Choro

A Scalable Peer-to-peer Lookup
Service for Internet Applications

lon Stoica, Robert Morris, David Karger, M. Frans
Kaashoek, Hari Balakrishnan

ACM SIGCOMM 2001

Presented by: Vassilis Lekakis

NOTE

* (about Chord part)

— Slides are based on a talk given by Robert
Morris at Sigcomm 2001

— Slide 28 is based on “A Survey and
Comparison of

Peer-to-Peer Overlay Network Schemes” , Jon
Crowcroft et.al

* (about DDSN part)

— Slides are based on a talk given by Russ Cox
at IPTPS 2002

A peer-to-peer storage problem

* 1000 scattered music enthusiasts
* Willing to store and serve replicas
 How do you find the data”

The lookup problem

Key="title”
Value=MP3 data...

Client
Publisher en

Lookup(“title™)

Centralized lookup (Napster)

SetLoc(“title”, N4) N1 NZ
N, _

/\ Client
Publisher@N , DB" Lookup(“title”)
Key="title"
Value=MP3 data... N

N 8
9 N,
N6

Simple, but O(N) state and a single point of failure

Flooded queries (Gnutella)

N, Ny Lookup(“title™)
_/Ng .
Client
Publisher@N
Key="title”
Value=MP3 data...
& N\

Robust, but worst case O(N) messages per lookup

Routed queries
(Freenet, Chord, etc.)

N, N,
N N3 \Client

Publisher—— N, Lookup(“title”)
Key="title” \
Value=MP3 data...

Ne N

7 Ng

No

Routing challenges

Define a useful key nearness metric
Keep the hop count small

Keep the tables small

Stay robust despite rapid change

Freenet: emphasizes anonymity
Chord: emphasizes efficiency and simplicity

Chord properties

Efficient: O(log(N)) messages per lookup
— N is the total number of servers

Scalable: O(log(N)) state per node
Robust: survives massive failures

Proofs are in paper / tech report
— Assuming no malicious participants

System Model

Load Balance
Decentralization
Scalability
Availability
Flexible naming

e Runs as a service to
high level sw

* App is responsible for
— Authentication
— Cashing
— Replication

— User friendly naming
of data

Chord overview

* Provides peer-to-peer hash lookup:

— Lookup(key) — IP address
— Chord does not store the data

 How does Chord route lookups?
 How does Chord maintain routing tables?

Chord IDs

Key identifier = SHA-1(key)

Node identifier = SHA-1(IP address)
Both are uniformly distributed

Both exist in the same ID space

How to map key IDs to node |IDs”?

Consistent hashing [Karger 97]

Key 5— K5
Node 105

N105 K20

Circular 7-bit

N32

ID space

N9O

K80
A key is stored at its successor: node with next higher ID

K80

N105

N9O

X NGO

Basic lookup

e

N120

—

“N90 has K80”

N10 | “Where is key 80?”

\

N32

Simple lookup algorithm

Lookup(my-id, key-id)
N = my successor
If my-id < n < key-id
call Lookup(id) on node n // next hop
else
return my successor // done

* Correctness depends only on successors

“Finger table” allows log(N)-time
lookups

Ya Y2

1/8

1/16
1/32
1/64
1/12

N80

Finger I points to successor of

Lookup with fingers

Lookup(my-id, key-id)
look in local finger table for
highest node n s.t. my-id < n < key-id
iIf n exists
call Lookup(id) on node n // next hop
else
return my successor // done

Lookups take O(log(N)) hops

NS

N110

N99

N80

N10

N20

N32

NGO

K19

Lookup(K19)

Joining: linked list insert

N25

N36

1. Lookup(36)

K30
K38

N40

Join (2)

N25
2. N36 sets its own N36
successor pointer /
— *k30

K38

Join (3)

N25

3. Copy keys 26..36 N36 | K30
from N40 to N36 /

K30
K38

Join (4)

N25
4. Set N25’s successor N36 | K30
pointer /
N4o | K30
K38

Update finger pointers in the background
Correct successors produce correct lookups

Failures might cause incorrect

lookup
N120
N113 U
N2
1Ng5-L\ . Lookup(90)
N80

N80 doesn’t know correct successor, so incorrect lookup

Solution: successor lists

Each node knows r immediate successors
After failure, will know first live successor
Correct successors guarantee correct lookups

Guarantee is with some probability

Lookup with fault tolerance

Lookup(my-id, key-id)
look in local finger table and successor-list
for highest node n s.t. my-id < n < key-id
If n exists
call Lookup(id) on node n // next hop
if call failed,
remove n from finger table
return Lookup(my-id, key-id)
else return my successor // done

Misc

* Working implementation as part of CFS

* Chord library: 3,000 lines of C++

* Has been used in:

— Cooperative File System (CFS) for distributed read-
only storage (SOSP '01)

— lvy, a p2p file system (OSDI '02) (read/write)
— DDNS, a p2p DNS (IPTPS 02)

System

CAN

Chord

Unit

DHT

Architecture

Multi-dimensional ID
coordinate space

Unidirectional and
circular id space

Lookup Key, value pairs to Matching key and
map a point P in the NodelD
coordinate spac
System parameters N - #peers N - #peers
D-#dimensions
Routing Performance O(d.NY%) O(log N)
Routing State 2d log N
Join/Leave 2d (log N)2
Security Low level — both suffer from man-in-the-middle
attacks
Reliability/ Fault Failure of peers will not cause network-wide
Tolerance failures
Where ? As a service/linked lib

to high level sw

Serving DNS using a p2p
lookup service

Russ Cox, Athicha Muthitacharoen, Robert Morris
Presented by: Vassilis Lekakis

Overview

* The experiment: redo DNS in a peer—to—peer
manner.

* The result: not as good as conventional DNS.

* The talk: what we expected, what we learned.

— Draw general conclusions about peer—to—peer
systems.

— Directions for future research.
— Or guidelines for selecting peer—to—peer apps

Motivation

« Before DNS there was a global hosts.txt.

« DNS is an attempt to distribute hosts.txt, but:
— Everyone has to be a DNS admin.
— [can’t have a domain without a 24/7 DNS server.
— Locally correct, globally wrong configurations.

 P2P lookup systems might fix these:
— Organization, replication, much configuration
handled by the P2P layer.
— [don’t need to keep a 24/7 server up.
— Lack of hierarchy avoids half-broken configs (?)

DNS & DNS SEC

Original DNS uses IP based authentication

DNSSEC uses crypto based
authentication

DNS SEC separates serving from
authedication

Can we explore alternate lookup
methods?

(p2p dynamic hash Tables)

DNS using P2P Hash Table

Look up SHA1(name, query type).
Answers RRSets like DNS

It works just like a distributed host.txt
— Prototype implemented in Chord

Stores fixed number of replicas

Evaluation: Latency

* Uncached latency is too big O(log n)
RPCs

— Chord : log base = 2
— Pastry, Kademlia: log base = 16
— DNS, log base ?7 (>> 1,000,000)

Evaluation: Robustness

e DDNS: Inherited from Chord

 DNS: fairly robust already
— Root servers are highly replicated
— DOS attack to old anymore

Evaluation: Loss of network
Connectivity

« Suppose UOC gets cut off from Internet

— In DNS

e« UOC can still connect to UOC hosts
« UOC cannot connect to Internet hosts
* Internet cannot lookup nor connect to UOC hosts

— In P2P DNS

« UOC can'’t look up but can connect to UOC hosts (?7?)
« UOC can look up but can’t connect to Internet hosts.
 Internet can look up but can’t connect to UOC hosts

Evaluation: Functionality

 DDNS : functionality of a distributed
host.txt

« BUT
— No dynamically generated records
— No support for “ANY” queries
— No server side load balancing

Evaluation: Administration

* DNS

— requires significant expertise to administer
— Bad configurations

 DDNS

— Ease of deployment

— 24/7 servers uptime?

— Why trust servers run by others?

— Users need incentives in order to run servers

Conclusions

« P2P systems have fundamental limitations
and simply aren’t appropriate for apps that
need

— Lower latency.

— Protection against insertion DoS.

— Choice of functionality for network outages.
— More than just distributed hash tables.

— High confidence in the network.

— Generic incentives for people to run servers

	A Scalable Peer-to-peer Lookup Service for Internet Applications
	NOTE
	A peer-to-peer storage problem
	The lookup problem
	Centralized lookup (Napster)
	Flooded queries (Gnutella)
	Routed queries �(Freenet, Chord, etc.)�
	Routing challenges
	Chord properties
	System Model	
	Chord overview
	Chord IDs
	Consistent hashing [Karger 97]
	Basic lookup
	Simple lookup algorithm
	“Finger table” allows log(N)-time lookups
	Finger i points to successor of n+2i
	Lookup with fingers
	Lookups take O(log(N)) hops
	Joining: linked list insert
	Join (2)
	Join (3)
	Join (4)
	Failures might cause incorrect lookup
	Solution: successor lists
	Lookup with fault tolerance
	Misc
	Serving DNS using a p2p lookup service
	Overview
	Motivation
	DNS & DNS SEC
	DNS using P2P Hash Table
	Evaluation: Latency�
	Evaluation: Robustness
	Evaluation: Loss of network Connectivity	
	Evaluation: Functionality
	Evaluation: Administration
	Conclusions	

