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The need for types

Consider the lambda calculus terms:
▶ false = λx.λy.x
▶ 0 = λx.λy.x (Scott encoding)

Everything is encoded using functions
▶ One can easily misuse combinators

⋆ false 0, or if 0 then . . ., etc…
▶ It’s no better than assembly language!
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Type system

A type system is some mechanism for distinguishing good programs
from bad

▶ Good programs are well typed
▶ Bad programs are ill typed or not typeable

Examples:
▶ 0 + 1 is well typed
▶ false + 0 is ill typed: booleans cannot be added to numbers
▶ 1 + (if true then 0 else false) is ill typed: cannot add a boolean to an

integer

This time: types for simple arithmetic (Lecture 4)
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A definition

“A type system is a tractable syntactic method for proving
the absence of certain program behaviors by classifying phrases
according to the kinds of values they compute.”

– Benjamin Pierce, Types and Programming Languages
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Recall simple arithmetic

t ::= true
| false
| 0
| succ t
| pred t
| iszero t
| if t then t else t

v ::= true
| false
| nv

nv ::= 0
| succ nv

Pratikakis (CSD) Types and Type Rules CS546, 2024-2025 5 / 19



Semantics

iszero 0 → true
t → t′

iszero t → iszero t′

v is a num. value
iszero (succ v) → false

t → t′
succ t → succ t′

pred 0 → 0
t → t′

pred t → pred t′
v is a num. value
pred (succ v) → v

if true then t1 else t2 → t1 if false then t1 else t2 → t2

t → t′
if t then t1 else t2 → if t′ then t1 else t2
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Types: approximation of result

Classify terms into types:
▶ A term t has type T: its result will be a boolean/natural
▶ Written t : T (sometimes t ∈ T)
▶ Computed statically: without running the program
▶ Statical typing is conservative: might reject good programs

For this language we need two types, T ::= Bool | Nat
Examples:

▶ if true then 0 else succ 0 : Nat, always produces a number
▶ iszero (succ (pred 0)) : Bool, always produces a boolean
▶ But: if true then false else succ 0 does not have a static type
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The typing relation

Define a relation “:” to assign types to terms
Mathematically, “:” is a partial binary relation between the set E of all
possible programs, and the set T, (here {Bool,Nat}) of all possible
types
Can describe this using sets:

▶ Language: a set E of all possible terms
▶ Type language: a set T of all possible types
▶ Typing relation: a partial relation “:”⊆ E× T
▶ Well-formed terms: a set WF ⊆ E of terms that don’t get stuck during

evaluation
▶ Well-typed terms: a set WT ⊆ E of terms that have a type
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The typing relation (cont’d)

When WT ⊆ WF, the type system is sound
When WF ⊆ WT, the type system is complete
Usually, we can’t have both: undecidable
Traditionally, type-systems worry about soundness

▶ I.e: no accepted program can go wrong
…but might reject some correct programs
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Back to language definitions

Inductive: the smallest set E such that
▶ {true, false} ∈ E
▶ If t1 ∈ E then {succ t1, pred t1, iszero t1} ∈ E
▶ etc.

By inference rules, e.g:

t ∈ E

iszero t ∈ E

By construction:
▶ S0 = ∅
▶ Si+1 = {true, false, 0} ∪ succ t, pred t, iszero t | t ∈ Si ∪ . . .
▶ E =

∪
i Si
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Same thing for typing relation

Inductive: The smallest relation : such that
▶ 0 : Nat holds
▶ If t : Nat holds, then succ t : Nat also holds
▶ etc.

By inference rules:
t : Nat

succ t : Nat
By construction:

▶ T0 = ∅
▶ Ti+1 = {0 : Nat} ∪ {succ t : Nat | (t : Nat) ∈ Ti} ∪ . . .
▶ T =

∪
i Ti
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Type system

[T-True] true : Bool [T-False] false : Bool

[T-If]
t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T

[T-Zero]
0 : Nat [T-Succ] t : Nat

succ t : Nat

[T-Pred] t : Nat
pred t : Nat [T-IsZero] t : Nat

iszero t : Bool
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Inversion lemma

Typing relation is the smallest relation produced by the rules
And is syntax-driven (deterministic)
So we can invert it (inversion lemma):

▶ The only way to type true is [T-True], with type Bool
▶ The only way to type false is [T-False], with type Bool
▶ If there is a typing if t1 then t2 else t3 : T then the only way to create it

is [T-If], where t1 : Bool, t2 : T and t3 : T
▶ etc, for the other syntactic forms

Proof follows from the definition of typing
Makes inference rules go backwards:

▶ Given the conclusion, the premises must have been true (there is no
other way to reach that conclusion)

Practically, it describes the algorithm to construct a typing
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In OCaml

Grammar (Lec. 4):
type term =

True
| False
| If of term ∗ term ∗ term
| Zero
| Succ of term
| Pred of term
| IsZero of term

Type language:
type typ = TNat | TBool
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Type checking

let rec typecheck : term -> typ = function
True | False -> TBool

| If (t1, t2, t3) when typecheck t1 = TBool ->
let typ2 = typecheck t2 in
let typ3 = typecheck t3 in
if (typ2 = typ3) then typ2
else failwith ”type error ”

| Zero -> TNat
| Succ t | Pred t when (typecheck t) = TNat -> TNat
| IsZero t when (typecheck t) = TNat -> TBool
| _ -> failwith ”type error ”
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Progress theorem

If t : T then either t is a value, or there exists t′ such that t → t′
Proof by induction on t

▶ Base cases (simple values): true, false, 0, trivially true
▶ Inductive cases: assume sub-terms are either values or can step

⋆ Case succ t: if t is a value then succ t is a value, otherwise t → t′,
therefore succ t → succ t′ using the fourth semantic rule

⋆ Case pred t: from inversion, we know t : Nat. If t is a value it cannot
be true or false. So, we can always take a step from pred 0 or
pred (succ v). If t is not a value, t takes a step, and pred t → pred t′

⋆ …similarly for the other cases
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Preservation theorem

If t : T and t → t′ then t′ : T
Proof by induction on t → t′ (each semantic rule)

▶ First rule (base case) iszero 0 → true: From inversion lemma on
iszero 0 : T, we get that its type must be Bool, which is also the type
of true from [T-True]

▶ Second rule (inductive case) iszero t → iszero t′: From inversion lemma
on iszero t : T we get T = Bool and also t : Nat. From induction
hypothesis we have t → t′. Apply inductively on t : Nat and t → t′, to
get t′ : Nat. Then iszero t′ : Bool follows from [T-IsZero]

▶ Similarly for other base and inductive cases
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Soundness

So far:
▶ Progress: If t : T, then either t is a value, or there exists t′ such that

t → t′
▶ Preservation: If t : T and t → t′ then t′ : T

Putting these together, we get soundness
▶ If t : T then either there exists a value v such that t →∗ v or t doesn’t

terminate
What does this mean?

▶ “Well-typed programs don’t go wrong”
▶ Evaluation never gets stuck

This language will always terminate
▶ Proof by induction on term size (defined in Lec. 4)
▶ If t → t′ then size(t′) < size(t)
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Next time

The same, only for λ-calculus
▶ The function type
▶ What happens with variables?
▶ What happens with substitution?
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