Faithfulness in Internet Algorithms

Jeffrey Shneidman, David C. Parkes
Division of Engineering and Applied Science
Harvard University
{jeffsh, parkes}@eecs.harvard.edu

ABSTRACT 1.

Laurent Massoulié
Microsoft Research Ltd.
Cambridge, UK
{Imassoul@microsoft.com}

INTRODUCTION TO FAITHFULNESS

Proving or disproving faithfulness (a property describing ro-
bustness to rational manipulation in action as well as in-
formation revelation) is an appealing goal when reasoning
about distributed systems containing rational participants.
Recent work formalizes the notion of faithfulness and its
foundation properties, and presents a general proof tech-
nique in the course of proving the ex post Nash faithfulness
of a theoretical routing problem [11].

In this paper, we use a less formal approach and take some
first steps in faithfulness analysis for existing algorithms run-
ning on the Internet. To this end, we consider the expected
faithfulness of BitTorrent, a popular file download system,
and show how manual backtracing (similar to the the ideas
behind program slicing [22]) can be used to find rational
manipulation problems. Although this primitive technique
has serious drawbacks, it can be useful in disproving faith-
fulness.

Building provably faithful Internet protocols and their
corresponding specifications can be quite difficult depending
on the system knowledge assumptions and problem com-
plexity. We present some of the open problems that are
associated with these challenges.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation; J.4 [Computer Applications]: Social and Behav-
ioral Sciences— Fconomics.

General Terms

Algorithms, Design, Economics.

Keywords

Backtracing, Computational Mechanism Design, Distributed
Algorithmic Mechanism Design, Computational Failure Mod-
els, Faithfulness, Program Slicing, Rational Failure, Ratio-

nal Manipulation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

S GCOMM’ 04 Workshops, Aug. 30+Sept. 3, 2004, Portland, Oregon, USA.
Copyright 2004 ACM 1-58113-942-X/04/0008 ...$5.00.

The economics subfield of mechanism design (MD) studies
how to build systems that exhibit good behavior in equilib-
rium, when self-interested participants pursue self-interested
strategies [17]. Computer scientists have recognized that
ideas from MD may be applicable to algorithm design when
multiple self-interested and competing nodes are interested
in an algorithm’s outcome. Extensions to MD may also help
distributed algorithm design when the work of the algorithm
calculation can be pushed back onto the very nodes that are
interested in the calculation.

Traditional MD assumes that the self-interested strate-
gies consist entirely of information revelation actions; i.e.,
a node may strategize only about their declared inputs to
an algorithm created by the system designer. In a network
setting, this limitation is not valid since one cannot assume
an obedient networking and mechanism infrastructure when
rational players control the message paths and mechanism
computation. In this setting, a node can strategize about all
actions related to its algorithm involvement, rationally ma-
nipulating part of an algorithm in order to try to selfishly
better its outcome.

In concluding their seminal work on algorithmic mech-
anism design (AMD) [14, 15], Nisan and Ronen refer to
this as the “set of problems” that come in implementing a
mechanism in a network [16]. In their work on distributed
algorithmic mechanism design (DAMD) [7, 8], Feigenbaum
et al. discuss these problems as “the need to reconcile the
strategic model with the computational model.”

To address these issues, Shneidman and Parkes present a
treatment of rational manipulation in distributed systems,
and provide a framework and a way of reasoning about
faithful behavior in mechanisms [11]. That work formal-
izes the notion of faithfulness and its foundation properties
of incentive-, communication-, and algorithm-compatibility
that when proven together guarantee that participating nodes
are faithful to a suggested specification. In contrast to that
paper’s formal approach, which is used to prove faithful-
ness of a theoretical interdomain routing problem, our paper
presents a technique that can be used to disprove faithfulness
and locate rational manipulation points in specifications. To
our knowledge, this type of analysis hasn’t been widely at-
tempted by systems designers to find parts of an algorithm
or protocol that are susceptible to rational manipulation.
Although the technique is imperfect, it was useful in find-
ing several weaknesses in the BitTorrent algorithm, the first
algorithm that we have evaluated.

For the purposes of this paper, we can use an informal

definition of faithfulness, leaving the formal discussion to
earlier work [11].

An interesting aspect of protocols and algorithms running
on the Internet is that in many cases, there is a default
software program or official protocol specification that is
supplied to clients. A system designer can use this to convey
a default or suggested behavior that it wishes a node to
follow. This allows the mechanism designer to suggest an
equilibrium strategy, which is a plan or decision rule that
specifies which actions this node will take for all possible
states of the world.

Definition 1. A system is faithful with respect to some

knowledge assumption if a rational (selfish, utility-mazimizing)

node follows an algorithm that always has the same exter-
nally visible effects as following the suggested strategy, for
all states of the world.

This definition states that given some assumptions about
the types of nodes in a system (the economics equilibrium
concept), a node acting in its own self interest will follow the
default strategy (or an equivalent that is indistinguishable
to an outsider) in a faithful system. The node follows the
default strategy because it is a utility-maximizing strategy
for this node, and there is no other strategy that yields a
higher utility for this node.

When we say that the system is faithful, we mean that if
a specification is written to be faithful when implemented
correctly, then a rational node will choose to run a correct
implementation. An old saying of software development is
that “the source code is the ultimate specification.” One
interpretation of this adage is that in the absence of a well-
defined specification, one needs to refer to the source code
to understand a system’s behavior. In this case, there is no
distinction between a specification and the implementation.

2. SOFTWARE AS A STRATEGY

The software executed by a particular node can be seen
as a representation of that node’s strategy. Software starts
in an initial state. The software receives inputs that with its
own information determine the perceived state of the world.
The software then moves to a new state, perhaps emitting
an ezternal action. (A node that takes no external action,
perhaps because of a strategic delay, can be said to take the
empty action.) When economics discusses strategies and ac-
tions, all of the internal state transitions and unobservable
internal actions that occur within software are wrapped to-
gether as part of a strategy that generates an external action
observable to outside nodes. An auction is a good example:
the auctioneer may ask a node to bid for an item. The node
considers the state of the world, the input of the ask, and
after a moment responds to the auctioneer. This process can
be described as this node’s strategy for a particular state.

With this view of software, each machine code instruction
in a program can be thought of as representing a little bit of
one or more components of a node’s strategy. Each function
call has the potential to emit an external action, and/or
evaluate and change the perceived state of the world. At
the most abstract, a node can perform any strategy and any
action, though a mechanism designer would restrict the ac-
tions to a walid set that can be expressed. For instance, a
designer might impose the restriction that all actions must
be framed in valid Ethernet packets, via a network jack.

While a node could manipulate the signals on the jack di-
rectly, only the subset of all actions that can be expressed
as Ethernet packets will be allowed by the physical trans-
port. More commonly the strategy space is restricted to
those strategies that can be expressed in a finite multiset
of possible executions of machine instructions. A node is
often willing to give up some strategy expression in favor of
ease of interaction by using obedient prozies with restricted
languages such as the CPU, operating system, etc. General
purpose machines allow a node a sufficient vocabulary to
express most relevant strategies.

Software, provided by the system designer, can further
restrict the strategy space. This restriction can limit the
strategic choice to options that result in outcomes far from a
node’s ideal outcome. For example, an auction package may
restrict a node’s valuation expression to one of five numbers,
or may devote resources on the node machine to processing
the bids of other players in a distributed mechanism. As
mentioned earlier, the software can also provide a default or
suggested strategy from the restricted strategy space. While
there is a cost to modifying system-provided software, if the
utility gained from such a modification is greater than the
cost of modification, the rational node will expend this cost.
In system terms, this might mean the building of a new
software client.

From the mechanism design standpoint, one cares when
these modifications come at some cost to other participants,
or at some loss of mechanism functionality. There are docu-
mented instances of rational manipulation in Internet algo-
rithms that negatively affect other users of the system [10].

For this reason, one should be interested in the faithfulness
properties of a system, and in the provided client software.
Informally, a system is robust to rational manipulation, and
therefore faithful, if the designer is able to give an node a
piece of source code, a set of suggested run-time options, and
state, “Feel free to modify this client as you see fit. One can
prove that the best strategy you can follow is the strategy
that I have given you.”

3. FAITHFULNESS CAVEATS

Systems are often built as a stack of building block com-
ponents. For example, an operating system provides basic
communication primitives, such as sockets. On top of these
primitives are other components, eventually including trans-
port protocols like TCP. On top of these components sit ap-
plications, such as the BitTorrent system considered in this
paper.

When making a faithfulness claim, one should consider
strategy manipulations at all parts of the system, and/or
declare the level of assumed obedience. For instance, the
designer might assert that modifying the firmware running
on a network card is too costly for all anticipated rational
players. This assertion could also be made for aspects of the
operating system, arguably more so if the system is closed
source.

This assertion can even be made about the application
software itself, especially if the “knobs” to change a default
strategy are hard to access. Changing a command line pa-
rameter is easier than modifying a configuration file, which
is easier than changing compiled opcodes in an executable.

If the expected utility gain from a manipulation is lower
than its cost, then a rational person won’t make the ma-
nipulation. It’s important to note that utility isn’t strictly

equal to, say, “increased performance” in a peer to peer
sharing application. It can also include the good feelings
of community-endowed prestige or respect for interesting or
useful work.

It is possible that one person’s work can lower the cost
of manipulation of others; one user can modify and spread
a client to expose “hidden” details as configurable options.
So although the average person might not choose to pay a
modification cost given the size of the expected gain, that
person may be happy to adopt someone else’s work.

With these thoughts, we can now turn our attention to a
particular Internet system.

4. FAITHFULNESS IN BITTORRENT

BitTorrent [4] is a distributed file downloading system
where peers (a.k.a. nodes) can download a file from each
other in addition to the original source. The basic file dis-
tribution method is that a server divides a file into pieces,
and provides a piece of that file to some peer, which in turn
can serve that piece to other peers. Peers build up a file by
filling in missing pieces with pieces held by other peers or
the original file publisher. This parallel access scheme [18] is
useful when a highly anticipated large file is released, such
as the latest Linux kernel. Rather than serving a large file
in its entirety to a small set of users that provide no addi-
tional help to the system, these schemes work by spreading
the serving responsibilities across the interested peers. This
helps avoid inundating a single file publisher with download
requests.

BitTorrent incents users to participate in this distributed
serving scheme by linking the receipt of pieces to the serving
of other pieces. The idea is that a node should send file data
to other peers because this will have the effect of speeding
up its own downloads. The incentives used to achieve this
are described in the next section.

BitTorrent, representing a class of parallel downloading
systems [9] is an interesting system to investigate for four
reasons:

First, the system was designed with rational behavior in
mind. The system is self-described as using “tit-for-tat as
a method of seeking Pareto efficiency” [4]. In other words,
there is some idea of incenting good strategic behavior from
a rational user. It is useful to understand the strengths and
weaknesses of the incentive scheme.

Second, the system designer has provided a suggested
strategy; there is a default BitTorrent client that is released
in source code and executable form. The client has a default
behavior, and there are few switches that can be controlled
by the user. The fact that the client source code is available
and reasonably small (about 5700 lines of Python script)
means that the cost for changing the strategy space is po-
tentially small.

Third, the BitTorrent system is simple enough that the
designer can anticipate and model several classes of rational
users. These might include nodes who prefer to download a
file without using their upload bandwidth, those who prefer
to get the file as fast as possible, those who prefer to prevent
others from receiving the file, etc. One can study how Bit-
Torrent fares in the face of nodes from each type of rational
behavior. Other classes of rational behavior are possible, as
will be discussed shortly.

Fourth, the BitTorrent system is popular. The package
and its derivatives have been adopted for file distribution by

several commercial entities [2, 12] and numerous individuals.
It is worth investigating the strengths and weaknesses of real
protocols.

4.1 BitTorrent Specifics

BitTorrent is under active development. The description
of the system and the analysis in this paper was done on the
official BitTorrent client, version 3.2.1b. As of this writing,
the current version of BitTorrent is 3.4.2, and there are nu-
merous alternate clients available. Cohen provides a short
overview of the system, focusing on the role of incentives [4].
Relevant pseudo-code is given in Figure 1.

BitTorrent works in the following fashion: A system-trusted
obedient tracker node maintains a list of peers that are ac-
tive with respect to a particular file. Complete peers that
hold the entire file, and incomplete peers that are likely in
the process of downloading the file are tracked. On entering
the system, a peer announces itself to the tracker and re-
quests a random subset from the list of peers. A peer then
attempts a bidirectional TCP connection to members of the
subset.

Of a peer’s many established TCP connections, a small
subset k is internally marked by the peer as being unchoked.
A unchoked connection is one where the other endpoint can
request a piece of the file, and this peer will fulfill that
request. While this doesn’t affect the unchoking decision,
peers send special messages to each other to update their
claim about which pieces they possess. This information al-
lows a peer to request a valid piece. A peer is always capable
of receiving a file piece from any connection, regardless of
the internally marked choke state. This fact is the basis for
optimistic unchoking, described below.

Any active peer that is complete is altruistic and will send
pieces of a file to other peers in the system, preferring (un-
choking) those peers that can download pieces the fastest.
An incomplete peer, on the other hand, will selfishly un-
choke peers that are currently providing pieces at the highest
throughput.

Both complete and incomplete peers will optimistically
unchoke a new peer at some interval in an attempt to find a
better trading partner with higher throughput. On a sepa-
rate interval, the k fastest partners are kept in the unchoked
state, and the remaining peers are choked.

While the system doesn’t require more than one altru-
istic peer to exist, the default behavior of the client is to
remain running after the peer becomes complete, becoming
an additional altruistic peer. Since the ideal BitTorrent file
is large (hundreds of megabytes or larger) and the transfer
times are long, people often leave their client running in the
background. These additional altruistic peers help greatly
in speeding up downloads for the remaining peers.

4.2 BitTorrent’s Default Strategy

The normal method of running the client doesn’t let the
user change any of the BitTorrent settings. The client is
designed to run automatically when a user clicks on a special
web link. While this is restrictive, Cohen has argued that
the simplicity of the BitTorrent interface has been a large
measure in the program’s success [4].

Default client behavior follows the pseudo-code given in
Figure 1. The choice of constants has been picked experi-
mentally by the BitTorrent authors to yield “good” perfor-
mance.

/* Pseudo—Code of BitTorrent Algorithm %
* Based on Python source v 3.2.1b */

// Get list of peers from the tracker.
// Called every N seconds and on startup.
get_more_peers() {

// get list of peers from tracker

// send start_connection(me) to subset of list

}

// Add a new peer to my connection list
// Called on receipt of start_connection msg
on_start_connection(peer p) {

// add p into the middle of unchoke next list

// Decide to whom I should send pieces.
// Called every M seconds
_rechoke() {
if node_is_complete() { // i.e. has entire file
// unchoke k fastest receivers
} else {
// unchoke k fastest senders (reward others)

// choke remaining peers and place them at end

// of unchoke_next list.

// Optimistically unchoke a peer
// Called every Q seconds
optimistic_unchoke() {
// pop peer off unchoke_next list and unchoke

// Announce that I have this piece to my peers
// Called when I receive a piece
on_piece_receipt(piece x) {

// send have_piece(me, x) to my connected peers

}

// Request a piece when I hear annoucement
// Called when I receive a have_piece(x)
on_have_piece(peer p, piece x) {
if (do-i_have(x) == false)
send request_for_piece(p, x)
}

// Send a piece when requested by unchoked peer
// Called when I receive a request_for_piece
on_request_for_piece(peer p, piece x) {
if is_currently_unchoked(p) {
// send piece x to p
}

}

Figure 1: Pseudo-code of the BitTorrent 3.2.1b algorithm, focusing on the incentives implementation. A BitTorrent
client maintains connections to a variable list of peers (a.k.a. nodes), and will upload to k + 1 of them. The set of k

is recalculated every M seconds, while every) seconds an additional peer is unchoked in an attempt to find a better

trading partner.

4.3 Incentives in BitTorrent

Is the strategy space provided by the BitTorrent client
sufficient to be robust to rational manipulation? Will a ra-
tional user perform the default strategy by executing the
BitTorrent client?

Before setting out to answer these questions, it is impor-
tant to acknowledge the fact that BitTorrent is a popular
system that leaves many users satisfied. The reality is that
many BitTorrent users are unaware of the workings of the
client software, and either view the cost of analyzing and
modifying BitTorrent as too high, or more likely are simply
unaware of the opportunity to express a different strategy.
These users are obedient users, or perhaps could be modeled
as bounded rational nodes.

But, consider BitTorrent as run by a rational user who
plays a strategy to maximize their own utility. Even under-
standing how a rational node would react to the BitTorrent
client is a bit tricky, because there are different types of
rational behavior. This highlights a problem in reasoning
about faithfulness; one must state the assumptions made
about the node’s local utility models. For the purposes of
this analysis, we will consider two simple types of rational
nodes that can exist in the world:

e Speed Critical: This node places a high utility on
receiving a file as fast as possible.

e Free Rider: This node places a high utility on receiv-
ing the file using as little upload bandwidth as possi-
ble. This models the case when people pay for their
Internet connection by the amount of bytes transfered.

Although these seem like reasonable classes of peers, there
are many other types of rational nodes. For instance, some
people tend to start downloads before going to bed. These
nodes probably have the same utility for receiving the file
at all time steps until “tomorrow morning”. Other nodes
may be charged more money by their ISP for continued use
of bandwidth above a given threshold for some amount of
time. Though considering multiple node valuation functions
is useful, we can demonstrate faithfulness problems in Bit-
Torrent focusing on these two utility models.

A general assumption made in economics and multi-agent
systems is that a node aims to maximize the benefit that
it receives from the system. In Section 6.1 we consider ex-
tensions where peers also have anti-social [3] and malicious
components of their utility function.

Our interest is in determining the faithfulness of the Bit-
Torrent client specification for Speed Critical and Free Rider
type nodes. As there is no formal specification for the Bit-

encrypter.start connectioﬁ

.(send”have” and "hitfield) | {send unchoketo £ nodeg

encrypter.data_came_in

implies manipulation i
about wrf A'S entry
Time / partners

| (sendlraffid) i
connector. connection_made

‘ (how fast treffic amveS|

{send request)
encrypter read_peerid

if active_requests

‘ {how fast traffic is sem‘)
< backlo l

choker. connection_made
(insert new cxn halfway in list)

i-if node B incomplete _Iw-node B complete
h - e L

-
|

-
/i-(pETer high rate partners)

|se\f connections

(talkee first off list)
-

downloader download_more!
| connector send_interested

downloader._d

Figure 2: A partial backtracing graph from the goal state
in the lower left, which occurs when "Agent A" (denoted
with rounded actions) receives a piece of a file. This graph
shows the actions of two agents that can affect A's goal
state. Some actions depend on state that is affected by

connector.send_request |

uploader.got_request
uploader flushed

J if interested i A if not choked
- R —

—

other actions. These are marked with logic branches. One
Graph key can read this graph upwards, following the communication
A action between "Agent A" and "Agent B" until reaching a
cenmectongRisssage manipulation point. This graph shows 6 manipulation
l ,ffe';ﬁf;‘n‘gg‘;gqggw points. The case where A can send "garbage data" to
Sieatkagtpiee - L;amlam i increase its download speed is marked in the (send traffic)
v action.

Goal storage do_i_have() == trug

Torrent system, we analyzed the source code to understand
the working of the system and look for strategy issues.

5. FINDING FLAWS IN FAITHFULNESS

Proving faithfulness for general algorithms is hard. Con-
current work explores one technique that can be useful in
proving faithfulness [11]. That approach splits a distributed
algorithm into disjoint phases, each of which can be proven
faithful by showing that a node cannot benefit from any
combination of deviations from the suggested strategy rele-
vant to that phase. Phases are then certified and locked, so
that phases cannot affect each other.

Demonstrating a system’s faithfulness flaws is easier, but
is also non-trivial. Faced with a specification (or source
code), how can one find possible manipulation points?

5.1 Backtracing

One idea that we found useful in studying BitTorrent is
backtracing. The idea of backtracing is as follows:

For each type of rational node in the system:
For each communication configuration:
For each goal state:
Trace backwards through logical steps (code)
in interaction with others. Mark branches

and neighbor interactions as candidate
manipulation points.
Examine and classify point.

As one works backwards through the code paths to find
points in the code that affect this goal state, these candidate
manipulation points are examined manually to explore the
effects of a selfish manipulation. Each manipulation point
can be be classified as one of the following:

e False alarm: A point that does not actually affect
the path to the goal state.

e Beneficial manipulation: A point where a manip-
ulation from the suggested strategy can occur, but is
beneficial to the system goal. These points represent
optimizations that should have been provided by the
system designer.

e Harmful manipulation A point where a manipula-
tion from the suggested strategy can occur that in-
creases this node’s utility, but hurts either the dis-
tributed mechanism execution or other nodes in the
system.

Backtracing is similar to program slicing [22], where a
slice consists of the parts of a program that potentially af-

Typical BitTorrent Startup Throughput
35

Upload Speed (to Others) ~ ——
Download Speed (from Others)
30

25+

20

KB / second

" u
T Wotw g
'“‘V(LF\J“L!‘ Ui
1

Im 2m 3m 4m 5m 6m 7m 8m 9m 10m 11m 12m 13m 14m
Time

KB / second

Uploading Garbage in BitTorrent Throughput
1000

Upload Speed (Garbage to dthers)
I-Download Speed (from Others)

900
800
700
600
500
400
300
200
100

im 2m
Time

Figure 3: An illustration of how uploading garbage can help a Speed Critical rational node. On the left is throughput

of a new peer entering a BitTorrent exchange.

This peer benefits from optimistic unchoking from other nodes for

about ten minutes. (Spikes occur because different nodes unchoke this node for some time, and then re-choke this
node again. Just before 11 minutes, this node has built up a piece wanted by other nodes, and has begun uploading
this data to other nodes. As a result, these nodes reciprocate, and the download speed climbs. Contrast this to the
right-hand graph. First, notice the time and throughput scales are radically different; the maximum download speed
of 30K /s in the left graph would show up as a small blip in the right graph. In the right-hand graph, the same node
has falsely advertised having all pieces and is uploading garbage to other peers as fast as requested. Shortly after the
uploading begins, the download speed (of good data) begins to increase as well.

fect the values computed at some point of interest [21]. One
difference is that while program slicing considers one user in
a single program, backtracing focuses on at least two users
interfacing with the same client software in a game-like set-
ting.

A sample backtracing graph between two peers in the Bit-
Torrent system, generated by hand, is given in Figure 2.
Each node in this graph represents a particular function
or criteria that has the potential to affect the goal state.
One can follow the function calls backwards in an attempt
to find manipulation points. For each manipulation point,
one must categorize the chance for manipulation as a false
alarm, a beneficial manipulation, or a harmful manipula-
tion. Manipulation points must be considered as set; a joint
manipulation possibility exists if a node can deviate from
the suggested strategy in multiple places to achieve a better
outcome. This graph was generated with the Speed Criti-
cal rational user in mind. The goal of this user is to cause
the goal state in the lower left (indicating that a piece has
been downloaded successfully) to become true for all pieces
as quickly as possible.

Nested for-loops, let alone the tracing step, suggest that
this procedure can be onerous for large systems. It is labor-
intensive to classify a candidate manipulation point and to
verify that additional points (in the form of newly inserted
branch statements) aren’t valid manipulations. (Analyzing
the BitTorrent system from scratch with two types of ratio-
nal nodes, one goal state, and four possible communication
configurations took us approximately eight hours.) Back-
tracing is imperfect, since it requires a human to analyze
each candidate. The technique can only disprove system
faithfulness and identify the design flaw. If no flaws are
found, the system may or may not be faithful.

Despite all of these drawbacks, we have found the back-
tracing procedure to be useful. What is notable about the

backtracing procedure is that none of the manipulations de-
scribed in the next section were expected when we began
this project, and one that we did suspect (declaring held
pieces to manipulate connections) turned out not to be a
false alarm, not affecting the BitTorrent protocol.

Most current incentives and mechanism design work is
contained in relatively small systems like BitTorrent, and so
the manual intensity of backtracing may not be too horrific.
While it’s by no means a perfect tool, backtracing can be a
useful first-line faithfulness debugger.

5.2 Backtracing BitTorrent

In this section, we report the results of our backtracing
exercise. The first set of results are information revelation
issues, and do not change the underlying BitTorrent algo-
rithm.

5.2.1 Identity

If a client announces itself multiple times to the tracker
(perhaps under different port numbers), it appears to the
system as a new client. The effect of increased visibility is
that a node will be optimistic unchoked proportional to its
declared identities. This is related to the well-known Sybil
attack [5].

5.2.2 Upload Bandwidth

Because of the trickle-down nature of BitTorrent, a node
that physically has higher bandwidth tries to ensure that it
stays in the unchoked list of a partner, but it may be able to
do this while appearing to be a slower than it is in reality. If
a partner unchokes the fastest k nodes out of a list of k 4 1
potential nodes (see Figure 1), this peer must upload at a
rate just above the kth fastest competitor.

Thus, the reported upload rate (really, the upload rate
from this peer as measured by the partner) can be less than
this peer’s true speed.’

The next set of issues are algorithm manipulation issues.

5.2.3 unchoke_next

The BitTorrent client algorithm adds a new connection
halfway into the unchoke next list (See Figure 1) of the con-
nection recipient. This means that a node that is newly
choked may be better off closing and re-opening a connec-
tion to achieve a better place in the optimistic unchoking
line.

5.24 Garbage Upload

A client can claim to have all pieces of a file, sending
garbage to a peer that requests any piece. Although the
garbage is detected by the peer through a data integrity hash
check before writing to disk, the transited garbage counts
as valid incoming traffic. A node with a high bandwidth
connection can bootstrap very quickly with this attack.

An example of the benefits of such a manipulation was
confirmed experimentally and shown in Figure 3.

5.3 Harmful Manipulation Summary

In summary, here are the harmful manipulations that the
backtracing graph helped reveal:

e A Free Rider can run a Sybil attack on the tracker,
claiming to be many parties (running on different ports
on the same IP address). This increases the distribu-
tion of that peer’s contact information to other peers,
which in turn increases the likelihood of receiving pieces
through optimistic unchoking.

e Once a Free Rider has been optimistically unchoked
by a peer, sent a piece, and and then re-choked, it is
moved to the end of that peer’s unchoke next list. The
Free Rider can break and re-create the connection to
jump in line to a more beneficial spot.

e The Speed Critical node can additionally play the Garbage

Upload strategy.

The cost of each of these manipulations is less than 100
lines of Python code, and several hours of programmer time.

5.4 TCP Manipulations

BitTorrent, like many other distributed systems, is built
on top of standard networking building blocks. BitTorrent
runs on top of TCP. Are there strategies available to the
BitTorrent user that are enabled as a result of changing the
behavior of their TCP implementation?

While the cost of this modification is relatively high com-
pared to changing a few lines of Python application code,

! One could imagine a Vickrey-inspired scheme replacing this
system, where a node reports its true upload bandwidth
but is made to send at only the kth speed. Overstatements
of bandwidth are prevented by throwing a node out of the
system when it can’t meet a bandwidth. Pragmatic issues
make this complicated, since hidden bottlenecks between a
source and sink may reduce the actual throughput, and an
exclu[d]ed node may be able to re-enter the system with no
cost [5].

the answer is yes. Without casting it as rational behavior,
previous work in networking has established manipulation
points in the TCP protocol [19]. The authors of that work
did their analysis by instinct [20], focusing on message se-
quences that seemed problematic. That analysis could be
further enhanced by a backtracing exercise on the TCP pro-
tocol. In a separate work, TCP issues are considered with
other protocols, and design guidelines are given that might
prevent the accidental creation of manipulation points [1].
That work is applicable to designers seeking to create faith-
ful systems.

6. OPEN QUESTIONS
6.1 Beyond Rationality

In studying BitTorrent, we have limited our analysis to a
network consisting of rational and obedient nodes. But there
are other node types as well. Even though we have shown
BitTorrent not to be faithful, we can speculate about how
the system would work with nodes whose utility functions
have not been addressed.

There are disadvantages to using a system like BitTorrent
in the presence of peers with unanticipated utility functions.
Antisocial [3] and malicious peers are a particular challenge.
One issue is in how a peer is given the IP addresses of other
downloaders. A malicious user could publish a file with a
Trojan horse, and then generate a bootstrap list of probable
affected targets from the list of IP addresses passed back
from the tracker. Alternatively, if someone wishes to dis-
rupt a file distribution, they can perform a Sybil attack [5],
filling the tracker with clients who slow down distribution
by providing garbage or no service.

More generally, what happens to mechanism design as
we allow obedient, rational, and faulty nodes in the system?
Computer science tends to treat entities in a network as obe-
dient, or as a set of nodes that could be a obedient or some
degree of faulty. Economics and mechanism design tends
to treat entities as rational, or as a set of nodes consist-
ing of rational and obedient (such as an obedient center.)
What happens when these world-views collide? We posit
two questions in this vein:

Open Question #1: There are well-known impossibility
results in distributed systems. For instance, for cases of
agreement in the presence of f faults, 3f + 1 machines are
requirement to correctly reach consensus [13]. What if a
subset of the faulty nodes are actually rational nodes that
are unable to express their preferred strategy with the de-
fault software? Are there cases where a rational node can be
incented to perform correctly, moving the rational node into
the “correct” category from the “faulty” category, thereby
side-stepping the initial 3f + 1 assumption?

Open Question #2: Start with a network consisting purely
of rational nodes running a faithful mechanism. Add one
Byzantine faulty [13] node that can act arbitrarily. How
does this change the faithfulness properties? Can one de-
sign mechanisms that are faithful even in the presence of
faulty nodes? Does the answer to this question change if you
started with a network consisting of n — 1 obedient nodes,
and 1 rational node?

To our knowledge, nobody has built an analysis of any
mechanism to demonstrate that it can operate successfully
in the presence of rational, obedient, and faulty nodes.

6.2 Automated Tracing Tools

We wonder if the same sorts of systems tools that have
been developed to aid people in program slicing can be useful
in faithfulness analysis.

Open Question #3: Can program slicing ideas/tools be
applied in finding manipulation points in real systems?

Backtracing is less related to the ideas of model checking,
where an implementation is checked for correctness against
a specification. While this is an active area of systems re-
search [6], it seems more likely that model checking tools
would reveal general specification clarity issues. The result-
ing specification or implementation would need some form
of manipulation analysis.

7. CONCLUSION

In this paper, we explored how software can be an expres-
sion of node strategy, and how faithfulness relates to rational
manipulation of this strategy. We examined a particular file
download system called BitTorrent and used backtracing, a
technique similar to program slicing, to find manipulation
points. After categorizing the manipulation points in Bit-
Torrent, we found several harmful manipulations that nega-
tively affect the welfare of other nodes in the system. Some
nodes may view the costs for manipulating BitTorrent in
this way as relatively small compared to the potential gain.
Finally, we began to explore some open problems relating to
showing faithfulness in algorithms to be run on the Internet.

8. ACKNOWLEDGMENTS

Thanks to Peter Key, Margo Seltzer, Danni Tang, and
anonymous reviewers for their useful comments. This work
is supported in part by NSF grants 11S-0238147 and ACI-
0330244. This research was performed while the first author
was an intern at Microsoft Research Ltd.

9. REFERENCES

[1] T. Anderson, S. Shenker, I. Stoica, and D. Wetherall.
Design Guidelines for Robust Internet Protocols.
HotNets-1, October 2002.

[2] Blizzard Game Web site, World of Warcraft
BitTorrent FAQ.
http://www.blizzard.com/wow /faq/bittorrent.shtml.

[3] F. Brandt and G. Weil. Antisocial agents and Vickrey
auctions. In J.-J. Ch. Meyer and M. Tambe, editors,
Intelligent Agents VIII, volume 2333, pages 335—347.
Springer, 2001. Revised papers from the 8th Workshop
on Agent Theories, Architectures and Languages.

[4] Bram Cohen. Incentives Build Robustness in
BitTorrent. In Workshop on Economics of Peer to
Peer Systems, June 2003.

[5] J. Douceur. The Sybil Attack. In ”1st Int. Workshop
on Peer-to-Peer Systems (IPTPS’02)”, 2002.

[6] Dawson Engler and Madanlal Musuvathi.
Model-checking large network protocol
implementations. In To appear in NSDI 2004, 2004.

[7] Joan Feigenbaum, Christos Papadimitriou, Rahul
Sami, and Scott Shenker. A BGP-based mechanism
for lowest-cost routing. In Proceedings of the 2002
ACM Symposium on Principles of Distributed
Computing, pages 173-182, 2002.

[8] Joan Feigenbaum and Scott Shenker. Distributed
Algorithmic Mechanism Design: Recent Results and
Future Directions. In Proceedings of the 6th
International Workshop on Discrete Algorithms and
Methods for Mobile Computing and Communications,
pages 1-13, 2002.

[9] Info-Anarchy Web site, definition for Parallel
Downloading Systems: Hive.
http://www.infoanarchy.org/wiki/wiki.pl?hive.

[10] Jeffrey Shneidman and David C. Parkes. Rationality
and Self-Interest in Peer to Peer Networks. In 2nd Int.
Workshop on Peer-to-Peer Systems (IPTPS’03), 2003.

[11] Jeffrey Shneidman and David C. Parkes. Specification
Faithfulness in Networks with Rational Nodes. In
Twenty-Third Annual ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing
(PODC 2004), July 2004.

[12] Lindows Web site, Press Release about BitTorrent.
http://www.linspire.com/lindows_news_
pressreleases_archives.php?id=111.

[13] Nancy Lynch. Distributed Algorithms. Morgan
Kaufmann Publishers, 1996.

[14] Noam Nisan and Amir Ronen. Algorithmic Mechanism
Design. In Proceedings of the 31st ACM Symposium
on Theory of Computing, pages 129-140, 1999.

[15] Noam Nisan and Amir Ronen. Computationally
feasible VCG mechanisms. In Proc. 2nd ACM Conf.
on Electronic Commerce (EC-00), pages 242252,
2000.

[16] Noam Nisan and Amir Ronen. Algorithmic
Mechanism Design. Games and Economic Behavior,
35:166-196, 2001.

[17] David C. Parkes. Iterative Combinatorial Auctions:
Achieving Economic and Computational Efficiency
(Chapter 2). PhD thesis, Univesity of Pennsylvania,
May 2001.

[18] Pablo Rodriguez. Scalable Content Distribution in the
Internet. PhD thesis, Federal Institut of Technology,
Lausanne (EPFL), Sept 2000.

[19] Stefan Savage, Neal Cardwell, David Wetherall, and
Tom Anderson. TCP congestion control with a
misbehaving receiver. Computer Communication
Review, 29(5), 1999.

[20] Stefan Savage. Private Communication, 4/2004.

[21] F. Tip. A survey of program slicing techniques.
Journal of programming languages, 3:121-189, 1995.

[22] Mark Weiser. Program slicing. In Proceedings of
the 5th International Conference on Software
Engineering, pages 439-449. IEEE Computer Society
Press, 1981.

