Lecture 5: The Untyped A-Calculus

Syntax and basic examples

Polyvios Pratikakis
Computer Science Department, University of Crete

Type Systems and Programming Languages

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 1/36

Motivation

@ Common programming languages are complex
» ANSI C99: 538 pages
» ANSI C++: 714 pages
» Java 2.0: 505 pages
@ Not ideal for teaching and understanding principles of languages and
program analysis
@ ldeal: a “core language” with

» Essential features enough to express all computation
» No redundancy: encode extra features as “syntactic sugar”

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 2/36

Lambda Calculus

@ Core language for sequential
programming
@ Can express all computation

» Still extremely simple and minimal
» Can encode many extensions as
syntactic sugar

Easy to extend with additional features
Simple to understand
» Whole definition in one slide

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 3/36

History

Invented in the 1930s by Alonzo Church (1903-1995)
Princeton Mathematician

Lectures on A-calculus published in 1941
Also known for
» Church’s Thesis:

* “Every effectively calculable (decidable) function can be expressed by
recursive functions”
* i.e. can be computed by A-calculus

» Church's Theorem:
* The first order logic is undecidable

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 4/36

Syntax

@ Simple syntax:

= x Variables
| Ax.e Function definition
| ee Function application

@ Functions are the only language construct
» The argument is a function
> The result is a function
» Functions of functions are higher-order

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 5/36

Semantics

@ To evaluate the term (Ax.e) e
> Replace every x in e; with ey
* Written as e1[ez/x], pronounced “e; with ey for x”
* Also written e1[x — €]
» Evaluate the resulting term
> Return the result
o Formally called “3-reduction”
> (Ax.e1) o —p ei[ea/X
» A term that can be S-reduced is a “redex”
» We omit 8 when obvious

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 6/36

Convenient assumptions

@ Syntactic sugar for declarations
> let x = ey in ey really means (Ax.e2) e

@ Scope of \ extends as far to the right as possible
> AxAy.xyis Ax.(Ay.(x y))

@ Function application is left-associative
» xyzmeans (xy) z

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 7/36

Scoping and parameter passing

@ [-reduction is not yet well-defined:

> (Ax.e1) e2 — er[ex/X]
» There might be many x defined in e;

@ Example
» Consider the program
let x=ain
let y= Az.xin
let x=bin
¥ X

» Which x is bound to a, and which to b?

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 8/36

Static (Lexical) Scope

@ Variable refers to closest definition

@ We can rename variables to avoid confusion:

let x=ain
let y = Az.xin
let w=bin
yw

@ Renaming variables without changing the program meaning is called
“a~-conversion”

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 9/36

Free/bound variables

@ The set of free variables of a term is

FV(x) = x
FV(Ax.e) = FV(e)\ {x}
FV(e1 &) = FV(e) U FV(ep)
e A term eis closed if FV(e) = ()

@ A variable that is not free is bound

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 10/36

Qi-conversion

@ Terms are equivalent up to renaming of bound variables
» Ax.e=Ay.ely/x if y ¢ FV(e)
» Used to avoid having duplicate variables, capturing during substitution
» This is called a-conversion, used implicitly

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 11/36

Substitution

@ Formal definition

xle/x] = e
vle/d =y when x # y
(e1e)le/x = (etle/x] eale/x)
(Ay.e1)le/x] = Ay.(eile/x]) when y # x and y ¢ FV(e)

@ Example
> (Axyx) x=q AWy w) x =g y x
» We omit writing a-conversion

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 12/36

Functions with many arguments

@ We can't yet write functions with many arguments
» For example, two arguments: A(x, y).e

@ Solution: take the arguments, one at a time (like we do in OCaml)
> AXA\y.e

» A function that takes x and returns another function that takes y and
returns e

» (Ax.\y.e) ab— (\y.ela/x]) b— e[a/X|[b/y]

» This is called Currying

» Can represent any number of arguments

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 13/36

Representing booleans

@ true = AxA\y.x
o false = Ax\y.y
o ifathen belsec=abc

@ For example:

> if true then belse c — (Ax.A\y.x) bc— (A\y.b) c— b
» if false then belse c — (AxAy.y) bc— (Ay.y) c— ¢

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 14 /36

Combinators

@ Any closed term is also called a combinator
» true and false are combinators
@ Other popular combinators:
> /= dxx
> K= Ax\y.x
> S= Ay Azxz(yz)
» We can define calculi in terms of combinators

* The SKl-calculus
* SKil-calculus is also Turing-complete

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 15/36

Encoding pairs

e (a,b) = Ax.if xthen aelse b
o fst = Ap.ptrue

@ snd = Ap.p false

@ Then

> fst(a,b) —» ... > a
» snd (a,b) = ... > b

Pratikakis (CSD) Untyped A-calculus |

Natural numbers (Church)

0= As.\z.z

1=AsAzsz

2=XAs\Azs(s2)

i.e. n= As.\z.(apply s n times to z)
succ = An.As.\z.s (ns z)

iszero = An.n (As.false) true

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 17 /36

Natural numbers (Scott)

o 0= AxAy.x

o 1=XAxA\y.y0

@ 2=XAxAyyl

@ ie. n=AxAyy(n—1)
@ succ = AzAxA\y.y z

e pred = Az.z0 (Ax.x)

°

iszero = A\z.z true (Ax.false)

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 18/36

Nondeterministic semantics

e—¢
(Ax.e1) e2 — er]e2/x] (Ax.e) = (Ax.€)

e — € e — €

e e — € e e e — e €

Question: why are these rules non-deterministic?

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 19/36

Example

@ We can apply reduction anywhere in the term
> (Ax(Ayy) x (Azw) x) = Ax.(x (Az.w) x) = Axx w
> (Ax(Ayy) x (Azw) x) = Ax.(Ay.y) x w— Axxw

@ Does the order of evaluation matter?

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 20/36

The Church-Rosser Theorem

@ Lemma (The Diamond Property):
» If a— b and a — ¢, then there exists d such that b —* d and ¢ —* d
@ Church-Rosser theorem:
» If a—* band a =™ ¢, then there exists d such that b —* d and ¢ —* d
» Proof by diamond property

@ Church-Rosser also called confluence

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 21/36

Normal form

@ A term is in normal form if it cannot be reduced
» Examples: Ax.x, Ax.\y.z

@ By the Church-Rosser theorem, every term reduces to at most one
normal form

» Only for pure lambda calculus with non-deterministic evaluation

o Notice that for function application, the argument need not be in
normal form

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 22/36

[-equivalence

@ Let =g be the reflexive, symmetric, transitive closure of —

» Eg., (Axx) y— y+ (Az.Aw.z) y y so all three are S-equivalent
e If a=p b, then there exists c such that a =" cand b —* ¢

» Follows from Church-Rosser theorem

@ In particular, if 2 =g b and both are normal forms, then they are equal

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 23 /36

Not every term has a normal form

@ Consider

» A= Ax.xx
» Then AA - AA— ---

@ In general, self application leads to loops

@ ..which is good if we want recursion

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 24 /36

Fixpoint combinator

@ Also called a paradoxical combinator

> Y= M(Axf(xx)) (Ax.f(xx))
» There are many versions of this combinator
@ Then, YF=3 F(YF)
Y F= (M. (Axf(xx)) (Ax.f(xx))) F
= (Ax.F (xx)) (Ax.F (x x))
— F(Ax.F (xx)) (Ax.F (xx)))
+— F(YF)

v

v vYyy

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 25/36

Example

e fact(n) =if (n=0) then 1 else n* fact(n—1)

@ Let G= AfAn.if (n=0) then 1 else nx f{n—1)

e YGl=3G(YG)1

=g (M Anif (n=0) thenlelse nxfin—1)) (YG) 1
=g if (1=0) thenlelselx ((YG)O0)

5 1+((Y 6)0)

=31%(G(YG)O0)

=g 1% (AfAn.if (n=0) then L else n* f{n—1) (Y G) 0)
=g 1% (if (0 =0) then L else 0% ((Y G) 0))
—plxl=1

v

vV VY VY VY VY

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 26 /36

In other words

@ The Y combinator “unrolls” or “unfolds” its argument an infinite
number of times
» YG=G(YG=G(G(YG)=G(G(G(YG))=...
» G needs to have a “base case” to ensure termination
@ But, only works because we follow call-by-name

» Different combinator(s) for call-by-value

> Z= X M.(Axf(Ay.xxy)) Ax.f(Ay.xxy))
» Why is this a fixed-point combinator? How does its difference from Y

work for call-by-value?

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 27/36

Why encodings

o It's fun!

@ Shows that the language is expressive
@ In practice, we add constructs as language primitives
» More efficient
» Much easier to analyze the program, avoid mistakes
» Our encodings of 0 and true are the same, we may want to avoid
mixing them, for clarity

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 28/36

Lazy and eager evaluation

@ Our non-deterministic reduction rule is fine for theory, but awkward to
implement

@ Two deterministic strategies:

» Lazy: Given (Ax.e1) ez, do not evaluate ey if e; does not need x
anywhere

* Also called left-most, call-by-name, call-by-need, applicative,
normal-order evaluation (with slightly different meanings)

» Eager. Given (Ax.e1) ez, always evaluate e; to a normal form, before
applying the function
* Also called call-by-value

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 29 /36

Lazy operational semantics

()\x.el) —)I ()\X e1)

e —»' Mxe elex/x] =€

e e = e

@ The rules are deterministic, big-step
» The right-hand side is reduced “all the way"
@ The rules do not reduce under A

@ The rules are normalizing:

» If ais closed and there is a normal form b such that a —* b, then
a —' d for some d

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 30/36

Eager (big-step) semantics

()\x.el) —€ ()\x.el)
e > Axe e —¢éd eld/x o
e e —¢¢’

@ This big-step semantics is also deterministic and does not reduce
under A
e But is not normalizing!
» Example: let x=A Ain (Ay.y)

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 31/36

Eager Fixpoint

@ The Y combinator works for lazy semantics
> Y= MOAxF(xx)(Ax.f(xx))
@ The Z combinator does the same for eager (call-by-value) semantics

> Z=A.(Axf(Ay.xxy))(Ax.f(Ay.xxy))
» Why doesn’t the Y combinator work for call-by-value?

» Why does Z do the same thing for call-by-value?

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 32/36

Lazy vs eager in practice

@ Lazy evaluation (call by name, call by need)
» Has some nice theoretical properties
» Terminates more often
» Lets you play some tricks with “infinite” objects
» Main example: Haskell

e Eager evaluation (call by value)

> Is generally easier to implement efficiently
» Blends more easily with side-effects
» Main examples: Most languages (C, Java, ML, ...)

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 33/36

Functional programming

@ The A calculus is a prototypical functional programming language

» Higher-order functions (lots!)
> No side-effects

@ In practice, many functional programming languages are not “pure”:
they permit side-effects

» But you're supposed to avoid them..

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 34 /36

Functional programming today

@ Two main camps
» Haskell — Pure, lazy functional language; no side-effects
» ML (SML, OCaml) — Call-by-value, with side-effects

e Old, still around: Lisp, Scheme
» Disadvantage/feature: no static typing

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 35/36

Influence of functional programming

@ Functional ideas move to other langauges

» Garbage collection was designed for Lisp; now most new languages use
GC

» Generics in C++/Java come from ML polymorphism, or Haskell type
classes

» Higher-order functions and closures (used in Ruby, exist in C#, Java,
C++) are everywhere in functional languages

» Many object-oriented abstraction principles come from ML's module
system

Pratikakis (CSD) Untyped A-calculus | CS546, 2024-2025 36 /36

	Introduction

