
Lecture 6: The Untyped Lambda Calculus
Semantics and Implementation

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Programming Languages

Pratikakis (CSD) Untyped λ-calculus II CS546, 2024-2025 1 / 11



Last class

Lambda calculus, cf.1930s
▶ Simple, core language: everything is a function
▶ Can express all computation
▶ Can encode complex language features as syntactic sugar
▶ Simple semantics, one instruction: function application

Pratikakis (CSD) Untyped λ-calculus II CS546, 2024-2025 2 / 11



Defined in one slide

Syntax:
e ::= x Variables

| λx.e Function definition
| e e Function application

Nondeterministic small-step semantics:

(λx.e1) e2 → e1[x 7→ e2]
e → e′

(λx.e) → (λx.e′)

e1 → e′1
e1 e2 → e′1 e2

e2 → e′2
e1 e2 → e1 e′2

Pratikakis (CSD) Untyped λ-calculus II CS546, 2024-2025 3 / 11



Fun with encodings

Church integers: λs.λz.〈apply s on z for n times〉
Booleans: true = λt.λf.t and false = λt.λf.f
Pairs: (a, b) = λp.p a b
In general, encode data as a function that takes an action, and
applies it on the data
How about lists?

▶ [] = λf.λn.n
▶ a :: b = λa.λb.λf.λn.f a (b f n)

Examples:
▶ Predecessor function
▶ Addition and subtraction
▶ Check a list for empty
▶ Head and tail function for lists

Pratikakis (CSD) Untyped λ-calculus II CS546, 2024-2025 4 / 11



Example: Predecessor function for ints

We want pred 0 to evaluate to 0, pred 1 to 0, pred 2 to 1, etc.
Remove one application of s from the chain s(s(s . . . (s z)
Unfortunately not very easy for Church integers
Solution: rebuild the given number up to the previous number

▶ Similar to encoding of integers: base, inductive case
▶ Use pairs of predecessor, number: (pred n, n)
▶ Base case, or “zero”—start with pred 0, which is 0:

⋆ zz = (0, 0)

▶ Inductive case, or “successor”—construct the next pair (n, succ n) from
the previous (pred n, n)

⋆ ss = λp.(snd p, (succ (snd p))
▶ pred m is the first item of the m-th pair

⋆ pred = λm.(fst (m ss zz))

Pratikakis (CSD) Untyped λ-calculus II CS546, 2024-2025 5 / 11



Example: plus and minus

Plus: given two numbers m and n, construct a number m + n
▶ Replace zero in m with n: plus = λm.λn.λs.λz.n s (m s z)

Minus is a bit more complex
m − n : apply pred on m, n times

▶ But, n takes a function s and a z and applies s on z for n times
▶ Just call it with s = pred , and z = m:
▶ minus = λm.λn.n pred m
▶ Will apply pred on m for n times: m − n

Pratikakis (CSD) Untyped λ-calculus II CS546, 2024-2025 6 / 11



Terminology reminder

Combinator, or closed term: a term with no free variables
Normal form: a term that cannot be reduced further

▶ Normal form of a term is unique
▶ Does not always exist, a term may run forever
▶ Is not always reached, depending on evaluation order

A redex is a subterm that can be reduced: (λx.e) e′

Equivalent terms up to α-conversion: they can be made equal by
renaming bound variables
Substitution e[e′/x] or e[x 7→ e′]: replace all occurences of x in e by e′.

▶ Capture-avoiding: e′ does not have free variables that become bound
because of substitution

▶ Always possible, using α-conversion to rename variables

Pratikakis (CSD) Untyped λ-calculus II CS546, 2024-2025 7 / 11



Evaluation strategies

Full β-reduction: nondeterministic semantics
Normal order: always reduce leftmost, outermost redex
Call-by-name (lazy): no reductions under λ, only at the top-level

▶ Call-by-need (used in haskell): remember term substitutions and
replace all copies of an evaluated term in the AST with the value

▶ Instead of AST: abstract syntax graph
Call-by-value (eager): reduce only outermost redexes where the
argument is a value

Pratikakis (CSD) Untyped λ-calculus II CS546, 2024-2025 8 / 11



Lazy semantics

Small-step:

(λx.e1) e2 → e1[x 7→ e2]
e1 → e′1

e1 e2 → e′1 e2

Big-step:

(λx.e) ↓ (λx.e)
e1 ↓ (λx.e) e[x 7→ e2] ↓ e′

e1 e2 ↓ e′

Pratikakis (CSD) Untyped λ-calculus II CS546, 2024-2025 9 / 11



Eager semantics

Define values as:
v ::= λx.e

Small-step:

e1 → e′1
e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2 (λx.e) v → e[x 7→ v]

Big-step:

(λx.e) ↓ (λx.e)
e1 ↓ (λx.e) e2 ↓ v2 e[x 7→ v2] ↓ v

e1 e2 ↓ v

Pratikakis (CSD) Untyped λ-calculus II CS546, 2024-2025 10 / 11



In code

All so far is syntax driven: look at the syntax, decide which rule to
apply
The same for all helper function definitions: FV(e), subst(e, x, e′), etc.
OCaml datatypes and pattern matching helps with that
The abstract syntax tree:

type exp =
Var of string

| Fun of string ∗ exp
| App of exp ∗ exp

e ::= Expessions
x Variables

| λx.e Function definition
| e e Function application

Pratikakis (CSD) Untyped λ-calculus II CS546, 2024-2025 11 / 11


