Lecture 15: The Curry-Howard Correspondance

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Programming Languages

Curry-Howard Correspondance

- Another use of λ -calculus
- Roughly:
 - Types correspond to theorems
 - Programs correspond to proofs
 - Typed languages correspond to logics
 - A typechecker is a proof verifier

Classical propositional logic

Formulas of the form

$$\phi ::= p \mid \bot \mid \phi \lor \phi \mid \phi \land \phi \mid \phi \to \phi$$

- Where $p \in \mathcal{P}$ is an atomic proposition, e.g. "Socrates is a man"
- Convenient abbreviations:
 - $ightharpoonup
 eg \phi$ means $\phi \to \bot$
 - $\phi \longleftrightarrow \phi'$ means $(\phi \to \phi') \land (\phi' \to \phi)$

Semantics of classical logic

 $\bullet \ \ \mathsf{Interpretation} \ \mathfrak{m}: \mathcal{P} \to \{\mathsf{true}, \mathsf{false}\}$

$$\begin{array}{rcl} \mathrm{J}\rho\mathrm{K}^{\mathfrak{m}} &=& \mathfrak{m}(\rho) \\ \mathrm{J}\bot\mathrm{K}^{\mathfrak{m}} &=& \mathrm{false} \\ \mathrm{J}\phi \wedge \phi'\mathrm{K}^{\mathfrak{m}} &=& \mathrm{J}\phi\mathrm{K}^{\mathfrak{m}}\bar{\wedge}\mathrm{J}\phi'\mathrm{K}^{\mathfrak{m}} \\ \mathrm{J}\phi \vee \phi'\mathrm{K}^{\mathfrak{m}} &=& \mathrm{J}\phi\mathrm{K}^{\mathfrak{m}}\bar{\vee}\mathrm{J}\phi'\mathrm{K}^{\mathfrak{m}} \\ \mathrm{J}\phi \to \phi'\mathrm{K}^{\mathfrak{m}} &=& \bar{\neg}\mathrm{J}\phi\mathrm{K}^{\mathfrak{m}}\bar{\vee}\mathrm{J}\phi'\mathrm{K}^{\mathfrak{m}} \end{array}$$

 \bullet Where $\bar{\wedge}, \bar{\vee}, \bar{\neg}$ are the standard boolean operations on $\{\mathsf{true}, \mathsf{false}\}$

Terminology

- A formula ϕ is valid if $J\phi K^{\mathfrak{m}} = \text{true for all } \mathfrak{m}$
- A formula ϕ is *unsatisfiable* if $J\phi K^{\mathfrak{m}}=$ false for all \mathfrak{m}
- Law of excluded middle:
 - ▶ Formula $\phi \lor \neg \phi$ is valid for any ϕ
- A proof system attempts to determine the validity of a formula

Proof theory for classical logic

- Proves judgements of the form $\Gamma \vdash \phi$:
 - lacktriangle For any interpretation, under assumption Γ , ϕ is true
- Syntactic deduction rules that produce "proof trees" of $\Gamma \vdash \phi$:

 Natural deduction
- Problem: classical proofs only address truth value, not constructive
- Example: "There are two irrational numbers x and y, such that x^y is rational"
 - Proof does not include much information

Intuitionistic logic

- Get rid of the law of excluded middle
- Notion of "truth" is not the same
 - ▶ A proposition is true, if we can construct a proof
 - Cannot assume predefined truth values without constructed proofs (no "either true or false")
- Judgements are not expression of "truth", they are constructions
 - \blacktriangleright \vdash ϕ means "there is a proof for ϕ "
 - \blacktriangleright $\vdash \phi \rightarrow \bot$ means "there is a refutation for ϕ ", not "there is no proof"
 - ▶ $\vdash (\phi \to \bot) \to \bot$ only means the absense of a refutation for ϕ , does not imply ϕ as in classical logic

Proofs in intuitionistic logic

$$\frac{\Gamma \vdash \bot}{\Gamma, \phi \vdash \phi}$$

$$\frac{\Gamma \vdash \phi}{\Gamma \vdash \phi \land \psi}$$

$$\frac{\Gamma \vdash \phi \land \psi}{\Gamma \vdash \phi \land \psi}$$

$$\frac{\Gamma \vdash \phi \land \psi}{\Gamma \vdash \phi \lor \psi}$$

$$\frac{\Gamma \vdash \phi \land \psi}{\Gamma \vdash \phi \lor \psi}$$

$$\frac{\Gamma, \phi \vdash \phi}{\Gamma \vdash \phi \lor \psi}$$

$$\frac{\Gamma, \phi \vdash \psi}{\Gamma \vdash \phi \to \psi}$$

$$\frac{\Gamma, \phi \vdash \psi}{\Gamma \vdash \phi \to \psi}$$

$$\frac{\Gamma \vdash \phi \to \psi}{\Gamma \vdash \psi}$$

$$\frac{\Gamma \vdash \phi \to \psi}{\Gamma \vdash \psi}$$

Does that resemble anything?

Curry-Howard correspondence

- ullet We can mechanically translate formulas ϕ into type au for every ϕ and the reverse
 - ▶ E.g. replace \land with \times , \vee with +, ...
- If $\Gamma \vdash e : \tau$ in simply-typed lambda calculus, and τ translates to ϕ , then $range(\Gamma) \vdash \phi$ in intuistionistic logic
- If $\Gamma \vdash \phi$ in intuitionistic logic, and ϕ translates to τ , then there exists e and Γ' such that range(Γ') = Γ and $\Gamma' \vdash e : \tau$
- Proof by induction on the derivation $\Gamma \vdash \phi$
 - Can be simplified by fixing the logic and type languages to match

Consequences

- Lambda terms encode proof trees
- Evaluation of lambda terms is proof simplification
- Automated proving by trying to construct a lambda term with the wanted type
- Verifying a proof is typechecking
 - Increased trust in complicated proofs when machine-verifiable
- Proof-carrying code
- Certifying compilers

