ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα

Βασίλειος Σύρης

Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Εαρινό εξάμηνο 2008

> Pricing and network control Incentives Simple modeling

Pricing & control - 3

Prices affect demand: e.g. lowering prices increases demand
Prices can be used to control congestion
Competition can drive prices to marginal cost
Large fixed cost of constructing a network
If there is no congestion, marginal cost of providing one additional unit of service is almost zero
Networks and information goods: costly to produce but cheap to reproduce (sunk cost, zero marginal cost)
But networks also have operational and maintenance costs (including billing)
Another difference: networks can get congested

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα, Βασίλειος Σύρης, Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης, Άνοιζη 2008

Incentives
 Flat rate versus usage charging
 Example: all-you-can eat
 Time of day charging in telephony
 Dynamic pricing in an Internet Café
 Fixed price per ticket
Normal & peak periods: duration depends on # of users
 Taxi tariffs: a+b*T+c*X, where
 a,b,c: tariffs parameters
 T: duration, X: distance
 T,X mutually exclusive: if speed small then charge T, else X
 Large b: incentive for driver to increase duration (drive fast between lights, and wait long time at lights)
 During day when demand is high: make trips short, accommodate more people, and take advantage of fixed charge a
Pricing & control - 16

Taking into account user utility

- User utility: $u_i(x_i)$
- Global planning problem:

$$\max_{\{x_i\}} \sum_i u_i(x_i) \quad s.t. \quad \sum_i x_i \le C$$

- 19

• But, difficult to know all utilities

