
Lecture 15: The Curry-Howard Correspondance

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Programming Languages

Pratikakis (CSD) The Curry-Howard Correspondance CS546, 2024-2025 1 / 10

Curry-Howard Correspondance

Another use of λ-calculus
Roughly:

▶ Types correspond to theorems
▶ Programs correspond to proofs
▶ Typed languages correspond to logics
▶ A typechecker is a proof verifier

Pratikakis (CSD) The Curry-Howard Correspondance CS546, 2024-2025 2 / 10

Classical propositional logic

Formulas of the form

ϕ ::= p | ⊥ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ→ ϕ

Where p ∈ P is an atomic proposition, e.g. “Socrates is a man”
Convenient abbreviations:

▶ ¬ϕ means ϕ→ ⊥
▶ ϕ←→ ϕ′ means (ϕ→ ϕ′) ∧ (ϕ′ → ϕ)

Pratikakis (CSD) The Curry-Howard Correspondance CS546, 2024-2025 3 / 10

Semantics of classical logic

Interpretation m : P→ {true, false}

JpKm = m(p)
J⊥Km = false

Jϕ ∧ ϕ′Km = JϕKm∧̄Jϕ′Km

Jϕ ∨ ϕ′Km = JϕKm∨̄Jϕ′Km

Jϕ→ ϕ′Km = ¬̄JϕKm∨̄Jϕ′Km

Where ∧̄, ∨̄, ¬̄ are the standard boolean operations on {true, false}

Pratikakis (CSD) The Curry-Howard Correspondance CS546, 2024-2025 4 / 10

Terminology

A formula ϕ is valid if JϕKm = true for all m
A formula ϕ is unsatisfiable if JϕKm = false for all m
Law of excluded middle:

▶ Formula ϕ ∨ ¬ϕ is valid for any ϕ
A proof system attempts to determine the validity of a formula

Pratikakis (CSD) The Curry-Howard Correspondance CS546, 2024-2025 5 / 10

Proof theory for classical logic

Proves judgements of the form Γ ⊢ ϕ:
▶ For any interpretation, under assumption Γ, ϕ is true

Syntactic deduction rules that produce “proof trees” of Γ ⊢ ϕ:
Natural deduction
Problem: classical proofs only address truth value, not constructive
Example: “There are two irrational numbers x and y, such that xy is
rational”

▶ Proof does not include much information

Pratikakis (CSD) The Curry-Howard Correspondance CS546, 2024-2025 6 / 10

Intuitionistic logic

Get rid of the law of excluded middle
Notion of “truth” is not the same

▶ A proposition is true, if we can construct a proof
▶ Cannot assume predefined truth values without constructed proofs (no

“either true or false”)
Judgements are not expression of “truth”, they are constructions

▶ ⊢ ϕ means “there is a proof for ϕ”
▶ ⊢ ϕ→ ⊥ means “there is a refutation for ϕ”, not “there is no proof”
▶ ⊢ (ϕ→ ⊥)→ ⊥ only means the absense of a refutation for ϕ, does not

imply ϕ as in classical logic

Pratikakis (CSD) The Curry-Howard Correspondance CS546, 2024-2025 7 / 10

Proofs in intuitionistic logic

Γ, ϕ ⊢ ϕ
Γ ⊢ ⊥
Γ ⊢ ϕ

Γ ⊢ ϕ Γ ⊢ ψ
Γ ⊢ ϕ ∧ ψ

Γ ⊢ ϕ ∧ ψ
Γ ⊢ ϕ

Γ ⊢ ϕ ∧ ψ
Γ ⊢ ψ

Γ ⊢ ϕ
Γ ⊢ ϕ ∨ ψ

Γ ⊢ ψ
Γ ⊢ ϕ ∨ ψ

Γ, ϕ ⊢ ρ Γ, ψ ⊢ ρ
Γ ⊢ ϕ ∨ ψ
Γ ⊢ ρ

Γ, ϕ ⊢ ψ
Γ ⊢ ϕ→ ψ

Γ ⊢ ϕ→ ψ Γ ⊢ ϕ
Γ ⊢ ψ

Does that resemble anything?

Pratikakis (CSD) The Curry-Howard Correspondance CS546, 2024-2025 8 / 10

Curry-Howard correspondence

We can mechanically translate formulas ϕ into type τ for every ϕ and
the reverse

▶ E.g. replace ∧ with ×, ∨ with +, …
If Γ ⊢ e : τ in simply-typed lambda calculus, and τ translates to ϕ,
then range(Γ) ⊢ ϕ in intuistionistic logic
If Γ ⊢ ϕ in intuitionistic logic, and ϕ translates to τ , then there exists
e and Γ′ such that range(Γ′) = Γ and Γ′ ⊢ e : τ

Proof by induction on the derivation Γ ⊢ ϕ
▶ Can be simplified by fixing the logic and type languages to match

Pratikakis (CSD) The Curry-Howard Correspondance CS546, 2024-2025 9 / 10

Consequences

Lambda terms encode proof trees
Evaluation of lambda terms is proof simplification
Automated proving by trying to construct a lambda term with the
wanted type
Verifying a proof is typechecking

▶ Increased trust in complicated proofs when machine-verifiable
Proof-carrying code
Certifying compilers

Pratikakis (CSD) The Curry-Howard Correspondance CS546, 2024-2025 10 / 10

