
HPTP: Relieving the Tension between ISPs and P2P

Guobin Shen1, Ye Wang1,2, Yongqiang Xiong1, Ben Y. Zhao3, Zhi-Li Zhang4

1 Microsoft Research Asia, Beijing, P.R.China
2 Electronic Engineering Department, Tsinghua Univ., P.R.China

3 Computer Science Department, U.C. Santa Barbara
4 Computer Science Department, Univ. of Minnesota at Twin Cities

ABSTRACT
Measurement-based studies indicate that there is a severe ten-
sion between P2P applications and ISPs. In this paper, we pro-
pose a novel HTTP-based Peer-to-Peer (HPTP) framework to
relieve this tension. The key idea is to exploit the widely de-

ployed web cache proxies of ISPs to trick them to cache P2P
traffic. This is achieved via a process we refer to as “HTTPi-
fying”: we segment (if necessary) large P2P files or streams
into smaller chunks, encapsulate and transport them using
the HTTP protocol so that they are cacheable. We outline the
design of several key tools of the proposed HPTP framework
– HTTPifying, cache detection and usability test tools, and
describe a cache-aware tree construction (CATC) protocol for
delivering P2P streaming traffic as an example to showcase
the HPTP framework. Simulation results demonstrate that
HPTP can lead to significant performance improvement. We
argue that the HPTP framework will benefit both ISPs and
end users (P2P as well as normal web users) by significantly
reducing network overload caused by repetitive P2P traffic.

1. INTRODUCTION
While peer-to-peer (P2P) applications eliminate the prob-

lems of “flash crowd” and server overload that afflict servers
in the traditional client-server systems, their increasing popu-
larity, in particular, emergence of P2P streaming applications
such as P2P IPTV, has created another problem – namely,
traffic surges and network congestion at Internet Services
Providers (ISPs). Numerical ISPs have reported that P2P
traffic accounts for a major portion of the Internet, surpass-
ing any other application category such as web, and and is
bound to increase further. The network congestion caused by
P2P traffic not only affects users of P2P applications, but also
those of other applications such as web. Furthermore, it has
also been reported that more than 92% P2P traffic traverse
transit/peering links among ISPs [1], thereby affecting the
bottom line of (customer) ISPs. As an additional side-effect
of this problem, the overwhelming bandwidth consumption
of peer-to-peer systems – despite the inherently scalable de-
sign – may prevent them from scaling further, at least within
University-like environments, as the measurement study [2]
concludes.

The excessive traffic overload (and perhaps more impor-
tantly, the resultant financial burden) incurred by P2P appli-
cations on ISP networks has prompted many of them to resort
to blocking or rate-limiting P2P traffic. Such “reactionary”
measures, on the other hand, often irk users who may take

their business elsewhere. A more “constructive” approach
is to attempt to deploy cache proxies to cache P2P traffic,
similar to web caching. In fact, several P2P caching schemes
have been proposed [2, 4–7], and a few startups have also
appeared. Unfortunately, there are a few obstacles in deploy-
ing P2P caches: firstly, P2P caching systems are likely to be
very complicated. Unlike web traffic standardized in using
HTTP transport through few dedicated ports like 80, there
is no a standard P2P protocol and every P2P protocol uses
its own port. Therefore, P2P caching systems are forced to
take an ad hoc approach by enumerating and handling ev-
ery P2P protocol. So far such an approach appears feasible,
since there are only a few popular P2P systems that contribute
most of the traffic at the moment. Yet another drawback of
this ad hoc approach is the requirement of regular update of
the P2P cache engines to handle newly emerged popular P2P
protocols. Secondly, extra, possibly huge, investment is re-
quired for the equipment and facility purchase and also the
administrative cost.

In this paper, we propose a novel HTTP-based Peer-to-Peer
(HPTP) framework to relieve this tension. The key idea is
to exploit the widely deployed web cache proxies of ISPs to
trick them to cache P2P traffic. This is achieved via a process
we refer to as “HTTPifying”: we segment (if necessary)
large P2P files or streams into smaller chunks, encapsulate
and transport them using the HTTP protocol to ensure them
cacheable by properly specifying the cache-control related
directives of the HTTP request/response header. The key
difference between HPTP and other P2P caching proposals
lies in that we utilize the existing web cache infrastructure
deployed by ISPs

The efficacy of HPTP depends on how successfully we
can trick the web cache proxies to cache the HTTPified P2P
traffic. To increase the hit rate, a cache-aware P2P overlay
construction protocol is highly desired. However, unlike nor-
mal P2P applications where peers’ addresses are known, most
caching proxies (especially those deployed by ISPs which are
transparent caches) are unknown. This necessitates a tool to
detect the caches in the first place. In this paper, we present
a light weight cache detection tool called HPing and, as a
first case study to cache-aware overlay construction, a cache-
aware tree construction protocol that can be applied to a prac-
tical streaming scenario. We perform some experiments and
simulations to demonstrate the effectiveness of the HPing
tool for cache detection and usability test, and the significant

performance improvement to P2P users and traffic reduction
on the backbone and transit/peering links among ISPs due to
HTTPification.

The remainder of this paper is organized as following. In
Section 2 we provides a brief introduction to web caching and
discuss related work. In Section 3 we present the proposed
HPTP framework and the key tools. Experimental results are
reported in Section 4. The paper is concluded in Section 5.

2. BACKGROUND AND RELATED WORK

2.1 Brief Introduction to Caching Proxies
A caching proxy (or cache for short) usually intercepts

the TCP connection of a web request and splits it into two
separate TCP connections, one to the client and the other to
the server. The logic behind this design is to always perform
cache checking first before attempting to make a connection
to the server. The latter connection will be established only if
a cache miss happens. It is such design that leads to shorter
response latency and reduces the traffic to the server.

Upon receiving a request, the cache engine must quickly
determine if it still stores the response. This requires the
response to be uniquely indexed with hints from its request
and lookup to be performed efficiently. The unique indexing
is achieved by indexing the response using its URL which is
intrinsically unique and efficient lookup is achieved through
hashing.

The network host address in a URL can be expressed us-
ing hostnames or IPs, and more interestingly, in an HTTP
session, up to three network host addresses may be speci-
fied, therefore, we want to understand if the hostname and
IP are interchangeable and which network host address are
used in the cache’s indexing scheme. We experimented with
three popular caching proxies, a Cisco Cache Engine (Model:
505), Microsoft ISAS and Squid. We found that 1) host-
names and IPs are considered different in indexing a response;
2) the response is indexed with preference Hostname get,
Hostname host, Hostname con. Our test message is:

telnet Hostname_con 80

GET Hostname_get/helloworld.html http/1.1

HOST Hostname_host

Many different factors can affect the cacheability of a par-
ticular response, and these factors interact in a complicated
manner. In general, for a response to be cacheable, one needs
to ensure the size of the object is suitable and certain cache-
control directives are properly set in both the request and the
response.

Finally, because caching proxies are shared among many
users, they are, therefore, essential services for ISPs and many
organizations (e.g., corporations and universities). As a re-
sult, they are typically deployed at some strategic points such
as near the organization’s network gateways or near ISPs’
Point of Presence (POP) in different locations.

2.2 Related Works

P2P traffic of a small ISP was found to be highly repetitive,
showing great potential for caching [4]. In [2], initial analysis
revealed that the outbound hit rate could reach approximately
85%, and the inbound hit rate reaches to 35% even though the
cache has not fully warmed. Significant locality in the Kazaa
workload was further identified in [5], which implies a 63%
cache hit rate under extremely conservation trace-driven es-
timation. P2P systems exhibit good stability and persistence
at the prefix and AS aggregation levels and suggest inserting
local indexing/caching nodes or applying traffic engineer-
ing may be a promising way to manage the P2P workload
in an ISP’s network [3]. Besides the data messages, query
messages in Gnutella networks are found to exhibit temporal
locality and therefore cacheable [7].

The aggregate popularity distribution of objects is found
to deviate from Zipf curves [5] and further modeled by a
Mandelbrot-Zipf distribution [6]. A novel caching algorithm
based on object segmentation and partial caching is proposed
to cache each object by a portion that is proportional to its
popularity. Trace-based simulations show that a relatively
small cache size would lead to up to 35% byte hit rate [6].

A few startups like CacheLogic [1], Sandvine (www.sandvine.
com), P-Cube (www.p-cube.com, acquired by Cisco in August
2004) etc., have developed hardware or software P2P caching
systems. They all use routing policy enforcement to look up
ISP’s own network before looking further afield and adopt the
divide and conquer method to handle different P2P protocols.
It is well anticipated that regular updates are needed as P2P
protocols evolve, so the annual support service is necessary.

The key difference between HPTP and all above mentioned
P2P caching proposals is that we utilize the already deployed

caching proxies and there is no extra adoption cost for ISPs.
Finally, Content Delivery Networks (CDN) has been a ma-

ture business since they are compelling to content providers
because the responsibility for hosting content is offloaded to
the CDN infrastructure. CDN is related to our work in the
sense that they also use caches, but unlike HPTP that uses al-
ready deployed caching proxies, they deploy and use reverse
proxy caches.

3. HPTP FRAMEWORK
In this section, we present several key components of the

HPTP framework and a specific cache-aware tree construction
protocol.

3.1 HTTPifying Tool
Since caching proxies typically caches only HTTP traf-

fic, an indispensable component of HPTP framework is the
HTTPifying tool, which segments (if necessary) the files
or streams into small-sized chunks, use HTTP protocol for
the transport of the resultant chunks and ensure such HTTP
wrapped chunks are cacheable by specifying the correct cache-
control related directives of the HTTP response header.

The reason we want to segment the original file is three
folds: 1) to make it cacheable since most web caches imposes
constraints on the size of cacheable objects; 2) to allow partial

Is
repeated

msg?

Recv msg

Return counterReturn IP_seen

New counter (=1) counter ++

Client Module Server Module

IP_seen=IP_local

Send HTTP GET msg,

Recv response (IP_seen)

[Optional : measure RTT]

Send HTTP GET msg,

Recv response (ReqNum)

[Optional: measure RTT]

cnt_local = ReqNum

Init (cnt_local=1, msg_cnt=1)

msg_cnt < K

msg_cnt ++

Terminate

[cache not available]

Terminate

[no cache]

Terminate

[cache available]

Figure 1: The overall process of HPing. In the client

module, the shadowed box is for cache detection, and

the rest for usability detection.

caching and fine cache replacement, which has proved to
be crucial with certain cache replacement schemes [?]; 3)
to exploit the potential of soliciting content from multiple
senders as in BitTorrent.

Obviously, HTTPifying incurs some overhead. The over-
head equals to the size of HTTP wrapper divided by the
segment size. If the segment size is set to 256kB, then the
overhead is less than 1%.

3.2 HPing Tool
Optimal cache placement problem has attracted in depth

studies and we expect it is worth more study in a P2P set-
ting. However, in the HPTP context, because the caches are
already deployed, we need to discover where such caches are
deployed. Moreover, besides telling the existence of caches,
we also want to learn the usability (i.e., how likely the cache
will cache our HPTP traffic) of discovered caches. We have
developed a light weight cache detection and cache usability
test tool, called HPing, that can fulfill these requirements.

3.2.1 Caching Proxy Detection

The HPing performs cache detection based on the fact that
a caching proxy splits a web request into two separate TCP
connections, one to the client and the other to the server.
This fact implies that the source IP the server sees from the
request will be different from the original source IP (the IP
of the requesting client) if there exists a cache in between.
Therefore, we can tell the existence of a cache by comparing
the original source IP against the source IP seen by the server.
HPing contains two modules: a client module and a server

module (i.e., the daemon). The overall process of HPing is
illustrated in Figure 1 and is elaborated below. Let Peer A

(PA) and Peer B (PB) denote the pinging peer and the peer
being pinged, respectively.

PA first sends an HTTP GET request message (referred to
as HPing message hereafter) to PB . If it is the first time PB

receives the request, it creates a counter (initialized to one)
for the new unique request and responds with a cache-friendly
HTTP response with the content being the requestor’s IP ad-
dress it saw; otherwise, PB increments the counter associated

with that request and responds only the counter. PA compare
the IP address returned from PB with its own IP address. If
they are the same, then we can conclude that there is no cache
between the two peers; otherwise, there exists a cache and of
which the IP address is also known.

Note that HPing may lead to possible false positive con-
clusion for the NAT/NAPT users. That is, there is actually no
cache in between, but the HPing would conclude that there
exists one because the IP address seen by the server is actually
the client’s NAT’ed (external) IP and differs from the client’s
own (internal) IP. Fortunately, the false positive conclusion
does not hurt much (except possible waste of few HPing re-
quests) because the “non-existing”, falsely claimed cache is
doomed not to pass the usability. Also, for most of the or-
ganizational networks, caching proxies are usually deployed
on the gateway which implies that most of the seemingly
false positive conclusions are actually correct. One limitation
of HPing is that it can only tell the one closest to PB even
if there may exist multiple caches in the path from PA to
PB . Nonetheless, we can progressively refine the locations
of caches by recursively applying the cache detection logic,
as done in the cache-aware tree construction.

3.2.2 Cache Usability Test

HPing performs cache usability test using chained HPing

messages. The message chain is formed by K subsequent
same HPing messages. Still using PA and PB as examples.
PA issues up to K same HPing messages, one by one, imme-
diately after the response to a previous request is received and
processed. As above said, during the cache detection phase,
PB has already associated a counter to each unique request,
and the counter will be incremented (i.e., ReqNum++) for re-
peated request and included in PB’s cache-friendly response.
PA checks the response and test if the ReqNum has increased.
If the ReqNum does not change, we can conclude that there
indeed exists a cache between PA and PB (i.e., not a false
positive case) and the cache is immediately useable, and the
procedure terminates. If all K HPing messages are sent but
no conclusion can be drawn, then we simply conclude that
the cache in between is not immediate usable such as running
out of capacity or a false positive case caused by NAT/NAPT.

In HPing, K is a system parameter related to the available
caching capacity and also the cache replacement policy. We
have not obtained a good estimation method for it. Instead,
we follow the intuition by setting an initial large K and dy-
namically reduce it by looking at the incremental steps of the
returned ReqNum. Its rationale lies in that fact that the incre-
mental speed of ReqNum gives the hint of how many other
peers are performing the probing concurrently, i.e., ReqNum

is an indicator of popularity. Moreover, HPing does not dif-
ferentiate the requests from different peers, therefore, all peers
are actually performing the cache detection and usability test
collectively. This will lead to an accuracy estimation if the
user base is large. Otherwise, if each peer issues a unique
HPing message, it would be hard to tell the likelihood of the
usability of the cache.

3.3 Cache-aware Tree Construction (CATC)
In a naive case, we can simply let the source HTTPify the

P2P data and ask all peers to request data from the source di-
rectly, using HTTP transport. We refer to this scheme as naive

HPTP. In some sense, naive HPTP is similar to HTTP tun-
neling except that we deliberately make the traffic cacheable
through HTTPifying. However, this is a passive and best-
effort leverage of caches. The extent to which the caches are
utilized depends on the (geographical) distribution of peers
and the caches. Nevertheless, it is still beneficial because the
caches are usually strategically deployed. Another drawback
of this naive scheme is that the source may risk heavy bur-
den and becoming performance bottleneck since there is no
guarantee on the cache hit.

To avoid such situation, we build cache-aware delivery tree
with explicit control on the selection of caching proxies. This
is achieved via the cache-aware tree construction (CATC)
protocol described below. Once the tree is built, each peer
only requests data from its parent, instead of the source as in
the naive HPTP case.

3.3.1 The CATC Protocol

We regard all peers and the source as in a large cluster at
the beginning with the source being the cluster head.

1. All peers in the same cluster perform cache detection
and usability test against the cluster head, and record
(in stack order) the head information locally.

2. All peers report their results and own IP addresses to
a (new) DHT node and remove their records from the
previous one. Peers are further clustered (naturally)
according to their detected caches. Those failed to dis-
cover new usable caches remain at their previous cluster
and form an orphan set.

3. The DHT nodes appoint the peer whose IP address1 is
the closest to the source as the new cluster head (through
IP matching) and inform all peers in the same cluster.

4. Above steps are recursively applied until there is no new
usable caches can be found any further.

5. Finally, the tree is constructed recursively in a reverse
order, starting from the finest clusters: peers in the
same cluster form a subtree by directly connecting to
the cluster head. This step is repeated until all the peers
are recruited into the tree. In case of a large orphan
set, we may build a tree out of it using normal P2P tree
building logic, but use HPTP transport strategy.

Note that we have chosen to use a DHT to organize the col-
lected cache information. Alternatively, we can use a server
for this purpose. However, DHT naturally helps to cluster
the peers since peers reporting to the same DHT nodes are
covered by the same caching proxy. This avoids an explicit
clustering process as would be the case if a server were used.
1For peers behind NAT/NAPT, external IPs are required.

Also, using DHT is a more robust and scalable way if we
want to collect the cache information for a longer term.

3.3.2 Handling Peer Dynamics

Peer dynamics handling usually represents a big obsta-
cle in any P2P system design. Unlike other P2P systems,
peer dynamics handling in the HPTP framework becomes
much easier because of the recruited caches are indeed “gi-
ant peers”: powerful, reliable, dedicated and strategically de-
ployed. Their existences help to hide away the peer dynamics,
besides boosting the delivery performance, as detailed below:

Peer leave or failure: the system keeps silent as much as
possible to peer leave or failure. If leaf nodes left the system,
there is no impact at all. If some intermediate nodes of the
resulting tree (i.e., those who have been HPing’ed) left the
system, there is no change to children peers at all (because
the content may have been cached already and cache can help
to response) unless the children peers receive a “connection
refused” error message (indicating the content is not cached).
In this case, the children peers will react by simply popping
up another peer from their local stacks that have been built
during the tree construction process.

Peer joining: newly joining peers always follow the CATC
procedure to reach the finest cluster. When no new useful
cache can be found, it adds itself to the orphan set at the cor-
responding level and directly connects to the last successfully
HPing’ed peer. One interesting artifact is that even if an in-
termediate node has actually left the system when a later peer
joins, it is still possible for that peer to reach a finer subtree
of that intermediate node, as long as its response to HPing
is still cached. Peers in orphan set may periodically perform
peer joining procedure in case there are caches warmed up
after their usability test.

We want to emphasize here that the robustness of the cache-
aware tree to the peer dynamics is a direct result of the design
logic of caching proxies: always perform cache checking first
before attempt to make connections. This property of caching
proxy also makes the maintenance of the cache-aware tree
very simple. Unlike other tree maintenance protocol, we do
not need heartbeat message to test the liveness of the peers.
Similarly, there is no need to perform periodical optimization
for the cache-aware tree. Instead, only peers experiencing
low performances may perform opportunistic optimization
by rejoining the tree.

4. EXPERIMENTS
We have performed some preliminary cache detection and

usability test experiments with peers from many universities
and also performed some simulation study on the cache-aware
delivery tree.

4.1 Cache Detection and Usability Test
Ideally we would have liked to test the existence of caching

proxies between PlanetLab nodes. Unfortunately, we cannot
run our daemon on the PlanetLab nodes, due to the fact that
the Port 80 is reserved for administration purpose. As a re-

sult, we used a node from Tsinghua university (China) as the
HPing target, and performed cache detection tests from var-
ious PlanetLab nodes using HPing. Rather disappointingly,
no caches are found. This somehow confirmed the message
in [8] that reads: “Although interception caches can also be
located on backbone networks, it is not very common.”

The second set of experiments is that we asked some (now
19) friends from many universities (spreading China, USA,
Canada, and Hongkong) toHPing the same target at Tsinghua.
Table 1 shows the cache detection and usability test results.
We see that 11 out of 19 nodes have detected a usable caching
proxy on their way to Tsinghua University.

Nodes from Success False Positive Failure
Univ’s in China 5 2 2
Univ’s in USA 1 0 1
Univ’s in Canada 1 0 1
Univ’s in HongKong 1 0 0
MSR Asia 3 1 1

Table 1: Cache detection and usability test results.

Although preliminary, the positive results indicate that there
a large amount of web caches already deployed in the Internet.
We feel the basic idea of HPTP, i.e., to turn these hidden cache
into “giant peers”, is very promising.

4.2 Performance of CATC
To evaluate the performance of HPTP and compare it with

normal P2P, we used the GT-ITM [9] to generate an Internet-
like topology with 100 routers, four of which are purely transit
routers while the rest are stub ones providing access services.
1000 peers are randomly connected to different stubs and their
access bandwidths are randomly distributed between 1Mbps
to 10Mbps. In the text below, K denotes the number of usable
caches and H denotes the actual byte hit rate of those caches.

We simulate and compare three schemes, namely normal
P2P, naive HPTP and the CATC HPTP, using three metrics:
average latency between a peer and its parent (could be an-
other peer, a cache or the source), average bandwidth for
peers, backbone traffic. The normal P2P delivery tree (i.e.,
an application layer multicast tree) is built using the short-
est path routing with latency as path metric. Naive HPTP is
achieved by directly HTTPifying the resulting P2P tree. Note
that we do not constrain the number of children a peer can
supply, but all the children will compete for the egress link
bandwidth of that peer.

In the first experiment, we set K = 30 and let H be fixed
to 67% (according to the results in [4]) or varying with the
request popularity. More specifically, we set Hi = min(c ·
log Wi, 80%) with Wi be the number of peers sharing the same
cache and c a normalization constant. To be more realistic,
the hit rate is ceiled by 80%. The results (averaged over 10
runs) are shown in Figure 2 to Figure 4 for the four metrics.

Figure 2-(a) and Figure 2-(b) show the comparison for the
average parent-to-child latency perceived by peers for the
three schemes under a high fixed cache hit rate and a varying

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Parent−to−Child Latency (ms) (fixed H)

C
D

F

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Parent−to−Child Latency (ms) (varing H)

C
D

F

P2P Tree
HPTP Naive
HPTP CATC

P2P Tree
HPTP Naive
HPTP CATC

Figure 2: CDF of average parent-to-child latency:

(a) fixed cache hit rate, (b) varying cache hit rate.

0 2 4 6 8 10

x 10
6

0

0.2

0.4

0.6

0.8

1

C
D

F

Average Bandwidth (bps) (fixed H)

0 2 4 6 8 10

x 10
6

0

0.2

0.4

0.6

0.8

1

Average Bandwidth (bps) (varying H)

C
D

F

P2P Tree
HPTP Naive
HPTP CATC

P2P Tree
HPTP Naive
HPTP CATC

Figure 3: CDF of average bandwidth of all peers: (a)

fixed cache hit rate, (b) varying cache hit rate.

hit rate, respectively. It is evident that in both cases naive
HPTP outperforms the normal P2P while the CATC HPTP
performs the best with a large margin. Compare the two
sub-figures, we see immediately the advantages of CATC
over naive HPTP under a more realistic cache hit rate model.
This is obviously due to the explicit effort in CATC to better
leverage caches. Similarly, we can see the performance boost
of HPTP schemes with regard to the average bandwidth metric
in Figure 3, under different cache hit rate models.

We stated before that HPTP can lead to significant reduction
in the transit traffic as well as the Internet backbone traffic be-
cause of the caches’ help. This is clearly confirmed in Figure
4. The reduction of backbone traffic also implies that HPTP
achieves, implicitly but automatically, locality awareness and
reaches a finer level than an application level locality-aware
protocol can achieve. Note that the way how normal P2P
tree is built in our experiment actually represents excellent
locality awareness because closer peers are assigned shorter
latency.

We also conduct another set of experiments to measure the
path length (in hops) from a peer to the source. The results
reveal that there are indeed some peers travel more hops (i.e.,

0 1 2 3 4 5 6 7 8

x 10
7

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Throughput (bps) (fixed H)

0 1 2 3 4 5 6 7 8

x 10
7

0.5

0.6

0.7

0.8

0.9

1

Throughput (bps) (varying H)

C
D

F

P2P Tree (Avg: 38.4Mbps)
HPTP Naive (Avg: 37.1Mbps)
HPTP CATC (Avg: 25.7Mbps)

P2P Tree (Avg: 38.1Mbps)
HPTP Naive (Avg: 37.9Mbps)
HPTP CATC (Avg: 25.7Mbps)

Figure 4: CDF of traffic on backbone links: (a) fixed

cache hit rate, (b) varying cache hit rate.

detouring) to reach the source in order to seek for caches. But
when transferring, on average, they enjoy a shorter route due
to cache hitting. We omit the figure for sake of space.

Finally, as aforementioned, the performance of HPTP de-
pends on both the hit rate and deployment of those web caches.
So we perform another two sets of experiments to study how
the number of caches (K) and their hit rate (H) influence the
HPTP performance. To obtain more insight on their respec-
tive impact, we fix one of them while adjusting the other.
Due to the space limit, we are not able to include the figures
there. The results reveals that: 1) the performance of HPTP
goes better almost linearly with the growth of the caches’
byte hit rate; 2) the number detected-usable web caches also
has almost linear impact on the HPTP performance; 3) the
placement of caches is very important where the number of
caches is small.

5. CONCLUSION AND FUTURE WORKS
In this paper we have proposed an HTTP-based Peer-to-

Peer (HPTP) framework to leverage the already deployed
ISPs’ caching proxies to relieve the tension between P2P and
ISPs. We presented the basic concept of HPTP framework,
designed necessary tools like the HTTPifying tool and the
cache detection and usability test tool, HPing. We also per-
formed case study by building a cache-aware tree to demon-
strate the potential gains of HPTP. Experimental and simula-
tion results confirmed that the tools are effective and HPTP
can indeed lead to significant performance improvement for
peers and traffic reduction on transit links and the Internet
backbone.

We believe that the proposed HPTP framework will ben-
efit both ISPs and end users (P2P as well as web users), as
HPTP proactively recruits many “giant-peers” - powerful, sta-
ble, dedicated and strategically deployed caching proxies - to
help deliver P2P traffic. HPTP can produce substantial reduc-
tion of the transit/peering traffic across ISPs and the traffic on
the Internet backbone, at no extra adoption cost as compared
with P2P caching solutions or other alternatives. It is there-
fore more appealing to ISPs. While P2P users will benefit

immediately and directly from HPTP, normal web users will
indirectly benefit from HPTP as well because the reduced
P2P traffic on the backbone will make downloading of un-
cacheable dynamics web contents faster, given the fact that
more and more web pages are using uncacheable dynamic
content heavily. In addition, as the hit rate increases only
logarithmically with the cache size [4], caching proxies can
be more efficiently utilized by caching P2P traffic, while its
negative impact on the web cache can be mitigated by using
intelligent P2P caching schemes such as the one developed
in [6].

As a final remark, we would like to point out that the current
cache index schemes prevent us from most efficient utilization
of caching proxies because the same content from different
peers are indexed differently which would cause huge waste
of cache storage in a P2P setting. We are currently investigat-
ing some practical work-arounds. Moreover, as the Internet
evolves towards a data-oriented architecture where files can
be referred to with location-independent flat identifiers [10]
or Uniform Resource Names (URNs, RFC 2141), the efficacy
of HPTP would be maximized.

REFERENCES
[1] CacheLogic, “http://www.cachelogic.com.”
[2] S. Saroiu, et al, “An analysis of internet content

delivery systems,” in Proc. of OSDI’02, 2002.
[3] S. Sen and J. Wang, “Analyzing peer-to-peer traffic

across large networks,” IEEE/ACM Trans. on

Networking, vol. 12, no. 4, pp. 219–232, 2004.
[4] N. Leibowitz, et al, “Are file swapping networks

cacheable? characterizing p2p traffic.” in Proc. of

WCW’02, Boulder, Colorado, Aug. 2002.
[5] K. P. Gummadi, et al, “Measurement, modeling, and

analysis of a peer-to-peer file-sharing workload,” in
Proc. of SOSP’03, Oct. 2003.

[6] O. Saleh and M. Hefeeda, “Modeling and caching of
peer-to-peer traffic,” in Proc. of ICNP’06, Santa
Barbara, CA, Nov. 2006.

[7] S. Patro and Y. C. Hu, “Transparent query caching in
peer-to-peer overlay networks,” in Proc. of IPDPS’03,
Washington DC, 2003.

[8] D. Wessels, Web Caching. O’Reilly & Associates,
Inc., 2001.

[9] K. Calvert, M. Doar, and E. W. Zegura, “Modeling
internet topology,” IEEE Comm. Magazine, 1997.

[10] M. Caesar, et al, “Rofl: Routing on flat labels,” in Proc.

of the ACM SIGCOMM, Pisa, Italy, 2006.
[11] V. S. Pai, et al, “The dark side of the web: an open

proxy’s view,” SIGCOMM Comput. Commun. Rev.,
vol. 34, no. 1, pp. 57–62, 2004.

[12] A. Wolman, et al, “On the scale and performance of
cooperative web proxy caching,” in Proc. of SOSP’99,
1999, pp. 16–31.

