data key replicates key
at each of its neighbors
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Design Review



© Mema Roussopoulou 33

Can you think of more experiments?
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