
© Mema Roussopoulou

A Scalable Content-
Addressable Network

CS 554
Mema Roussopoulou

© Mema Roussopoulou 2

What kind of paper is this?

zA New big idea?
zA Measurement paper?
zAn Experiences/Lessons Learnt paper?
zA System Description?
zA Performance Study?
zA Refute-Conventional-Wisdom paper?
zA Survey paper?

© Mema Roussopoulou 3

Back to Basics – CS 101 ☺

zWhat is a hash table?
zWhat is it good for?
{Wise systems folk say: “A hash table and a

level of indirection” is all you need to build an
OS!!
{Helps keep track of state in the system
zProcess tables
zPage tables
zEtc.

© Mema Roussopoulou 4

New Big Idea!

z(Remember – this is Sigcomm 2001)
zCreate a big distributed, Internet-scale

Hash Table
{Could prove useful for distributed systems

zDistributed apps that might use this?

zSo how DO we build a LARGE distributed
indexing system?

© Mema Roussopoulou 5

Ideas

zDo not impose a rigid, hierarchical naming
structure
{Use uniform hash function

zD-dimensional Cartesian coordinate space
on d-torus
zCoordinate space partitioned dynamically

across nodes
zEach node maintains its own “zone” within

the space

© Mema Roussopoulou 6

Hash Table Operations

zLookup (key) Æ (key, value) pair
z Insert (key, value) pair
zDelete (key, value) pair

© Mema Roussopoulou 7

Lookup = Routing in a CAN

zFollow straight line path through the
Cartesian space from source to
destination coordinates.
zTo find destination coordinates, hash key

to a point in the space
z In d-D space, average routing path length

is (d/4)(n1/d) hops and each node has 2d
neighbors.

© Mema Roussopoulou 8

Lookup = Routing in a CAN

© Mema Roussopoulou 9

What state does a node maintain?

© Mema Roussopoulou 10

What state does a node maintain?

z Its zone boundaries
zZone boundaries of its neighbors
z IP address of its neighbors
zPossible zone boundaries of neighbors’

neighbors

zWhat determines how much state a node
maintains?

© Mema Roussopoulou 11

Inserting an index entry

z Insert (K1, V1) pair by hashing K1 onto
point in coordinate space
zRoute “Store (K1, V1)” request to that

point
zStore at node that owns the zone where

point lies

© Mema Roussopoulou 12

Deleting an Index Entry

zSame as insertion

© Mema Roussopoulou 13

CAN Construction

zWhat happens at a high level when a node
joins the CAN?

© Mema Roussopoulou 14

Node Joins

z1) Node picks a random point in
coordinate space
z2) Finds IP address of a node already in

CAN Æ sends it JOIN(P) request
z3) Request routed to node O with zone

containing P
z 4) Node O splits. New node takes half

with P
z5) O’s old neighbors notified/updated

© Mema Roussopoulou 15

Node Departures

zGracefully: zone handover to neighbor with
smallest zone.

z Ungracefully: all neighbors of the failed node
execute a takeover algorithm so that the zone
merges with the smallest neighboring zone.
{How do we detect a node has failed? (next slide)

z Departures Æ imbalance in zone loads
{ Background zone reassignment algorithm to make

more uniform

© Mema Roussopoulou 16

Soft State

zA very well-known mechanism in
distributed systems – what is it?
zWhen is it used in CAN?
{Periodic keepalive messages
zmy zone coordinates
zmy neighbors’ zone coordinates
zmy neighbors’ IP addresses

© Mema Roussopoulou 17

Theoretical performance

zO(d) state maintained per node
zO(d(n1/d)) path length between any two

nodes
{Avg lookup latency = (avg CAN path length) *

(avg IP latency of a CAN hop)
zCan we do better?
zYes, lots of design improvements!

© Mema Roussopoulou 18

It’s all about the Tradeoffs

zSystems design is all about tradeoffs
{Cannot win everywhere

zWhat do the proposed design
improvements tradeoff?
zFor each improvement, ask
{What do we gain?
{What do we lose?

© Mema Roussopoulou 19

Multi-dimensioned coordinate spaces

z Path length
scales
O(d(n1/d))

z Per node state
increases

zMore fault-
tolerance

© Mema Roussopoulou 20

Multiple Realities

zMaintain multiple, independent coordinate
spaces (realities)
zEvery node has a different zone in every

reality and a different set of neighbors.
zNode routes to neighbor who is (across all

realities) closest to the destination.

© Mema Roussopoulou 21

Multiple Realities

z Data replication
=> data
availability (fault-
tolerance)

z Routing to point P
translates to
routing to P on
every reality

z Increased per-
node-state

© Mema Roussopoulou 22

Better CAN routing metrics

zEach node measures net-level RTT to
each neighbor
zChoose neighbor with max progress/RTT

© Mema Roussopoulou 23

Overloading coordinate zones

zMultiple peers (up to MAXPEERS) share
the same zone.
z Increased state : all peers in same zone

but only one peer (the RTT-closest) from
each neighbor zone.
zThe index entries of a zone may be either

partitioned or replicated across the peer
nodes.

© Mema Roussopoulou 24

Overloading coordinate zones
z Reduced path length
{ It’s like we have fewer nodes in the system

z Reduced per-hop latency
{Can choose from a lot of possible neighbor peers

z Improved fault-tolerance
z BUT more complexity

z Note Table 2: what is the number of dimension
here?

© Mema Roussopoulou 25

Multiple hash functions

z Assign same key to
many points in space
with the use of k
different hash
functions

z A query can be sent
towards the closest
node or all k
directions.

© Mema Roussopoulou 26

Topologically-sensitive construction

zThere are m landmarks (well-known set of
machines, e.g. the DNS root name
server).
zEach node orders the landmarks in order

of increasing RTT to them.
zCoord space is partitioned into m! portions

(one for each landmark ordering)
zNodes now join at a random point IN the

corresponding portion of space.

© Mema Roussopoulou 27

Topologically-sensitive construction

z Improves the
path latency.

z Coordinate
space is no
longer uniformly
populated
=>Background
load balancing
techniques.

© Mema Roussopoulou 28

On Topologically-sensitive construction

zLandmarks chosen 5 hops away --
Agree?
zUneven distribution of zones -- what to

do?
zHow would you continue from here?

© Mema Roussopoulou 29

More Uniform Partitioning

zOn a JOIN request, instead of splitting zone
{Node checks neighbors’ zone sizes
{Forwards request to neighbor with largest zone

z A uniform hash function guarantees that volume
of a node’s zone is indicative of the size of the
(key,value) database the node will have to store.

z So uniform partitioning helps balancing the load
{ Is this correct? (what about hot spots?)

© Mema Roussopoulou 30

More Uniform Partitioning

© Mema Roussopoulou 31

Caching and Replication

z Caching: huge technique in distributed systems
and for the Web
{Whole careers based on caching!

z Node maintains a cache of the data keys it
recently accessed. More requests = higher
availability
{How long do we cache something?

z Replication: node that is overwhelmed by
requests for a particular data key replicates key
at each of its neighbors

© Mema Roussopoulou 32

Design Review

© Mema Roussopoulou 33

Can you think of more experiments?

	A Scalable Content-Addressable Network
	What kind of paper is this?
	Back to Basics – CS 101 
	New Big Idea!
	Ideas
	Hash Table Operations
	Lookup = Routing in a CAN
	Lookup = Routing in a CAN
	What state does a node maintain?
	What state does a node maintain?
	Inserting an index entry
	Deleting an Index Entry
	CAN Construction
	Node Joins
	Node Departures
	Soft State
	Theoretical performance
	It’s all about the Tradeoffs
	Multi-dimensioned coordinate spaces
	Multiple Realities
	Multiple Realities
	Better CAN routing metrics
	Overloading coordinate zones
	Overloading coordinate zones
	Multiple hash functions
	Topologically-sensitive construction
	Topologically-sensitive construction
	On Topologically-sensitive construction
	More Uniform Partitioning
	More Uniform Partitioning
	Caching and Replication
	Design Review
	Can you think of more experiments?

