Lecture 14: Recursive Types

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Programming Languages

Pratikakis (CSD) Recursive Types CS546, 2024-2025 1/11

Motivation

o Lists, so far
> Introduce a type constructor List T
» Values are either nil or cons (exq, ey)
» List have arbitrary size, but regular structure

Similarly, queues, binary trees, labeled trees, ASTs, etc

It is impractical to extend the language with each as an additional
primitive type!

Solution: recursive types

Pratikakis (CSD) Recursive Types CS546, 2024-2025 2/11

Example

@ Lists of numbers:

NatList = (nil : Unit, cons : { Nat, NatList})

This equation defines an infinite tree

To change into a definition, use abstraction

NatList = pX. (nil : Unit, cons : { Nat, X})

1 is the explicit recursion operator for types

Intuitively: “NatList is the type that satisfies the equation
X = (nil : Unit, cons : { Nat, X})"

Pratikakis (CSD) Recursive Types CS546, 2024-2025 3/11

Example: Lists

o Lists
» nil = (nil=()) as NatList
cons = Ax: Nat.Al: NatList. (cons = {x, I}) as NatList
isnil = Al NatList.case | of nil(_) => true| cons(_) => false
hd = \: NatList.case [of nil(_) => 0 | cons(p) => p.1
tl = Al: NatList.case | of nil(_) => 1| cons(p) => p.2
sum = fix A\f: NatList — Nat.\l: NatList.
case lof nil(_) => 0| cons(p) => p.1+ (fp.2)

vV vy vy VvYyy

Pratikakis (CSD) Recursive Types CS546, 2024-2025 4/11

Hungry functions

@ A function that can always take more:
hungry = pX. Nat — X
@ Such a function is a fixpoint (recursive function):
f = fix (Af: Nat — hungry.\n : Nat.f)

o What is the type of f123457

Pratikakis (CSD) Recursive Types CS546, 2024-2025 5/11

Streams

@ A stream is a function that can return an arbitrary number of values

@ Each time it consumes a unit, returns a new value

Stream = pX. Unit — {Nat, X}

@ We can use it like an infinite list

> Next item hd = As: Stream.(s ()).1
> Rest of stream tl = As: Stream.(s ()).2

@ The stream of all natural numbers:

fix (Af: Nat — Stream.An : Nat._ : Unit.{n, f{succ n)})0

Pratikakis (CSD) Recursive Types CS546, 2024-2025 6/11

Objects

@ Objects can also be recursive types

Counter = uC.{get : Nat,inc: Unit — C}

@ Unlike last time, this is a functional object: inc returns the new object

» Java strings are immutable

Pratikakis (CSD) Recursive Types CS546, 2024-2025 7/11

Recursive type of fixpoint

@ Using recursive types we can type the fixpoint operator

fixp = Af: T— T.
(A (XX = T).f(xx)) (Ax: (uXX—= T).f(xx))

Without types this is the fixpoint combinator of untyped calculus
Allows programs to diverge: not strongly normalizing

A term that doesn't terminate can have any type T!

By Curry-Howard:

» All propositions are proved, including false!
» The corresponding logic is inconsistent

Pratikakis (CSD) Recursive Types CS546, 2024-2025 8/11

Type system

@ Two ways to treat recursive types
@ Depending on the relation between folded/unfolded type
» e.g: NatList and (nil : Unit, cons : { Nat, NatList})
e Implicit fold/unfold, the above types are equal in all contexts

» Transparent to the programmer
» More complex to write typechecker
» All proofs remain the same (except induction on type expressions)

e Explicit fold /unfold using language primitives

» Programmer must write fold/unfold primitives to help typechecker
» Easier to typecheck
» Requires extra proof cases for soundness: fold/unfold

Pratikakis (CSD) Recursive Types CS546, 2024-2025 9/11

Type system (cont'd)

@ Syntax:
e == ...|fold[T] e|unfold [T] e
v == ...|fold [T]v
T == ... | X|puXT
e Typing
U=uXT TFe:TU/X
[T-Forp]
['Ffold [U] e: U
U=upuXT Tre:U
[T-UnroLb]

I' - unfold [U] e: T[U/X]

Pratikakis (CSD) Recursive Types CS546, 2024-2025 10/11

Semantics

unfold [S] (fold [T] v) — v

e— ¢
fold [T] e — fold [T] ¢

e—¢€
unfold [T] e — unfold [T] ¢

Pratikakis (CSD) Recursive Types

