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Abstract
In recent years, a large number of DHTs have been pro-
posed. However, very few of them have been deployed in
real-life large scale systems. An exception is KAD, a DHT
based on Kademlia that is part of the widely used eMule
peer-to-peer system, which has more than 1.5 million si-
multaneous users. We have developed a very fast crawler
and explored KAD for more than a month by crawling part
of the KAD ID space, which takes only a few seconds. We
find that there are two classes of peers, long-lived peers
that participate in KAD for weeks and short-lived peers
that remain in KAD no more than few days before they
permanently leave. Most of the peers that join KAD for the
first time are short-lived peers. Since inter-session times
can be as large as one week, one needs to crawl KAD for
more than a week to be able to identify and characterize
short-lived peers.

1 Introduction
KAD is a Kademlia-based [5] peer-to-peer DHT routing
protocol implemented by several peer-to-peer applications
such as Overnet [8], eMule [3], and aMule [1]. The two
open–source projects eMule and aMule do have the largest
number of simultaneously connected users since these clients
connect to the Edonkey network, which is a very popular
peer-to-peer system for file sharing. Recent versions of
these clients implement the KAD protocol. In the rest of
the paper when we use the term KAD we refer to the aMule
and eMule implementation.

Similar to other DHTs like Chord [11], Can [9], or
Pastry [10], each KAD node has a global identifier, re-
ferred to as KAD ID, which is 128 bit long and is ran-
domly generated using a cryptographic hash function. The
KAD ID is generated when the client application is started
for the first time and is then permanently stored. The KAD
ID stays unchanged on subsequent join and leaves of the
peer, until the user deletes the application or its prefer-
ences file. Therefore, using the KAD ID a particular peer

can be tracked even after a change of its IP address.
Routing in KAD is based on prefix matching: Node

a forwards a query destined to a node b to the node in
his routing table that has the smallest XOR-distance. The
XOR-distance d(a, b) between nodes a and b is d(a, b) =
a⊕ b. It is calculated bitwise on the KAD IDs of the two
nodes, e.g. the distance between a = 1011 and b = 0111
is d(a, b) = 1011 ⊕ 0111 = 1100. The fact that this
distance metric is symmetric is an advantage compared to
CAN or Chord, since in KAD if a is close to b, then b is
also close to a. Thus, both nodes can add each other in
their respective routing tables. Without such a symmetry,
peers would not learn useful routing information from the
queries they receive.

The entries in the routing tables are called contacts
and are organized as an unbalanced routing tree. Each
contact consists of the node’s KAD ID, IP address, TCP
and UDP port. The left side contains contacts that have
no common prefix with the node a that owns the rout-
ing tree (XOR on the first bit returns 1). The right side
contains contacts that have at least one prefix bit in com-
mon. This tree is highly unbalanced and the right side
of each tree node is (recursively) further divided in two
parts, containing on the left side the contacts having no
further prefix bit in common, and on the right side the
contacts having at least one more prefix bit in common. A
bucket of contacts is attached to each leaf of the routing
tree. Each bucket can contain up to ten contacts in order
to cope with peer churn without the need to periodically
check if the contacts are still online. In summary, a node a
node stores only a few contacts to peers that are far away
in the overlay and increasingly more contacts to peers as
we get closer a. For details of the implementation see
[12].

For routing, a message is simply forwarded to one of
the peers from the bucket with the longest common prefix
to the target. Routing to a specific KAD ID is done in an
iterative way, which means that each peer on the way to
the destination returns the next hop to the sending node.
While iterative routing experiences a slightly higher de-
lay than recursive routing, it offers increased robustness
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against message loss and it greatly simplifies crawling the
KAD network.

2 Related Work
Overnet was the first widely deployed DHT. Its imple-
mentation is proprietary. The operation of Overnet was
discontinued in September 2006. The Overnet peer-to-
peer network has been crawled by [2, 4, 7] and most 265,000
concurrent users have been seen online. The study most
relevant to our work is the one by Bhagwan et al. [2]. A
set of 2,400 peers was contacted every 20 minutes during
two weeks. This study pointed out the host aliasing prob-
lem that is due to the fact that many peers periodically
change their IP address. So, in order to properly compute
session times and other peer-specific metrics one needs to
use the KAD ID. This study also indicated that for sys-
tems where peers leave permanently, the values for the
mean peer availability decrease as the observation period
considered increases.

KAD is the first widely deployed open-source peer-to-
peer system relying on a DHT. Two very interesting stud-
ies on KAD have recently been published by Stutzbach.
The first explains the implementation of Kademlia in eMule
[12] and the other [13] compares the behavior of peers
in three different peer-to-peer systems, one being KAD.
The results obtained for KAD are, as in our case, based on
crawling a subset of the KAD ID space. We refer to a k-
bit zone as a continuous sub-set of the total KAD ID space
that contains the all KAD peers whose KAD IDs agree in
the first k bits. Stutzbach [13] crawled a 10-bit zone in 3-
4 minutes and a 12-bit zone in approximately one minute.
A total of 4 crawls were carried out. Each crawl lasted
for only 2 days, which implies that the maximum values
for some metrics such as session up-times or inter-session
times that can be observed are naturally limited.

3 Measurement Methodology

3.1 Introduction
The independent arrival and departure of peers is called
churn [13]. Churn is a major challenge for peer-to-peer
systems as it affects the stability of the whole system and
the availability of peers and shared objects. Churn also
makes crawling a peer-to-peer system difficult: to get a
consistent snapshot of the system at a given point in time,
one needs to execute a given crawl in as little time as pos-
sible. For this reason, we have built a very fast custom
crawler, called Blizzard, which is able to crawl a zone with

an 8-bit prefix, i.e. approximately one 256-th of the entire
peer set of KAD in less than 2.5 seconds. Given the speed
of Blizzard, we were also able to crawl the entire KAD ID
space.

Stutzbach [13] describes very well the various pitfalls
when crawling a peer-to-peer system such as incomplete
data due to crawler crashes, loss of network connectivity,
or random failures due to temporary network instability.
To address these problems, we run simultaneously two in-
stances of Blizzard, one at the University of Mannheim,
Germany connected to the German research network, and
a second one at Institut Eurécom, France connected to the
French academic network. This redundancy in crawling
turned out to be useful: at some point due to network
problems, one instance of the crawler was seeing fewer
clients than the other one. We take the raw data of the two
parallel crawls and merge them in such a way that, for a
given round of the crawl, a peer is considered up when he
has been seen by at least one crawler.

3.2 Crawling
Previous crawlers, such as the one by Stutzbach [13] are
distributed and run simultaneously on multiple machines.
We noticed that in a distributed crawl a lot of CPU time
is used up for the synchronization between the machines.
The main idea of Blizzard is to use only one machine, and
keep all relevant information in main memory. After the
crawl is completed, the results are written to disk. The
implementation of Blizzard is straightforward: Blizzard
runs on a local machine knowing several hundred con-
tacts to start with. It uses a simple breadth first search and
iterative queries: It first queries peers among its contacts
in order to get to know more peers and so on.

4 Results for a Full Crawl
Since crawling the entire KAD ID space is not necessary
for most of the metrics we are interested in, we stopped
doing so after two weeks. However, the full crawl enabled
us to validate that the results computed from the partial
crawl are statistically significant. Also, the full crawl al-
lowed us to make certain observations that would not have
been possible with a partial crawl.

During a full crawl, we see between between 1.5 and 2
million peers. This number varies according to a diurnal
as well as a weekly pattern and reaches its peak during
the weekend, where the population is about 10% higher
as compared to a week day.
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4.1 Distribution over the hash space
A good hash function should assure a uniform distribu-
tion of the KAD IDs over the entire KAD ID space. We
see that the peers are indeed uniformly distributed over
the hash space, except for some outliers (Figure 1). An
8-bit zone contains the peers whose KAD ID agrees in the
first 8 bits, thus one zone can theoretically contain 2120

hash values, while we actually observe between 12,000
and 20,000 peers per zone. For some zones we see a
much higher number of peers, which are due to mod-
ified KAD clients. The modified KAD clients with the
same KAD ID are always limited to a single country (Ko-
rea, Spain, Israel, China, Argentina). The outlier in zone
0xe1 is a modified client used in Israel, for which we
counted more than 10,000 instances. Using modified KAD
clients amounts for some sort of free-riding, since the load
for publishing and forwarding that a single regular KAD
peer carries will be distributed among all the modified
peers with the same KAD ID. On the other hand, modi-
fied clients can use the peer-to-peer network like regular
one. If there were too many modified KAD clients, the
application performance would decrease, since the peers
using the same KAD ID could not see one another and
therefore could not download one from another.
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Figure 1: The distribution of the peers over the hash space.
The 256 8-bit zones on the x-axis go from 0x00 to 0xff.

4.2 Aliasing and Artifacts
In many cases, ISPs attribute a new IP address to their
DSL subscribers approximately every 24 hours. Since the
KAD ID does not change, it is possible to track individual
peers even when they change their IP address. Over a
period of two weeks, we saw thousands of peers with the
same KAD ID but twenty or more different IP addresses.

During our crawls, we saw some anomalies such as a

large number (more than one hundred) of peers with the
same KAD ID and/or the same IP address. (i) Peers with
the same KAD ID and the same IP address: a contiguous
range of port numbers was used, which in our opinion
hints to a single organization running many instances of a
KAD peer to monitor the KAD overlay. (ii) Peers with the
same IP address and different but carefully chosen KAD
IDs: The KAD IDs have some kind of pattern indicating
that they have been chosen “by hand”. This also hints to a
single organization running many instances of a KAD peer.
(iii) Peers with the same IP address but different randomly
chosen KAD IDs and ports: These can be different clients
behind a NAT sharing the same public IP address.

4.3 Geographic Distribution and Total Pop-
ulation

In Figure 2, we plot the distribution of the percentage of
peers seen per country. Almost 25% of the peers are lo-
cated in China and the geographic region with the high-
est percentage of peers is Europe (Spain, France, Italy
and Germany). Less than 15% of all peers are located in
America (US, Canada, and South America). In total, peers
from about 200 countries have been reported. We can also
see that the results obtained with two partial crawls of 8-
bit zones are very close to the ones obtained with the full
crawl.
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Figure 2: The geographic distribution of peers on
2006/08/30 of the entire KAD ID space compared to those
of different 8-bit zones.

We have previously shown that the number of peers is
uniformly distributed over the hash space. This property
will allow us to estimate the total number of peers in the
system by simply counting the number of peers in a zone.
If we do a partial crawl of one 256-th of the entire KAD
ID space we can use Chernoff Bounds (see [6] Chapter 4)
to estimate the total population size and tightly bound the
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estimation error.
Let N(t)part be the number of peers counted during

a partial crawl of an 8–bit zone at time t and N̂(t) :=
256 ∗N(t)part the estimate for the total number of peers
in the KAD system. The true value N(t) for total number
of peers at time t is very close to the estimate N̂(t), with
high probability. More precisely:
Prob(|N(t)− N̂(t)| < 45000) ≥ 0.99, which means that
our estimate N̂(t) has most likely an error of less than 3%
for a total population of at least 1.5 million peers.

5 Results from Partial Crawls

5.1 Introduction
When Blizzard crawls an 8-bit zone it contacts between
12,000 and 20,000 peers and receives replies from approx-
imately 5,000 to 8,000 peers. The ones that did not reply
are either peers that have left (for which the routing table
entries are stale) or peers behind a NAT. The total network
traffic generated during a single round of the crawl is 19 –
26 MByte inbound and 15 – 19 MByte outbound.

We have been crawling the 8-bit zone 0x5b every 5
minutes for over one month. During the very first crawl,
we saw 5795 peers. During the remaining 287 crawls of
the first day we saw another 12297 different peers, which
add up to a total of 18092 different clients for the first
day. Every day new peers arrive that we never saw be-
fore. In Figure 3 the number peers that have never be seen
before by the crawler is plotted. We can clearly identify
the first week-end (days 3 and 4) where more new peers
arrive. Since these peers will then be already known on
the following weekends, the number of new peers on the
consecutive week-ends is less important.
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Figure 3: The number of KAD peers never seen before in
zone 0x5b per day.

In the following, with “peers that arrived on the n-
th day” we mean “peers that have been seen for the first
time during a crawl on the n-th day”. Please note that the
total number of peers seen during the crawls on the n-th
(n > 1) day consists of the peers that have already been
seen on previous days plus the ones that have been seen
for the first time on day n.

We will also use the following terminology: up from
second crawl means all the peers sampled during crawls
2–288 on the first day (the very first crawl is excluded),
while n-th day means the peers seen the first time during
one of the crawls on day n. To compute the metrics of in-
terest, we will use data obtained by crawling over a period
of either 23 or 38 days.

5.2 Session Length
Most of the peers will not be online, i.e. connected to
KAD, all the time. By crawling KAD we can determine for
each peer k the instances tj1(k), ..., tjn(k) when k joined
and the instances tl1(k), ..., tlm(k), with m = n − 1 or
m = n, when k has left KAD.

Figure 4: CDF of the Session length of peers.

In Figure 4 we plot the distribution of the session length,
which is defined as the time a peer was present in the sys-
tem without any interruption, i.e. tli(k) − tji (k) for i ∈
{1, ...,m}. We can notice that the session length of the
peers seen in the first crawl follows a distribution that is
different from the distribution of the peers seen during
later crawls. Also, the mean session time and its stan-
dard deviation are more than twice as large for the peers
seen during the first crawl than for the peers seen dur-
ing crawls 2-288. In fact, when we sample KAD for the
first time, we have a much higher chance to see peers that
are connected “most of the time” than peers that are con-
nected from time to time and only for short periods. This
means that a single snapshot of the system cannot give a
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representative picture of the characteristics of the peers:
to improve the quality of the measurements, we need to
sample the system many times.

We did a distribution fitting for the session times and
found that the Weibull distribution provides a very good
fit .

5.3 Inter-Session Time
The inter-session time is defined as the time a peer k is
continuously absent from the system, i.e. tji+1(k)− tli(k)
for i ∈ {1, ..., n}. Figure 5 depicts the complementary
cumulative distribution function (CCDF) of the inter-
session times. As was already the case for the session
times, the distribution of the inter-session times of the
peers seen during the first crawl is different from the peers
seen during later crawls. Also, the mean inter-session time
for the peers seen during the first crawl is slightly smaller
(697 min. vs. 877 min.). For the inter-session times we
could not find a distribution that was matching well our
observed data. In particular, the Weibull distribution did
not fit.
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Figure 5: CCDF of the Inter-session time of peers.

A closer look at Figure 5 reveals that only very rarely
(less than 1%) the inter-session time is larger than 10,000
minutes, which corresponds to 7 days. We will therefore
use a threshold of 7 days to determine which peers have
newly joined KAD and which ones have permanently left:
a peer that (i) has been seen for the first time during a
crawl at day 8 or later has newly joined KAD and a peer
that (ii) has left KAD and has not re-joined for at least 7
days has permanently departed.

5.4 Permanent Departure
In Figure 6 we plot the fraction of peers that have perma-
nently left the system T days after they were first seen.

This figure shows that there are two classes of peers: One
class of long-lived peers that stay in KAD over weeks and
whose rate of permanent departure is very low (most of
the peers first seen on the first and second day of the crawl
are long-lived). A second class of short-lived peers that
join KAD but soon leave permanently. Among the peers
that newly joined KAD 70% of them had permanently
left within 5 days and less then 20% stay for 15 days or
more. More than 40% of these peers connected to KAD
only once. If we extrapolate from these observations onto
the entire KAD system we arrive at impressive numbers:
About 750,000 new peers join KAD every day for the first
time and over 500,000 of them will not stay for more than
a few days.
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Figure 6: Fraction of peers that permanently left KAD.

In Figure 7 we plot the evolution of the number of
peers connected (referred to as peers up). The peers that
arrived for the first time at day 10 are mostly short-lived
and will soon leave permanently, which entails a dramatic
decrease in the number of peers within the first few days
of their first appearance. After about 5 days the number
of peers up decreases by very little. In fact, the peers that
still participate in KAD are in fact long-lived peers that
will stay for weeks. Every day a small percentage of the
peers that join for the first time are long-lived peers, which
allows to slowly “renew” the set of long-lived peers and
maintain its overall size at a constant level.

5.5 Practical Implications
If we want to reliably store information on KAD, how
should we select the peers to use? Figure 8 indicates that
a policy selecting nodes based their age, i.e. how long ago
they have joined KAD for the first time, gives much bet-
ter performance than simply selecting peers at random.
When we pick k = 50 peers that have joined KAD for the
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Figure 7: Evolution of the number of peers up that newly
joined KAD at day 10.

first time at least 2 days ago (Exist > 2 days), there is
90% chance that 22 days later at least 10 of these peers
will be simultaneously up, while if we choose the peers
purely at random, this chance will be less than 25%. We
also tried selecting peers based on uptime, i.e. the time
elapsed since the peer last joined KAD, but did not see
much an improvement as compared to random selection.
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Figure 8: CDF of the minimum number of peers simul-
taneously available over 22 days among k = 50 chosen
among the peers that newly joined KAD at day 10.

6 Conclusion
We have reported some of our findings obtained from crawl-
ing KAD, the largest currently deployed DHT. Results on
the peer arrival and departure process, peer availability,
remaining uptime, and correlation between consecutive
session lengths could not be presented here for space rea-
sons.

Our full crawl allowed us to identifiy some occurences
of abnormal behavior, which have not been reported be-
fore and which are caused by modified KAD clients.

Using the observations of a partial crawl that spans
more than a month, we were able to unambiguously iden-
tify the peers that joined KAD for the first time and de-
scribe their behavior. We have seen that most of the KAD
peers will stay only for short time, while a small percent-
age of peers will remain in KAD for weeks. To precisely
characterize these long-lived peers and obtain the full dis-
tribution of their lifetime we need to continue crawling
KAD.
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