
Lecture 8: Types and Type Rules

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Programming Languages

Based on slides by Jeff Foster, UMD

Pratikakis (CSD) Types and Type Rules CS546, 2024-2025 1 / 19

The need for types

Consider the lambda calculus terms:
▶ false = λx.λy.x
▶ 0 = λx.λy.x (Scott encoding)

Everything is encoded using functions
▶ One can easily misuse combinators

⋆ false 0, or if 0 then . . ., etc…
▶ It’s no better than assembly language!

Pratikakis (CSD) Types and Type Rules CS546, 2024-2025 2 / 19

Type system

A type system is some mechanism for distinguishing good programs
from bad

▶ Good programs are well typed
▶ Bad programs are ill typed or not typeable

Examples:
▶ 0 + 1 is well typed
▶ false + 0 is ill typed: booleans cannot be added to numbers
▶ 1 + (if true then 0 else false) is ill typed: cannot add a boolean to an

integer

This time: types for simple arithmetic (Lecture 4)

Pratikakis (CSD) Types and Type Rules CS546, 2024-2025 3 / 19

A definition

“A type system is a tractable syntactic method for proving
the absence of certain program behaviors by classifying phrases
according to the kinds of values they compute.”

– Benjamin Pierce, Types and Programming Languages

Pratikakis (CSD) Types and Type Rules CS546, 2024-2025 4 / 19

Recall simple arithmetic

t ::= true
| false
| 0
| succ t
| pred t
| iszero t
| if t then t else t

v ::= true
| false
| nv

nv ::= 0
| succ nv

Pratikakis (CSD) Types and Type Rules CS546, 2024-2025 5 / 19

Semantics

iszero 0 → true
t → t′

iszero t → iszero t′

v is a num. value
iszero (succ v) → false

t → t′
succ t → succ t′

pred 0 → 0
t → t′

pred t → pred t′
v is a num. value
pred (succ v) → v

if true then t1 else t2 → t1 if false then t1 else t2 → t2

t → t′
if t then t1 else t2 → if t′ then t1 else t2

Pratikakis (CSD) Types and Type Rules CS546, 2024-2025 6 / 19

Types: approximation of result

Classify terms into types:
▶ A term t has type T: its result will be a boolean/natural
▶ Written t : T (sometimes t ∈ T)
▶ Computed statically: without running the program
▶ Statical typing is conservative: might reject good programs

For this language we need two types, T ::= Bool | Nat
Examples:

▶ if true then 0 else succ 0 : Nat, always produces a number
▶ iszero (succ (pred 0)) : Bool, always produces a boolean
▶ But: if true then false else succ 0 does not have a static type

Pratikakis (CSD) Types and Type Rules CS546, 2024-2025 7 / 19

The typing relation

Define a relation “:” to assign types to terms
Mathematically, “:” is a partial binary relation between the set E of all
possible programs, and the set T, (here {Bool,Nat}) of all possible
types
Can describe this using sets:

▶ Language: a set E of all possible terms
▶ Type language: a set T of all possible types
▶ Typing relation: a partial relation “:”⊆ E× T
▶ Well-formed terms: a set WF ⊆ E of terms that don’t get stuck during

evaluation
▶ Well-typed terms: a set WT ⊆ E of terms that have a type

Pratikakis (CSD) Types and Type Rules CS546, 2024-2025 8 / 19

The typing relation (cont’d)

When WT ⊆ WF, the type system is sound
When WF ⊆ WT, the type system is complete
Usually, we can’t have both: undecidable
Traditionally, type-systems worry about soundness

▶ I.e: no accepted program can go wrong
…but might reject some correct programs

Pratikakis (CSD) Types and Type Rules CS546, 2024-2025 9 / 19

Back to language definitions

Inductive: the smallest set E such that
▶ {true, false} ∈ E
▶ If t1 ∈ E then {succ t1, pred t1, iszero t1} ∈ E
▶ etc.

By inference rules, e.g:

t ∈ E

iszero t ∈ E

By construction:
▶ S0 = ∅
▶ Si+1 = {true, false, 0} ∪ succ t, pred t, iszero t | t ∈ Si ∪ . . .
▶ E =

∪
i Si

Pratikakis (CSD) Types and Type Rules CS546, 2024-2025 10 / 19

Same thing for typing relation

Inductive: The smallest relation : such that
▶ 0 : Nat holds
▶ If t : Nat holds, then succ t : Nat also holds
▶ etc.

By inference rules:
t : Nat

succ t : Nat
By construction:

▶ T0 = ∅
▶ Ti+1 = {0 : Nat} ∪ {succ t : Nat | (t : Nat) ∈ Ti} ∪ . . .
▶ T =

∪
i Ti

Pratikakis (CSD) Types and Type Rules CS546, 2024-2025 11 / 19

Type system

[T-True] true : Bool [T-False] false : Bool

[T-If]
t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T

[T-Zero]
0 : Nat [T-Succ] t : Nat

succ t : Nat

[T-Pred] t : Nat
pred t : Nat [T-IsZero] t : Nat

iszero t : Bool

Pratikakis (CSD) Types and Type Rules CS546, 2024-2025 12 / 19

Inversion lemma

Typing relation is the smallest relation produced by the rules
And is syntax-driven (deterministic)
So we can invert it (inversion lemma):

▶ The only way to type true is [T-True], with type Bool
▶ The only way to type false is [T-False], with type Bool
▶ If there is a typing if t1 then t2 else t3 : T then the only way to create it

is [T-If], where t1 : Bool, t2 : T and t3 : T
▶ etc, for the other syntactic forms

Proof follows from the definition of typing
Makes inference rules go backwards:

▶ Given the conclusion, the premises must have been true (there is no
other way to reach that conclusion)

Practically, it describes the algorithm to construct a typing

Pratikakis (CSD) Types and Type Rules CS546, 2024-2025 13 / 19

In OCaml

Grammar (Lec. 4):
type term =

True
| False
| If of term ∗ term ∗ term
| Zero
| Succ of term
| Pred of term
| IsZero of term

Type language:
type typ = TNat | TBool

Pratikakis (CSD) Types and Type Rules CS546, 2024-2025 14 / 19

Type checking

let rec typecheck : term -> typ = function
True | False -> TBool

| If (t1, t2, t3) when typecheck t1 = TBool ->
let typ2 = typecheck t2 in
let typ3 = typecheck t3 in
if (typ2 = typ3) then typ2
else failwith ”type error ”

| Zero -> TNat
| Succ t | Pred t when (typecheck t) = TNat -> TNat
| IsZero t when (typecheck t) = TNat -> TBool
| _ -> failwith ”type error ”

Pratikakis (CSD) Types and Type Rules CS546, 2024-2025 15 / 19

Progress theorem

If t : T then either t is a value, or there exists t′ such that t → t′
Proof by induction on t

▶ Base cases (simple values): true, false, 0, trivially true
▶ Inductive cases: assume sub-terms are either values or can step

⋆ Case succ t: if t is a value then succ t is a value, otherwise t → t′,
therefore succ t → succ t′ using the fourth semantic rule

⋆ Case pred t: from inversion, we know t : Nat. If t is a value it cannot
be true or false. So, we can always take a step from pred 0 or
pred (succ v). If t is not a value, t takes a step, and pred t → pred t′

⋆ …similarly for the other cases

Pratikakis (CSD) Types and Type Rules CS546, 2024-2025 16 / 19

Preservation theorem

If t : T and t → t′ then t′ : T
Proof by induction on t → t′ (each semantic rule)

▶ First rule (base case) iszero 0 → true: From inversion lemma on
iszero 0 : T, we get that its type must be Bool, which is also the type
of true from [T-True]

▶ Second rule (inductive case) iszero t → iszero t′: From inversion lemma
on iszero t : T we get T = Bool and also t : Nat. From induction
hypothesis we have t → t′. Apply inductively on t : Nat and t → t′, to
get t′ : Nat. Then iszero t′ : Bool follows from [T-IsZero]

▶ Similarly for other base and inductive cases

Pratikakis (CSD) Types and Type Rules CS546, 2024-2025 17 / 19

Soundness

So far:
▶ Progress: If t : T, then either t is a value, or there exists t′ such that

t → t′
▶ Preservation: If t : T and t → t′ then t′ : T

Putting these together, we get soundness
▶ If t : T then either there exists a value v such that t →∗ v or t doesn’t

terminate
What does this mean?

▶ “Well-typed programs don’t go wrong”
▶ Evaluation never gets stuck

This language will always terminate
▶ Proof by induction on term size (defined in Lec. 4)
▶ If t → t′ then size(t′) < size(t)

Pratikakis (CSD) Types and Type Rules CS546, 2024-2025 18 / 19

Next time

The same, only for λ-calculus
▶ The function type
▶ What happens with variables?
▶ What happens with substitution?

Pratikakis (CSD) Types and Type Rules CS546, 2024-2025 19 / 19

