
P2P Content Search:
Give the Web Back to the People ∗

Matthias Bender†, Sebastian Michel†, Peter Triantafillou ‡,
Gerhard Weikum †, Christian Zimmer †

†Max Planck Institute for Informatics, 66123 Saarbruecken, Germany
{mbender, smichel, weikum, czimmer}@mpi-inf.mpg.de

‡RACTI and CEID, University of Patras, 26500 Rio, Greece
peter@ceid.upatras.gr

ABSTRACT
The proliferation of peer-to-peer (P2P) systems has come with var-
ious compelling applications including file sharing based on dis-
tributed hash tables (DHTs) or other kinds of overlay networks.
Searching the content of files (especially Web Search) requires
multi-keyword querying with scoring and ranking. Existing ap-
proaches have no way of taking into account thecorrelation be-
tween the keywords in the query. This paper presents our solution
that incorporates the queries and behavior of the users in the P2P
network such that interesting correlations can be inferred.

1. INTRODUCTION
The proliferation of peer-to-peer (P2P) systems has come

with various compelling applications, most notably, file shar-
ing and IP telephony. File sharing involves file name lookups
and other simple search functionality such as finding files
whose names, short strings, contain a specified word or
phrase. Such simple queries can be executed in a highly
efficient and scalable way, based on distributed hash tables
(DHTs) or other kinds of overlay networks and dissemina-
tion protocols. However, these approaches are unsuitable for
searching also thecontentof files such as Web pages or PDF
documents. For the latter, much more flexible multi-keyword
querying is needed, and, most importantly, the fact that many
queries may return thousands of different matches calls for
scoring and ranking, the paradigm of Web search engines and
information retrieval (IR).

1.1 Why P2P Web Search?
In fact, full-fledged Web search is more or less exclusively

under the control of centralized search engines. Lately, var-
ious projects have been started to build and operate a P2P
web search network [12, 20, 25, 30–32] including our own
Minerva project [4–6], but so far these endeavors are fairly
small-scale. Ironically, Web search and Internet-scale file
content search seem to be perfect candidates for a P2P ap-
proach, for several reasons: 1) the data is originally highly
distributed, residing on millions of sites (with more and more
private people contributing, e.g., by their blogs); 2) a P2P
network could potentially dwarf even the largest server farm
in terms of processing power and could thus enable much
∗Partially supported by the EU within the 6th Framework Pro-
gramme under contract 001907Dynamically Evolving, Large Scale
Information Systems(DELIS).

more advanced methods for linguistic data analysis, statisti-
cal learning, or ontology-based background knowledge and
reasoning (all of which are out of the question when you have
to serve hundred millions of queries per day on a, however
big but centralized, server farm); 3) there is growing concern
about the world’s dependency on a few quasi-monopolistic
search engines and their susceptibility to commercial inter-
ests, spam or distortion by spam combat, biases in geographic
and thematic coverage, or even censorship. These issues have
led to the postulation that "the Web should given back to the
people" [14].

1.2 Challenges
Comprehensive Web search based on a P2P network has

been considered infeasible from a scalability viewpoint [19].
Recent work, however, indicates that the scalability prob-
lems could be overcome [3,5,18,30], either by distributing a
conceptually global keyword index across a DHT-style net-
work or by having each peer compile its local index at its
own discretion (using the peer’s own "native" data sources or
performing thematically focused Web crawls and other data
extraction according to the peer’s interest profile). In addi-
tion, various acceleration techniques can be employed. For
example, [26] pursues a multi-level partitioning scheme, a
hybrid between partitioning by keyword and partitioning by
document. [8] uses view trees for result caching to improve
the P2P search efficiency.

From a query processing and IR viewpoint, one of the key
issues isquery routing: when a peer poses a query with mul-
tiple keywords and expects a high-quality top-10 or top-100
ranked result list, the P2P system needs to make a judicious
decision to which other peers the query should be forwarded.
This decision needs statistical information about the data
contents in the network. It can be made fairly efficiently
in a variety of ways, like utilizing a DHT-based distributed
directory [32], building and maintaining a semantic overlay
network (SON) with local routing indexes [1, 11], or using
limited forms of epidemic gossiping [12].

However, efficiency of P2P query routing is only one side
of the coin. Of course, we also expect good search result
quality, that is, good effectiveness in IR terminology, mea-
sured in terms of precision and recall. The goal is to be
as good as the best centralized search engines, but the P2P
approach faces the challenge that the index lists and statisti-
cal information that lead to good search results are scattered



across the network.
For example, consider two- or three-keyword queries such

as "Michael Jordan", "native American music", or "PhD ad-
mission". A standard, efficient and scalable, approach would
decompose each of these queries into individual terms such
as "native" and "American" and "music", identify the best
peers for each of the terms separately, and finally combine
them, e.g., by intersection or some form of score aggrega-
tion in order to derive a candidate list of peers to which the
query should be forwarded. The result of this "factorization"
would often lead to mediocre results as the best peers (and
files located on those peers) for the entire query may not be
among the top candidates for any of the individual keywords.

The root cause of the above problem is that the outlined
"factorized" method for P2P query routing and processing
has no way of taking into account thecorrelationbetween the
keywords in the query. We miss out on the fact that, for exam-
ple, "PhD" and "admission" are statistically correlated in the
corpus, and, even worse, that the best matches for the entire
query should exhibit a higher-than-average frequency ofboth
terms (ideally within some proximity window). Standard
search engines do not necessarily consider these correlations
either, but they process index lists on the overall document
space directly, whereas the P2P system first needs to identify
other peers for query routing in order to access index lists
and then sees only partitions of the global index space. Thus,
the necessarily coarser aggregation granularity of routing in-
dexes or the distributed directory causes an additional penalty
for a P2P approach. On the other hand, directly simulating
the centralized algorithms in the P2P network would incur
undue communication costs.

One may argue that critical correlations of the above kind
typically occur in composite names or phrases, as suggested
by our examples. Although this is indeed often the case, the
observation alone does not provide a solution. It is virtually
impossible to foresee all phrases or names or correlated term
pairs that will appear in important user queries, and brute-
force precomputation of statistical measures for all possible
pairs of terms is not a viable option.

1.3 Solution Outline
The solution that we have developed and advocate in this

paper is based on the postulation that we cited above as a
motivation for the general direction of P2P search engines:
give the Web back to the people! We simply observe the queries
and behavior of the thousands or millions of users that we
expect to be active in a P2P network. More specifically, we
monitor queries on the peers where they are initially posed
and post them to the distributed directory, where they are
aggregated so that interesting correlations can be inferred.
The key point to emphasize here is that a querying peer
whose query keywords exhibit correlations has a good chance
to efficiently find a directory entry that helps to identify the
best peers with files that match multiple terms of the query.

A potential caveat to our approach could be that user mon-
itoring and query logging is a breach with user privacy. But
it is exactly the key strength of the P2P approach that, unlike
with a centralized Web search engine that logs queries and
click-stream information, every peer is in a perfect position
to define its own policies, would reveal critical data at its
discretion, and has full control over the local software to
enforce its specified policies.

2. SYSTEM ARCHITECTURE
Our Minerva system [4] is a fully operational distributed

search engine consisting of autonomous peers where each
peer has a local document collection from the peer’s own
(thematically focused) Web crawls or imported from exter-
nal sources that fall into the userŠs thematic interest profile.
The local data collection is indexed by inverted lists, one
for each keyword or term (e.g., word stems) containing doc-
ument identifiers like URLs and relevance scores based on
term frequency statistics. A conceptually global but phys-
ically distributed directory [7], which is layered on top of
a Chord-style [29] distributed hash table (DHT), manages
aggregated information about the peersŠ local knowledge in
compact form. Unlike [19], we use the Chord DHT to par-
tition the term space, such that every peer is responsible for
the statistics and metadata of a randomized subset of terms
within the directory. We donot distribute the actual index
lists or even documents across the directory. The directory
entries for the terms may be replicated across multiple peers
to ensure failure resilience and to improve availability. The
Chord DHT offers alookupmethod to determine a peer that is
responsible for a particular term. This way, the DHT allows
very efficient and scalable access to the global statistics for
each term.

2.1 Directory Maintenance
In the publishing process, each peer distributes per-term

summaries (Posts) of its local index to the global directory.
The DHT determines a peer currently responsible for this
term and this peer maintains aPeerListof all posts for this
term. Each post includes the peer’s address together with
statistics to calculate IR-style measures for a term (e.g., the
size of the inverted list for the term, the maximum and av-
erage score among the termŠs inverted list entries, and other
statistical measures). The query processor uses these statis-
tics to identify the most promising peers for a particular
query. In order to deal with churn, we employ proactive
replication of directory information to ensure a certain de-
gree of replication, and we use a time-to-live technique that
invalidates Posts that have not been updated (or reconfirmed)
for a tunable period of time.

2.2 Query Execution
A query with multiple terms is processed as follows. In the

first step, the query is executed locally using the peerŠs local
index. If the user considers this local result as unsatisfactory,
the peer issues aPeerList requestto the directory for looking
up potentially promising remote peers, for each query term
separately. From the retrieved lists, a certain number of
most promising peers for the complete query is computed
(e.g., by simple intersection of the lists), and the query is
forwarded to these peers. This step is referred to asquery
routing. For efficiency reasons, the query initiator can decide
to not retrieve the complete PeerLists, but only a subset,
say the top-k peers from each list based on some relevance
measure, or the top-k peers over all lists, calculated by a
distributed top-k algorithm like [10,22].

For scalability, the query originator typically decides to
ship the query to only a small number of peers based on an
expected benefit/cost ratio. Once this decision is made, the
query is executed completely on each of the remote peers, us-
ing whatever local scoring/ranking method and top-k search



algorithm each peer uses. Each peer returns its top-k re-
sults (typically with k equal to 10 or 100), and the results
are merged into a global ranking, using either the query
originator’s statistical model or global statistics derived from
directory information (or using some heuristic result merging
method [21]).

2.3 Query Routing
The prior literature on query routing has mostly focused

on IR-style statistics about the document corpora, most no-
tably, CORI [9], the decision-theoretic framework by [23],
the GlOSS method presented in [16], and methods based
on statistical language models [27]. These techniques have
been shown to work well on disjoint data collections, but
are insufficient to cope with a large number of autonomous
peers that crawl the Web independently of each other, re-
sulting in a certain degree of overlap as popular information
may be indexed by many peers. We have recently developed
an overlap-awarequery routing strategy based on compact
statistical synopses to overcome this problem [3].

A missing key functionality in our architecture described
so far is the discovery and consideration of correlations
among terms in a query. This will be remedied by our new
method presented in the subsequent sections.

3. LEARNING CORRELATIONS
FROM QUERIES

Our system design provides a natural way to learn term
correlations from the peers’ queries. To this end we extend
the responsibilities of the peer(s) that maintain the Posts for
one term; in addition, they keep track of the terms that are
correlated to their main term. This is feasible at practically no
additional costs. As query processing starts with the PeerList
retrieval and needs to send a message to one peer for each
query term, it is easy and inexpensive to send also the entire
query to these peers by piggybacking a few additional bytes
on the messages that are sent anyway. For example, a query
such as "native American music" is now sent to three peers,
one for each term. Each of these returns a PeerList for only
one of the three terms (the one that it is responsible for), but
the complete query is remembered by all three.

Collecting query logs at these directory peers is inexpen-
sive up to some point when the storage demand for the
logs may become prohibitive. To limit the storage con-
sumption and to filter the logs for statistically significant
information, each peer periodically performs a data analy-
sis, using frequent-itemset mining techniques [2,17]. These
techniques identify the term combinations with sufficiently
high support and strong correlation, aka. association rules.
Subsequently, only these frequent itemsets are remembered
and the complete log can be truncated or completely pruned.
The computational cost of the data mining is typically linear
to quadratic in the size of the query log, and there is a rich
body of optimization techniques [13] to make this practically
viable even on low-end peer hardware.

The frequent term combinations are then disseminated
to other peers using epidemic gossiping techniques, again
mostly in a piggybacked manner. This advises the peers in
the network that they should not only post their statistical
information for single terms but also for strongly correlated
term combinations according to the disseminated associa-
tion rules. To cope with the typically high dynamics of P2P

systems in terms of evolving query patterns, standard tech-
niques for aging the statistical data can be employed. For
example, query logs may be compiled using moving-window
techniques, and exponential-decay techniques can be used to
combine fresh with previous results of the frequent-itemset
mining and to gradually age the network-wide knowledge of
association rules.

Note that query logs are not the only source of estimating
term correlations. For example, peers may use local the-
sauri and dictionaries to identify phrases (composite nouns
or proper names), thus realizing the high correlation of the in-
dividual terms in queries such as "Michael Jordan" or "soccer
world championship". The posting, collecting, and mining of
such correlations in the P2P network follows the same algo-
rithm that we described above. In this paper, we concentrate
on exploiting correlations from query logs, however.

To validate our hypothesis that queries are useful to rec-
ognize correlations, we analyzed a query collection of more
than 1.6 million queries compiled from one of the TREC
tasks [20]. About 90% of the queries contained 2, 3, or 4
terms so that term correlation should be recognizable. Over-
all the queries contained about 200 000 different terms. We
ran the frequent-itemset mining on this collection, with dif-
ferent levels of support from 0.001 percent (i.e., at least 10
occurrences) to 0.1 (i.e., at least 1000 occurrences). Figure 1
shows the number of distinct term combinations that resulted
from this task for different support levels using a logarithmic
scale.

As another source of queries, we investigated the query
log [28] of the Excite search engine from the year 19991. The
log consists of more than 2 million queries and we analyzed
all queries with up to 10 terms. The results confirmed our
finding that real web queries exhibit significant correlations.

2430

239

70

64817

6609

1

10

100

1000

10000

100000

10 50 100 500 1000

Support Level (Number of Occurrences)

N
u

m
b

er
 o

f 
D

is
ti

n
ct

 T
er

m
 C

o
m

b
in

at
io

n
s

Number of Distinct Term
Combinations with
Different Levels of Support

Figure 1: Term combinations above support level

4. EXPLOITING CORRELATIONS
IN QUERIES

The directory information about term correlations can be
exploited for query routing in several ways. If we treat
association rules, i.e., strongly correlated term combinations,
as keys for the DHT-based overlay network (e.g., by bringing
the terms in a rule into lexicographic order and using a special
delimiter between terms to produce a single string), then
1Thanks to Dr. Amanda Spink for providing the log.



a query initiator can locate the responsible directory peer
by simply hashing the key and using standard DHT lookup
routing. This way the directory entry directly provides the
query initiator with a query-specific PeerList that reflects the
best peers for the entire query. If this PeerList is too short, the
query initiator always has the fallback option of decomposing
the query into its individual terms and retrieving separate
PeerLists for each term. However, this approach has the
disadvantage that, whenever the fallback option is needed, the
necessary directory lookups entail a second message round
and increase the query latency.

A modified variant that avoids the above drawback is based
on a simple twist to the directory organization. We still col-
lect PeerLists for high-correlation term combinations, but
this information is always posted to the peer that is respon-
sible for the first term in the lexicographic ordering of the
terms. This way, when the PeerList for an entire query is
insufficient, the same directory peer provides the fallback
option for the first term without any additional communi-
cation. If we consider replication of directory entries as
inexpensive, we actually post the PeerList for a term combi-
nation withm terms toall m peersthat are responsible for one
of the terms (withm typically being 2 to 5). Then we can
simply use the standard query routing: look up the directory
for each query term separately, but whenever a directory peer
has good PeerLists for the entire query, this information is
returned to the query initiator, too, together with the per-term
PeerLists. This does not cause any additional communication
costs, and provides the query initiator with the best available
information on all individual terms and the entire query.

This last consideration also points to a highly efficient
solution for cases when there is no correlation information
for a full query, but the query contains term pairs or sub-
sets of terms that are highly correlated and have directory
entries. Again, the query initiator contacts all peers respon-
sible for the directory entries of one of the individual terms
in the query, but the full query is piggybacked on the lookup
message. When a directory peer receives the request, it de-
composes the query into its subsets and tests whether it has a
PeerList for one or more of these subsets. It then returns the
PeerLists for those term combinations that have sufficiently
good and long PeerLists and are not covered by other subsets
with more terms.

The final fallback position of simply returning the PeerList
for the single term that led to contacting this directory peer is
automatically included in the outlined strategy. Note that the
decomposition into subsets is a purely local operation, and
for typical queries with 2 to 5 terms it is certainly not expen-
sive. For "heavy" queries with 20 or more keywords (which
may be automatically generated by search tools using query
expansion based on thesauri, user feedback, or other "knowl-
edge sources"), fast heuristics for identifying PeerLists for
a decent fraction of the subsets or simply limiting the sub-
sets to term pairs or combinations of three terms would be
adequate solutions.

5. COST ANALYSIS
This section presents a simple "back-of-the-envelope" cost

analysis for the query execution that serves as a feasibility
check with regard to scalability. We focus on message costs,
as storage and local-processing costs are relatively uncritical
in our setting. We assume that we haveP = 1, 000, 000
peers, each withN = 10, 000, 000 documents that contain

M = 100, 000 distinct terms (the concrete numbers are for
illustration of the magnitudes that we would expect in a real
system). We further assume that all queries haveQ = 5
terms, and that every peer issuesλ = 10 queries per hour.
Each term, peer ID, or URL is assumed to have a length of
10 bytes (with appropriate compression of URLs). PeerLists
are assumed to contain 100 peer IDs each.

When a peer issues a query, the directory lookup requires
exactlyQ = 5 messages, one for each term, and the entire
query is piggybacked on these messages, which results in
a message size of (1+Q)*10 = 60 bytes (effective payload,
disregarding protocol overhead). Each of the contacted di-
rectory peers replies with at least one PeerList (the one for
the individual term that led to the lookup) and typically two
PeerLists (the single-term PeerList and the one for the en-
tire query if the term combination of the query is among
the frequent itemsets), yielding a typical network load of
Q*2*100*10 = 10,000 bytes for one query-routing decision
in total. If the query initiator then determines the 10 most
promising peers by combining the different PeerLists and
retrieves the top-100 query results from each of these peers
(merely URLs, not full documents), this results in additional
10*100*10 = 10,000 bytes. So the total network load per
query is 20,000 bytes. WithN = 1, 000, 000 peers each with
a query rate ofλ = 10h−1, this results inN ∗ λ ∗ 20, 000 =
200 ∗ 109 bytes per hour or approximately5.66 ∗ 106 bytes
per second, less than 100 MBytes/s for the entire P2P net-
work (i.e., spread across many network links). As for net-
work latency, the entire query execution requires two mes-
sage round-trips through the DHT overlay network, the first
round involvingQ recipients and the second round involving
10 recipients.

The bottom line of this crude analysis is that the approach
does not present any critical performance challenges and
seems very viable also from a scalability viewpoint.

6. EXPERIMENTS

6.1 Experimental Setup
For the experimental evaluation of our approach, we used

the GOV document collection [24] with more than 1.2 million
Web documents from the Internet domain .gov (i.e., US gov-
ernment and other official institutions), containing more than
5 million different terms (including numbers and names).
Subsequently this corpus serves as ourreference collectionfor
a centralized search engine against which we compare our
P2P techniques. Our primary quality measure is therelative
recall, the query results that a small number of peers in the
network can together achieve relative to the recall from the
centralized reference collection. We created 750 peers, each
holding about 1500 documents, by partitioning the overall
document collection without any overlap between peers. All
peers were running on a single 64-bit Opteron server in our
research lab.

For the query workload we used fifty queries from the
topic-distillation task of the TREC 2003 Web Track bench-
mark [24]; examples are "juvenile delinquency", "legaliza-
tion Marijuana", "shipwrecks", "wireless communications",
typically short but nontrivial queries (significantly more dif-
ficult than the most popular queries of commercial search
engines, as shown, for example, on [15]). As we wanted to
measure the influence of term correlations, we were mostly
interested in longer queries that should ideally have more



than two keywords. Therefore, we manually expanded the
queries by additional terms from the query description (an
official part of the TREC benchmark queries). For example,
the original query "wireless communications" was expanded
to "wireless communications broadcasting transmission ra-
dio" and the query expansion for "shipwrecks" resulted in
"shipwrecks accident". The characteristics of our 50 bench-
mark queries are shown in Table 1.

Property Avg Min Max S

Query
length 3.59 2 5 1.03
top-25

ideal results 23.65 3 25 5.12
overall
results 709.98 3 3285 785.93

Peers with Posts
for all query terms 634.31 35 750 209.92

Peers with
result documents 340.69 3 738 245.50

Table 1: Properties of test queries (S denotes the standard de-
viation).

6.2 Quality Measure
In our experiment we compared the distributed P2P query

execution with a centralized search engine managing the
reference collection. For each query, the centralized search
engine computed the 25 top-ranked documents referred to
as ideal resultsby applying standard IR scores based on the
term frequencytf and the inverse document frequencyidf .
Multi-term queries are evaluated in conjunctive mode; so
only documents that contain all query terms qualify for the
final ideal result. In the P2P setting, the local peer engines
first perform the peer selection step that will be explained
in the following subsection. Having the most promising
peers selected, the query is executed and the query initiator
merges the result documents of the best peers. The recall
of the P2P query execution is the fraction of the ideal result
that the merged P2P result yields. As the query execution
cost increases with the number of peers that participate in
executing a query, we also discuss the benefit/cost ratio of
relative recall to the number of contributing peers.

6.3 Peer Selection
The peer selection step distinguishes the two cases with and

without term-combination Posts: the standard peer selection
combines PeerLists for all query terms containing single-
term-specific Posts. IR measures like the maximum term
frequencytfmax(t) (the maximum number of occurrences of
a termt in documents of a peer) and the collection docu-
ment frequencycdf(t) (the number of documents of a peer
containing a termt) are used to compute a peer ranking as
described in [6]. In contrast, the case with term-combination
Posts looks up the full-query Posts at the corresponding di-
rectory peers and uses the following statistics to compute the
peer ranking: the collection document frequencycdf(q) of
the full query (the number of documents within a peer con-
taining all terms of the queryq), and 2) the sum of maximum
term frequencies

∑
t∈q tfmax(t) over all termst in the query

q.

6.4 Experimental Results
In the experiment we systematically increased the number

of remote peers that the query initiator chooses to involve in
the query execution. We compared the two strategies: stan-
dard peer selection versus correlation-aware peer selection
for term combinations. Figure 2 shows the relative recall
numbers for this setup (averaged over all 50 queries).

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

Number of Peers

R
el

at
iv

e 
R

ec
al

l

Standard Query Routing

Query Routing with
Correlation Awareness

Figure 2: Experimental Results

The chart clearly shows that the use of multi-term Posts
improves recall and the benefit/cost ratio by a substantial mar-
gin. To reach 50% recall, the standard query routing strategy
needs to contact about 130 peers, whereas the correlation-
aware strategy can reduce this number to 45 peers for the
same recall. As a concrete example of the improvements,
cosnider the query "shipwreck accident". Overall, there were
46 result documents containing both terms spread over 44 dif-
ferent peers, but 437 peers contained documents with "ship-
wreck" alone or with "accident" alone. The standard peer
selection needs 80 peers to reach a recall of 60% whereas the
new correlation-aware routing with multi-term Posts for the
complete query obtains all relevant results (i.e., 100% recall)
by contacting exactly the 44 relevant peers.

7. CONCLUSION
Our ongoing research efforts in the area of P2P content

search are driven by the desire to "give the Web back to the
people" [14], enabling ultra-scalable and robust information
search that is immune to the quasi-monopolies and potential
biases of centralized commercial search engines. This paper
has explored the theme of leveraging "the power of users"
in a P2P Web search engine, by exploiting term correlations
that appear in query logs. We believe that considering user
and community behavior, in implicit or explicit form, is one
potential key towards better search result quality for advanced
expert queries (as opposed to mass-user queries that are well
served by commercial search engines).

REFERENCES
[1] Karl Aberer, Philippe Cudŕe-Mauroux, Manfred

Hauswirth, and Tim Van Pelt. Gridvine: Building
Internet-Scale Semantic Overlay Networks. In
International Semantic Web Conference, 2004.

[2] Rakesh Agrawal, Tomasz Imielinski, and Arun N.
Swami. Mining Association Rules Between Sets of



Items in Large Databases. InSIGMOD Conference,
1993.

[3] Matthias Bender, Sebastian Michel, Peter
Triantafillou, Gerhard Weikum, and Christian Zimmer.
Improving Collection Selection with
Overlap-Awareness. InSIGIR, 2005.

[4] Matthias Bender, Sebastian Michel, Peter
Triantafillou, Gerhard Weikum, and Christian Zimmer.
Minerva: Collaborative P2P Search. InVLDB, 2005.

[5] Matthias Bender, Sebastian Michel, Gerhard Weikum,
and Christian Zimmer. Bookmark-driven Query
Routing in Peer-to-Peer Web Search. InWorkshop on
P2P IR, 2004.

[6] Matthias Bender, Sebastian Michel, Gerhard Weikum,
and Christian Zimmer. The Minerva Project: Database
Selection in the Context of P2P Search. InBTW, 2005.

[7] Matthias Bender, Sebastian Michel, Christian Zimmer,
and Gerhard Weikum. Towards Collaborative Search
in Digital Libraries using Peer-to-Peer Technology. In
DELOS, 2004.

[8] Bobby Bhattacharjee, Sudarshan S. Chawathe, Vijay
Gopalakrishnan, Peter J. Keleher, and Bujor D.
Silaghi. Efficient Peer-to-Peer Searches using
Result-Caching. InIPTPS, 2003.

[9] James P. Callan, Zhihong Lu, and W. Bruce Croft.
Searching Distributed Collections with Inference
Networks. InSIGIR, 1995.

[10] Pei Cao and Zhe Wang. Efficient Top-K Query
Calculation in Distributed Networks. InPODC, 2004.

[11] Arturo Crespo and Hector Garcia-Molina. Semantic
Overlay Networks for P2P Systems. Technical report,
Stanford University, 2002.

[12] Francisco Matias Cuenca-Acuna, Christopher Peery,
Richard P. Martin, and Thu D. Nguyen. Planetp: Using
Gossiping to Build Content Addressable Peer-to-Peer
Information Sharing Communities. InHPDC, 2003.

[13] Min Fang, Narayanan Shivakumar, Hector
Garcia-Molina, Rajeev Motwani, and Jeffrey D.
Ullman. Computing Iceberg Queries Efficiently. In
VLDB, 1998.

[14] H. Garcia-Molina. Panel Discussion P2P Search at
CIDR, 2005.

[15] Google.com Search Engine. Google Zeitgeist.
http://www.google.com/press/zeitgeist.html

[16] Luis Gravano, Hector Garcia-Molina, and Anthony
Tomasic. Gloss: Text-Source Discovery over the
Internet.ACM, 1999.

[17] Jiawei Han and Micheline Kamber.Data Mining
Concepts and Techniques. Morgan Kaufman, 2001.

[18] Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham,
Boon Thau Loo, Scott Shenker, and Ion Stoica.
Querying the Internet with Pier. InVLDB, 2003.

[19] Jinyang Li, Boon Thau Loo, Joseph M.Hellerstein,
M. Frans Kaashoek, David R. Karger, and Robert
Morris. On the Feasibility of Peer-to-Peer Web
Indexing and Search. InIPTPS, 2003.

[20] Jie Lu and James P. Callan. Content-Based Retrieval in
Hybrid Peer-to-Peer Networks. InCIKM, 2003.

[21] Weiyi Meng, Clement T. Yu, and King-Lup Liu.
Building Efficient and Effective Metasearch Engines.
ACM, 2002.

[22] Sebastian Michel, Peter Triantafillou, and Gerhard
Weikum. Klee: A Framework for Distributed Top-K
Query Algorithms. InVLDB, 2005.

[23] Henrik Nottelmann and Norbert Fuhr. Evaluating
Different Methods of Estimating Retrieval Quality for
Resource Selection. InSIGIR, 2003.

[24] National Institute of Standards and Technology. Text
Retrieval Conference (TREC).

[25] Patrick Reynolds and Amin Vahdat. Efficient
Peer-to-Peer Keyword Searching. InMiddleware, 2003.

[26] Shuming Shi, Guangwen Yang, Dingxing Wang, Jin
Yu, Shaogang Qu, and Ming Chen. Making
Peer-to-Peer Keyword Searching Feasible Using
Multi-Level Partitioning. InIPTPS, 2004.

[27] Luo Si, Rong Jin, James P. Callan, and Paul Ogilvie. A
Language Modeling Framework for Resource
Selection and Results Merging. InCIKM, 2002.

[28] Amanda Spink, Bernard J. Jansen, Dietmar Wolfram,
and Tefko Saracevic. From E-Sex to E-Commerce:
Web Search Changes.IEEE Computer, 35(3):107–109,
2002.

[29] Ion Stoica, Robert Morris, David R. Karger, M. Frans
Kaashoek, and Hari Balakrishnan. Chord: A Scalable
Peer-to-Peer Lookup Service for Internet
Applications. InSIGCOMM, 2001.

[30] Torsten Suel, Chandan Mathur, Jo wen Wu, Jiangong
Zhang, Alex Delis, Mehdi Kharrazi, Xiaohui Long,
and Kulesh Shanmugasundaram. Odissea: A
Peer-to-Peer Architecture for Scalable Web Search
and Information Retrieval. InWebDB, 2003.

[31] Chunqiang Tang and Sandhya Dwarkadas. Hybrid
Global-Local Indexing for Efficient Peer-to-Peer
Information Retrieval. InNSDI, 2004.

[32] Yuan Wang, Leonidas Galanis, and David J. de Witt.
Galanx: An Efficient Peer-to-Peer Search Engine
System.


