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NOTE

• ( about Chord part )
– Slides are based on a talk given by Robert 

Morris at Sigcomm 2001
– Slide 28 is based on “A Survey and 

Comparison of
Peer-to-Peer Overlay Network Schemes” , Jon 

Crowcroft et.al
• ( about DDSN part )

– Slides are based on a talk given by Russ Cox 
at IPTPS 2002



A peer-to-peer storage problem

• 1000 scattered music enthusiasts
• Willing to store and serve replicas
• How do you find the data? 



The lookup problem
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Centralized lookup (Napster)
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Flooded queries (Gnutella)
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Routed queries 
(Freenet, Chord, etc.)
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Routing challenges

• Define a useful key nearness metric
• Keep the hop count small
• Keep the tables small
• Stay robust despite rapid change

• Freenet: emphasizes anonymity
• Chord: emphasizes efficiency and simplicity



Chord properties

• Efficient: O(log(N)) messages per lookup
– N is the total number of servers

• Scalable: O(log(N)) state per node
• Robust: survives massive failures

• Proofs are in paper / tech report
– Assuming no malicious participants



System Model

• Load Balance
• Decentralization
• Scalability
• Availability
• Flexible naming

• Runs as a service to 
high level sw

• App is responsible for
– Authentication
– Cashing
– Replication
– User friendly naming 

of data



Chord overview

• Provides peer-to-peer hash lookup:
– Lookup(key) → IP address
– Chord does not store the data

• How does Chord route lookups?
• How does Chord maintain routing tables? 



Chord IDs

• Key identifier = SHA-1(key)
• Node identifier = SHA-1(IP address)
• Both are uniformly distributed
• Both exist in the same ID space

• How to map key IDs to node IDs?



Consistent hashing [Karger 97]
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Basic lookup
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Simple lookup algorithm

Lookup(my-id, key-id)
n = my successor
if my-id < n < key-id

call Lookup(id) on node n   // next hop
else

return my successor // done

• Correctness depends only on successors



“Finger table” allows log(N)-time 
lookups
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Finger i points to successor of 
n+2i
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Lookup with fingers

Lookup(my-id, key-id)
look in local finger table for

highest node n s.t. my-id < n < key-id
if n exists

call Lookup(id) on node n // next hop
else

return my successor // done



Lookups take O(log(N)) hops
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Joining: linked list insert
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Join (2)
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Join (3)
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Join (4)

N36

N40

N25

4. Set N25’s successor
pointer

Update finger pointers in the background
Correct successors produce correct lookups

K30
K38

K30



Failures might cause incorrect 
lookup
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Solution: successor lists

• Each node knows r immediate successors
• After failure, will know first live successor
• Correct successors guarantee correct lookups

• Guarantee is with some probability



Lookup with fault tolerance
Lookup(my-id, key-id)

look in local finger table and successor-list
for highest node n s.t. my-id < n < key-id

if n exists
call Lookup(id) on node n // next hop
if call failed,

remove n from finger table
return Lookup(my-id, key-id)

else return my successor // done



Misc

• Working implementation as part of CFS
• Chord library: 3,000 lines of C++
• Has been used in:

– Cooperative File System (CFS) for distributed read-
only storage (SOSP ’01)

– Ivy, a p2p file system (OSDI ’02) (read/write)
– DDNS, a p2p DNS (IPTPS 02)



System CAN Chord
Unit DHT

Architecture Multi-dimensional ID 
coordinate space

Unidirectional and 
circular id space

Lookup Key, value pairs to 
map a point P in the 

coordinate spac

Matching key and 
NodeID

System parameters N - #peers
D-#dimensions

N - #peers

Routing Performance

Routing State 2d

Join/Leave 2d

Security Low level – both suffer from man-in-the-middle 
attacks

Reliability/ Fault 
Tolerance 

Failure of peers will not cause network-wide 
failures

Where ? As a service/linked lib 
to high level sw

1/( . )dO d N (log )O N
log N

2( lo g )N



Serving DNS using a p2p 
lookup service

Russ Cox, Athicha Muthitacharoen, Robert Morris
Presented by: Vassilis Lekakis



Overview

• The experiment: redo DNS in a peer−to−peer
manner.

• The result: not as good as conventional DNS.
• The talk: what we expected, what we learned.

– Draw general conclusions about peer−to−peer
systems.

– Directions for future research.
– Or guidelines for selecting peer−to−peer apps



Motivation
• Before DNS there was a global hosts.txt.
• DNS is an attempt to distribute hosts.txt, but:

– Everyone has to be a DNS admin.
– I can’t have a domain without a 24/7 DNS server.
– Locally correct, globally wrong configurations.

• P2P lookup systems might fix these:
– Organization, replication, much configuration
handled by the P2P layer.
– I don’t need to keep a 24/7 server up.
– Lack of hierarchy avoids half−broken configs (?)



DNS & DNS SEC

• Original DNS uses IP based authentication
• DNSSEC uses crypto based 

authentication
• DNS SEC separates serving from 

authedication

• Can we explore alternate lookup 
methods?
( p2p dynamic hash Tables )



DNS using P2P Hash Table

• Look up SHA1(name, query type).
• Answers RRSets like DNS
• It works just like a distributed host.txt

– Prototype implemented in Chord
• Stores fixed number of replicas 



Evaluation: Latency

• Uncached latency is too big O(log n) 
RPCs
– Chord : log base = 2
– Pastry, Kademlia: log base = 16
– DNS, log base ?? ( >> 1,000,000) 



Evaluation: Robustness

• DDNS: Inherited from Chord
• DNS: fairly robust already

– Root servers are highly replicated
– DOS attack to old anymore



Evaluation: Loss of network 
Connectivity

• Suppose UOC gets cut off from Internet
– In DNS

• UOC can still connect to UOC hosts
• UOC cannot connect to Internet hosts
• Internet cannot lookup nor connect to UOC hosts

– In P2P DNS
• UOC can’t look up but can connect to UOC hosts (??)
• UOC can look up but can’t connect to Internet hosts.
• Internet can look up but can’t connect to UOC hosts



Evaluation: Functionality

• DDNS : functionality of a distributed 
host.txt

• BUT
– No dynamically generated records
– No support for ‘‘ANY’’ queries
– No server side load balancing



Evaluation: Administration

• DNS
– requires significant expertise to administer
– Bad configurations

• DDNS
– Ease of deployment
– 24/7 servers uptime?
– Why trust servers run by others?
– Users need incentives in order to run servers



Conclusions

• P2P systems have fundamental limitations 
and simply aren’t appropriate for apps that 
need
– Lower latency.
– Protection against insertion DoS.
– Choice of functionality for network outages.
– More than just distributed hash tables.
– High confidence in the network.
– Generic incentives for people to run servers
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