ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα

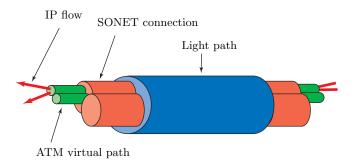
Βασίλειος Σύρης

Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Εαρινό εξάμηνο 2008

Network services

Contracts – Service Level Agreements (SLAs)

Service layering

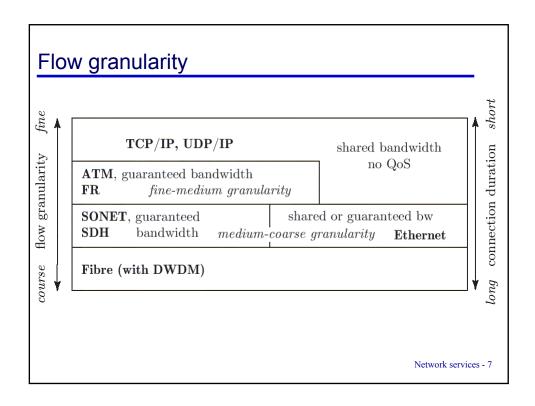

- A service at one layer utilizes lower layer services, and adds to their functionality
- Higher layer services: interface directly with user, e.g., web browsing
 - ASP: Application Service Providers
- Lower layer services: users use indirectly, e.g. Internet transport
- Quality of higher layer services depends on quality of lower layer services
 - Higher layer: response time, transaction rate, etc
 - Lower layer: throughput, delay, jitter, etc
- Access services: connects user equipment to network

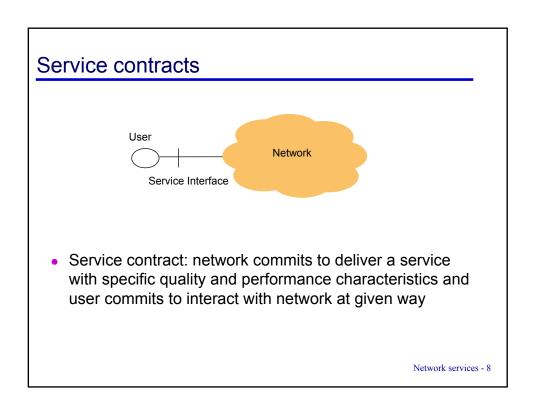
Network services - 3

Transport technologies

- IP
- Ethernet
- ATM (Asynchronous Transfer Mode)
- MPLS (MutliProtocol Label Switching)
- SDH (Synchronous Digital Hierarchy), SONET (Synchronous Optical Network)
- DWDM (Dense Wave Division Mux)

Transport service layering


Network services - 5


Transport service classification

- Connection-oriented
- Connectionless
- Synchronous, e.g. ISDN, SDH/SONET
 - data transport at regular intervals
- Asynchronous, e.g. ATM (cell switching), IP (packet switching)
 - take advantage of statistical multiplexing
- Best-effort
- Guaranteed
- Flow isolation: used to guarantee performance
- Flow granularity

Network services - 6

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα, Βασίλειος Σύρης, Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης, Άνοιζη 2008

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα, Βασίλειος Σύρης, Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης, Άνοιζη 2008

Service contracts (cont.)

- Service contracts also known as Service Level Agreements (SLA)
- Service contract can include:
 - Billing/tariff issues
 - Geographic coverage
 - Reliability/uptime
 - Response to failures
 - Help desk/call center support
 - QoS parameters
 - Traffic description
- Traffic contract part of service contract that is concerned with characteristics of transport service

Network services - 9

ATM Quality of Service (QoS) Parameters

ATM QoS parameters characterise performance of an ATM layer connection

- Max Cell Transfer Delay (CTD): Delay experienced by a cell between network entrance and exit points
- peak-to-peak Cell Delay Variation (CDV): max min cell transfer delay
- Cell Loss Ratio (CLR): Percentage of cells that are lost
- Minimum Cell Rate (MCR): Minimum cell rate user is allowed to always send
- The above are user negotiable
- Also, a number of additional, non-negotiable QoS parameters have been defined

Quality specification

- Deterministic, e.g. 0% loss
- Statistical, e.g. 10⁻⁵ loss percentage
- Relative, e.g. class A received better quality than class B

Network services - 11

Traffic Parameters

Traffic parameters describe inherent characteristics of a traffic source

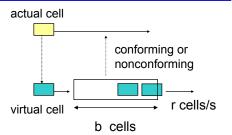
- Peak Cell Rate (PCR): Maximum instantaneous rate
- Sustained Cell Rate (SCR): Average cell rate measured over some long interval
- Maximum Burst Size (MBS): Maximum burst size (# of cells) that can be sent at the peak rate

Leaky bucket traffic descriptor

- Used for traffic characterization
- Defined by leak rate r and bucket size b
- Conforming traffic stream must satisfy

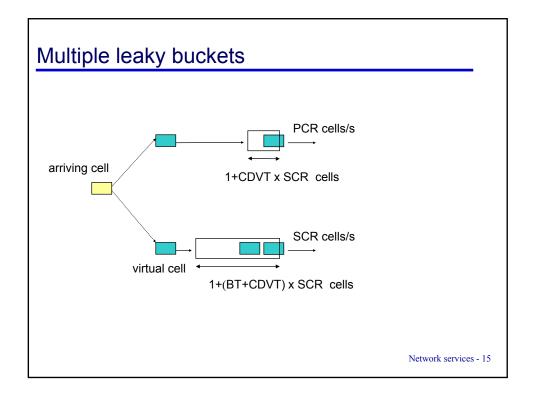
$$X[t,t'] \le r(t'-t) + b$$
 for all $t < t'$

Equivalently


$$\frac{X[t,t']}{t'-t} \le r + \frac{b}{t'-t} \quad \text{for all} \quad t < t'$$

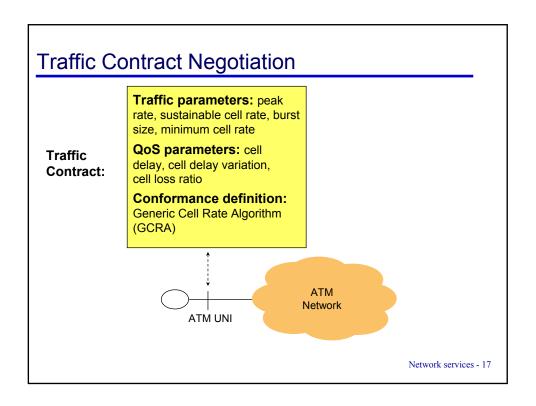
- Larger width [t,t') => rate bounded by leak rate r
- In window [t,t') source allowed to produce burst b above r(t'-t)
- Leaky bucket permits arbitrary large peak rate

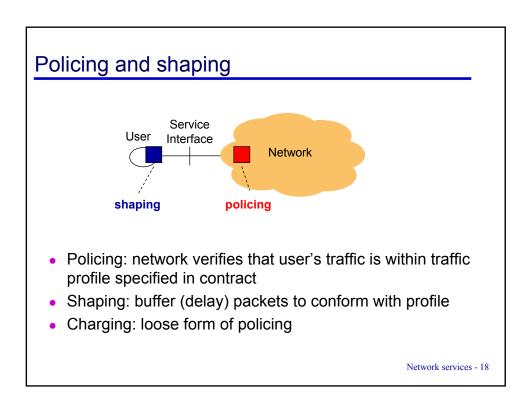
Network services - 13


Leaky Bucket Algorithm

- Bucket size b
- Leak rate r
- Bucket contents by 1 or pkt size for each conforming cell/pkt

B: bucket contents


If B+1> b
 cell nonconforming
else
 cell conforming
B=B+1



Traffic control using leaky buckets

- Assume leaky bucket (r,b) and access rate h
- Maximum time t user can transmit at rate h

$$ht \le rt + b \Rightarrow t = \frac{b}{h - r}$$

Contract parameters

- Static parameters: set when contract is established, and remain constant throughout its life
- Dynamic parameters: updated during contract's lifetime

Contract A
No loss provided
rate < 1 Mbps

Contract B
No loss provided
rate < h Mbps,
where network can
vary h between
1<h<2 Mbps

- Both A and B: static parameters zero loss, 1 Mbps
- Contract B: dynamic parameter extra rate 0<x<1 Mbps

Network services - 19

Contract parameters (cont.)

Contract A
No loss provided
rate < 1 Mbps

Contract B
No loss provided
rate < h, where
network can vary h
between 1<h<2
Mbps

Contract C
Loss < 10⁻⁵
provided rate < h,
where *user* can
vary h between
1<h<2 Mbps

- Contract B: network is varying rate h, depending on spare capacity; appropriate for elastic applications
- Contract C: user varies h; network must always be able to provide 2 Mbps, with loss < 10⁻⁵; network takes advantage of statistical mux
- Contract C: good idea to charge user for h-1

Contract parameters (cont.)

- Static parameters
 - network must reserve resources for these
- Dynamic parameters
 - Network dynamically reserves resources for these
 - Must specify who is responsible for changing dynamic parameters
 - With pricing, network can influence value of dynamic parameters, even if he is not responsible for choosing them
- Example of service with purely dynamic parameters: TCP
 - TCP software dynamically controls maximum rate h
 - Implicit guarantee of small pkt loss
- Measured parameters: known after connection starts, e.g. duration, transferred volume