
A Scalable Peer-to-peer Lookup
Service for Internet Applications

Ion Stoica, Robert Morris, David Karger, M. Frans
Kaashoek, Hari Balakrishnan

ACM SIGCOMM 2001

Presented by: Vassilis Lekakis

NOTE

• (about Chord part)
– Slides are based on a talk given by Robert

Morris at Sigcomm 2001
– Slide 28 is based on “A Survey and

Comparison of
Peer-to-Peer Overlay Network Schemes” , Jon

Crowcroft et.al
• (about DDSN part)

– Slides are based on a talk given by Russ Cox
at IPTPS 2002

A peer-to-peer storage problem

• 1000 scattered music enthusiasts
• Willing to store and serve replicas
• How do you find the data?

The lookup problem

Internet

N1
N2 N3

N6N5
N4

Publisher

Key=“title”
Value=MP3 data… Client

Lookup(“title”)

?

Centralized lookup (Napster)

Publisher@

Client

Lookup(“title”)

N6

N9

DB

N3

N2N1

N7

N8

SetLoc(“title”, N4)

Simple, but O(N) state and a single point of failure

Key=“title”
Value=MP3 data…

N4

Flooded queries (Gnutella)

N4Publisher@
Client

N6 N7
N8

N3

N2N1

N9

Robust, but worst case O(N) messages per lookup

Key=“title”
Value=MP3 data…

Lookup(“title”)

Routed queries
(Freenet, Chord, etc.)

N4Publisher

N6

N2N1

Client

N9

N7
N8

N3

Lookup(“title”)

Key=“title”
Value=MP3 data…

Routing challenges

• Define a useful key nearness metric
• Keep the hop count small
• Keep the tables small
• Stay robust despite rapid change

• Freenet: emphasizes anonymity
• Chord: emphasizes efficiency and simplicity

Chord properties

• Efficient: O(log(N)) messages per lookup
– N is the total number of servers

• Scalable: O(log(N)) state per node
• Robust: survives massive failures

• Proofs are in paper / tech report
– Assuming no malicious participants

System Model

• Load Balance
• Decentralization
• Scalability
• Availability
• Flexible naming

• Runs as a service to
high level sw

• App is responsible for
– Authentication
– Cashing
– Replication
– User friendly naming

of data

Chord overview

• Provides peer-to-peer hash lookup:
– Lookup(key) → IP address
– Chord does not store the data

• How does Chord route lookups?
• How does Chord maintain routing tables?

Chord IDs

• Key identifier = SHA-1(key)
• Node identifier = SHA-1(IP address)
• Both are uniformly distributed
• Both exist in the same ID space

• How to map key IDs to node IDs?

Consistent hashing [Karger 97]

N32

N90

N105

K80

K20

K5

Circular 7-bit
ID space

Key 5
Node 105

A key is stored at its successor: node with next higher ID

Basic lookup

N32

N90

N105

N60

N10
N120

K80

“Where is key 80?”

“N90 has K80”

Simple lookup algorithm

Lookup(my-id, key-id)
n = my successor
if my-id < n < key-id

call Lookup(id) on node n // next hop
else

return my successor // done

• Correctness depends only on successors

“Finger table” allows log(N)-time
lookups

N80

½¼

1/8

1/16
1/32
1/64
1/128

Finger i points to successor of
n+2i

N80

½¼

1/8

1/16
1/32
1/64
1/128

112

N120

Lookup with fingers

Lookup(my-id, key-id)
look in local finger table for

highest node n s.t. my-id < n < key-id
if n exists

call Lookup(id) on node n // next hop
else

return my successor // done

Lookups take O(log(N)) hops

N32

N10

N5

N20
N110

N99

N80

N60

Lookup(K19)

K19

Joining: linked list insert

N36

N40

N25

1. Lookup(36)
K30
K38

Join (2)

N36

N40

N25

2. N36 sets its own
successor pointer

K30
K38

Join (3)

N36

N40

N25

3. Copy keys 26..36
from N40 to N36

K30
K38

K30

Join (4)

N36

N40

N25

4. Set N25’s successor
pointer

Update finger pointers in the background
Correct successors produce correct lookups

K30
K38

K30

Failures might cause incorrect
lookup

N120
N113

N102

N80

N85

N80 doesn’t know correct successor, so incorrect lookup

N10

Lookup(90)

Solution: successor lists

• Each node knows r immediate successors
• After failure, will know first live successor
• Correct successors guarantee correct lookups

• Guarantee is with some probability

Lookup with fault tolerance
Lookup(my-id, key-id)

look in local finger table and successor-list
for highest node n s.t. my-id < n < key-id

if n exists
call Lookup(id) on node n // next hop
if call failed,

remove n from finger table
return Lookup(my-id, key-id)

else return my successor // done

Misc

• Working implementation as part of CFS
• Chord library: 3,000 lines of C++
• Has been used in:

– Cooperative File System (CFS) for distributed read-
only storage (SOSP ’01)

– Ivy, a p2p file system (OSDI ’02) (read/write)
– DDNS, a p2p DNS (IPTPS 02)

System CAN Chord
Unit DHT

Architecture Multi-dimensional ID
coordinate space

Unidirectional and
circular id space

Lookup Key, value pairs to
map a point P in the

coordinate spac

Matching key and
NodeID

System parameters N - #peers
D-#dimensions

N - #peers

Routing Performance

Routing State 2d

Join/Leave 2d

Security Low level – both suffer from man-in-the-middle
attacks

Reliability/ Fault
Tolerance

Failure of peers will not cause network-wide
failures

Where ? As a service/linked lib
to high level sw

1/(.)dO d N (log)O N
log N

2(lo g)N

Serving DNS using a p2p
lookup service

Russ Cox, Athicha Muthitacharoen, Robert Morris
Presented by: Vassilis Lekakis

Overview

• The experiment: redo DNS in a peer−to−peer
manner.

• The result: not as good as conventional DNS.
• The talk: what we expected, what we learned.

– Draw general conclusions about peer−to−peer
systems.

– Directions for future research.
– Or guidelines for selecting peer−to−peer apps

Motivation
• Before DNS there was a global hosts.txt.
• DNS is an attempt to distribute hosts.txt, but:

– Everyone has to be a DNS admin.
– I can’t have a domain without a 24/7 DNS server.
– Locally correct, globally wrong configurations.

• P2P lookup systems might fix these:
– Organization, replication, much configuration
handled by the P2P layer.
– I don’t need to keep a 24/7 server up.
– Lack of hierarchy avoids half−broken configs (?)

DNS & DNS SEC

• Original DNS uses IP based authentication
• DNSSEC uses crypto based

authentication
• DNS SEC separates serving from

authedication

• Can we explore alternate lookup
methods?
(p2p dynamic hash Tables)

DNS using P2P Hash Table

• Look up SHA1(name, query type).
• Answers RRSets like DNS
• It works just like a distributed host.txt

– Prototype implemented in Chord
• Stores fixed number of replicas

Evaluation: Latency

• Uncached latency is too big O(log n)
RPCs
– Chord : log base = 2
– Pastry, Kademlia: log base = 16
– DNS, log base ?? (>> 1,000,000)

Evaluation: Robustness

• DDNS: Inherited from Chord
• DNS: fairly robust already

– Root servers are highly replicated
– DOS attack to old anymore

Evaluation: Loss of network
Connectivity

• Suppose UOC gets cut off from Internet
– In DNS

• UOC can still connect to UOC hosts
• UOC cannot connect to Internet hosts
• Internet cannot lookup nor connect to UOC hosts

– In P2P DNS
• UOC can’t look up but can connect to UOC hosts (??)
• UOC can look up but can’t connect to Internet hosts.
• Internet can look up but can’t connect to UOC hosts

Evaluation: Functionality

• DDNS : functionality of a distributed
host.txt

• BUT
– No dynamically generated records
– No support for ‘‘ANY’’ queries
– No server side load balancing

Evaluation: Administration

• DNS
– requires significant expertise to administer
– Bad configurations

• DDNS
– Ease of deployment
– 24/7 servers uptime?
– Why trust servers run by others?
– Users need incentives in order to run servers

Conclusions

• P2P systems have fundamental limitations
and simply aren’t appropriate for apps that
need
– Lower latency.
– Protection against insertion DoS.
– Choice of functionality for network outages.
– More than just distributed hash tables.
– High confidence in the network.
– Generic incentives for people to run servers

	A Scalable Peer-to-peer Lookup Service for Internet Applications
	NOTE
	A peer-to-peer storage problem
	The lookup problem
	Centralized lookup (Napster)
	Flooded queries (Gnutella)
	Routed queries �(Freenet, Chord, etc.)�
	Routing challenges
	Chord properties
	System Model	
	Chord overview
	Chord IDs
	Consistent hashing [Karger 97]
	Basic lookup
	Simple lookup algorithm
	“Finger table” allows log(N)-time lookups
	Finger i points to successor of n+2i
	Lookup with fingers
	Lookups take O(log(N)) hops
	Joining: linked list insert
	Join (2)
	Join (3)
	Join (4)
	Failures might cause incorrect lookup
	Solution: successor lists
	Lookup with fault tolerance
	Misc
	Serving DNS using a p2p lookup service
	Overview
	Motivation
	DNS & DNS SEC
	DNS using P2P Hash Table
	Evaluation: Latency�
	Evaluation: Robustness
	Evaluation: Loss of network Connectivity	
	Evaluation: Functionality
	Evaluation: Administration
	Conclusions	

