
Lecture 5: The Untyped λ-Calculus
Syntax and basic examples

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Programming Languages

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 1 / 36



Motivation

Common programming languages are complex
▶ ANSI C99: 538 pages
▶ ANSI C++: 714 pages
▶ Java 2.0: 505 pages

Not ideal for teaching and understanding principles of languages and
program analysis
Ideal: a “core language” with

▶ Essential features enough to express all computation
▶ No redundancy: encode extra features as “syntactic sugar”

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 2 / 36



Lambda Calculus

Core language for sequential
programming
Can express all computation

▶ Still extremely simple and minimal
▶ Can encode many extensions as

syntactic sugar
Easy to extend with additional features
Simple to understand

▶ Whole definition in one slide

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 3 / 36



History

Invented in the 1930s by Alonzo Church (1903-1995)
Princeton Mathematician
Lectures on λ-calculus published in 1941
Also known for

▶ Church’s Thesis:
⋆ “Every effectively calculable (decidable) function can be expressed by

recursive functions”
⋆ i.e. can be computed by λ-calculus

▶ Church’s Theorem:
⋆ The first order logic is undecidable

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 4 / 36



Syntax

Simple syntax:

e ::= x Variables
| λx.e Function definition
| e e Function application

Functions are the only language construct
▶ The argument is a function
▶ The result is a function
▶ Functions of functions are higher-order

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 5 / 36



Semantics

To evaluate the term (λx.e1) e2
▶ Replace every x in e1 with e2

⋆ Written as e1[e2/x], pronounced “e1 with e2 for x”
⋆ Also written e1[x 7→ e2]

▶ Evaluate the resulting term
▶ Return the result

Formally called “β-reduction”
▶ (λx.e1) e2 →β e1[e2/x]
▶ A term that can be β-reduced is a “redex”
▶ We omit β when obvious

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 6 / 36



Convenient assumptions

Syntactic sugar for declarations
▶ let x = e1 in e2 really means (λx.e2) e1

Scope of λ extends as far to the right as possible
▶ λx.λy.x y is λx.(λy.(x y))

Function application is left-associative
▶ x y z means (x y) z

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 7 / 36



Scoping and parameter passing

β-reduction is not yet well-defined:
▶ (λx.e1) e2 → e1[e2/x]
▶ There might be many x defined in e1

Example
▶ Consider the program

let x = a in
let y = λz.x in
let x = b in
y x

▶ Which x is bound to a, and which to b?

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 8 / 36



Static (Lexical) Scope

Variable refers to closest definition
We can rename variables to avoid confusion:
let x = a in
let y = λz.x in
let w = b in
y w
Renaming variables without changing the program meaning is called
“α-conversion”

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 9 / 36



Free/bound variables

The set of free variables of a term is

FV(x) = x
FV(λx.e) = FV(e) \ {x}
FV(e1 e2) = FV(e1) ∪ FV(e2)

A term e is closed if FV(e) = ∅
A variable that is not free is bound

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 10 / 36



α-conversion

Terms are equivalent up to renaming of bound variables
▶ λx.e = λy.e[y/x] if y /∈ FV(e)
▶ Used to avoid having duplicate variables, capturing during substitution
▶ This is called α-conversion, used implicitly

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 11 / 36



Substitution

Formal definition

x[e/x] = e
y[e/x] = y when x ̸= y

(e1 e2)[e/x] = (e1[e/x] e2[e/x])
(λy.e1)[e/x] = λy.(e1[e/x]) when y ̸= x and y /∈ FV(e)

Example
▶ (λx.y x) x =α (λw.y w) x→β y x
▶ We omit writing α-conversion

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 12 / 36



Functions with many arguments

We can’t yet write functions with many arguments
▶ For example, two arguments: λ(x, y).e

Solution: take the arguments, one at a time (like we do in OCaml)
▶ λx.λy.e
▶ A function that takes x and returns another function that takes y and

returns e
▶ (λx.λy.e) a b→ (λy.e[a/x]) b→ e[a/x][b/y]
▶ This is called Currying
▶ Can represent any number of arguments

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 13 / 36



Representing booleans

true = λx.λy.x
false = λx.λy.y
if a then b else c = a b c
For example:

▶ if true then b else c→ (λx.λy.x) b c→ (λy.b) c→ b
▶ if false then b else c→ (λx.λy.y) b c→ (λy.y) c→ c

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 14 / 36



Combinators

Any closed term is also called a combinator
▶ true and false are combinators

Other popular combinators:
▶ I = λx.x
▶ K = λx.λy.x
▶ S = λx.λy.λz.x z (y z)
▶ We can define calculi in terms of combinators

⋆ The SKI-calculus
⋆ SKI-calculus is also Turing-complete

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 15 / 36



Encoding pairs

(a, b) = λx.if x then a else b
fst = λp.p true
snd = λp.p false
Then

▶ fst (a, b)→ ...→ a
▶ snd (a, b)→ ...→ b

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 16 / 36



Natural numbers (Church)

0 = λs.λz.z
1 = λs.λz.s z
2 = λs.λz.s (s z)
i.e. n = λs.λz.⟨apply s n times to z⟩
succ = λn.λs.λz.s (n s z)
iszero = λn.n (λs.false) true

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 17 / 36



Natural numbers (Scott)

0 = λx.λy.x
1 = λx.λy.y 0

2 = λx.λy.y 1

i.e. n = λx.λy.y (n− 1)

succ = λz.λx.λy.y z
pred = λz.z 0 (λx.x)
iszero = λz.z true (λx.false)

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 18 / 36



Nondeterministic semantics

(λx.e1) e2 → e1[e2/x]
e→ e′

(λx.e)→ (λx.e′)

e1 → e′1
e1 e2 → e′1 e2

e2 → e′2
e1 e2 → e1 e′2

Question: why are these rules non-deterministic?

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 19 / 36



Example

We can apply reduction anywhere in the term
▶ (λx.(λy.y) x ((λz.w) x)→ λx.(x ((λz.w) x)→ λx.x w
▶ (λx.(λy.y) x ((λz.w) x)→ λx.(λy.y) x w→ λx.x w

Does the order of evaluation matter?

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 20 / 36



The Church-Rosser Theorem

Lemma (The Diamond Property):
▶ If a→ b and a→ c, then there exists d such that b→∗ d and c→∗ d

Church-Rosser theorem:
▶ If a→∗ b and a→∗ c, then there exists d such that b→∗ d and c→∗ d
▶ Proof by diamond property

Church-Rosser also called confluence

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 21 / 36



Normal form

A term is in normal form if it cannot be reduced
▶ Examples: λx.x, λx.λy.z

By the Church-Rosser theorem, every term reduces to at most one
normal form

▶ Only for pure lambda calculus with non-deterministic evaluation
Notice that for function application, the argument need not be in
normal form

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 22 / 36



β-equivalence

Let =β be the reflexive, symmetric, transitive closure of →
▶ E.g., (λx.x) y→ y← (λz.λw.z) y y so all three are β-equivalent

If a =β b, then there exists c such that a→∗ c and b→∗ c
▶ Follows from Church-Rosser theorem

In particular, if a =β b and both are normal forms, then they are equal

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 23 / 36



Not every term has a normal form

Consider
▶ ∆ = λx.x x
▶ Then ∆ ∆→ ∆ ∆→ · · ·

In general, self application leads to loops
…which is good if we want recursion

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 24 / 36



Fixpoint combinator

Also called a paradoxical combinator
▶ Y = λf.(λx.f (x x)) (λx.f (x x))
▶ There are many versions of this combinator

Then, Y F =β F (Y F)
▶ Y F = (λf.(λx.f (x x)) (λx.f (x x))) F
▶ → (λx.F (x x)) (λx.F (x x))
▶ → F ((λx.F (x x)) (λx.F (x x)))
▶ ← F (Y F)

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 25 / 36



Example

fact (n) = if (n = 0) then 1 else n ∗ fact (n− 1)

Let G = λf.λn.if (n = 0) then 1 else n ∗ f(n− 1)

Y G 1 =β G (Y G) 1
▶ =β (λf.λn.if (n = 0) then 1 else n ∗ f(n− 1)) (Y G) 1
▶ =β if (1 = 0) then 1 else 1 ∗ ((Y G) 0)
▶ =β 1 ∗ ((Y G) 0)
▶ =β 1 ∗ (G (Y G) 0)
▶ =β 1 ∗ (λf.λn.if (n = 0) then 1 else n ∗ f(n− 1) (Y G) 0)
▶ =β 1 ∗ (if (0 = 0) then 1 else 0 ∗ ((Y G) 0))
▶ =β 1 ∗ 1 = 1

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 26 / 36



In other words

The Y combinator “unrolls” or “unfolds” its argument an infinite
number of times

▶ Y G = G (Y G) = G (G (Y G)) = G (G (G (Y G))) = . . .
▶ G needs to have a “base case” to ensure termination

But, only works because we follow call-by-name
▶ Different combinator(s) for call-by-value
▶ Z = λf.(λx.f (λy.x x y)) (λx.f (λy.x x y))
▶ Why is this a fixed-point combinator? How does its difference from Y

work for call-by-value?

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 27 / 36



Why encodings

It’s fun!
Shows that the language is expressive
In practice, we add constructs as language primitives

▶ More efficient
▶ Much easier to analyze the program, avoid mistakes
▶ Our encodings of 0 and true are the same, we may want to avoid

mixing them, for clarity

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 28 / 36



Lazy and eager evaluation

Our non-deterministic reduction rule is fine for theory, but awkward to
implement
Two deterministic strategies:

▶ Lazy: Given (λx.e1) e2, do not evaluate e2 if e1 does not need x
anywhere

⋆ Also called left-most, call-by-name, call-by-need, applicative,
normal-order evaluation (with slightly different meanings)

▶ Eager: Given (λx.e1) e2, always evaluate e2 to a normal form, before
applying the function

⋆ Also called call-by-value

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 29 / 36



Lazy operational semantics

(λx.e1)→l (λx.e1)
e1 →l λx.e e[e2/x]→l e′

e1 e2 →l e′

The rules are deterministic, big-step
▶ The right-hand side is reduced “all the way”

The rules do not reduce under λ
The rules are normalizing:

▶ If a is closed and there is a normal form b such that a→∗ b, then
a→l d for some d

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 30 / 36



Eager (big-step) semantics

(λx.e1)→e (λx.e1)
e1 →e λx.e e2 →e e′ e[e′/x]→e e′′

e1 e2 →e e′′

This big-step semantics is also deterministic and does not reduce
under λ
But is not normalizing!

▶ Example: let x = ∆ ∆ in (λy.y)

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 31 / 36



Eager Fixpoint

The Y combinator works for lazy semantics
▶ Y = λf.(λx.f (x x))(λx.f (x x))

The Z combinator does the same for eager (call-by-value) semantics
▶ Z = λf.(λx.f (λy.x x y))(λx.f (λy.x x y))
▶ Why doesn’t the Y combinator work for call-by-value?
▶ Why does Z do the same thing for call-by-value?

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 32 / 36



Lazy vs eager in practice

Lazy evaluation (call by name, call by need)
▶ Has some nice theoretical properties
▶ Terminates more often
▶ Lets you play some tricks with “infinite” objects
▶ Main example: Haskell

Eager evaluation (call by value)
▶ Is generally easier to implement efficiently
▶ Blends more easily with side-effects
▶ Main examples: Most languages (C, Java, ML, …)

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 33 / 36



Functional programming

The λ calculus is a prototypical functional programming language
▶ Higher-order functions (lots!)
▶ No side-effects

In practice, many functional programming languages are not “pure”:
they permit side-effects

▶ But you’re supposed to avoid them…

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 34 / 36



Functional programming today

Two main camps
▶ Haskell – Pure, lazy functional language; no side-effects
▶ ML (SML, OCaml) – Call-by-value, with side-effects

Old, still around: Lisp, Scheme
▶ Disadvantage/feature: no static typing

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 35 / 36



Influence of functional programming

Functional ideas move to other langauges
▶ Garbage collection was designed for Lisp; now most new languages use

GC
▶ Generics in C++/Java come from ML polymorphism, or Haskell type

classes
▶ Higher-order functions and closures (used in Ruby, exist in C#, Java,

C++) are everywhere in functional languages
▶ Many object-oriented abstraction principles come from ML’s module

system
▶ …

Pratikakis (CSD) Untyped λ-calculus I CS546, 2024-2025 36 / 36


	Introduction

