### Charging ATM Services: Guaranteed Services

by Costas Courcoubetis, Vasilios Siris, George D. Stamoulis

Winter 1998

### Contents

- Effective Bandwidths and Charging of VBR services
- Time- and Volume-based Charging of VBR services
  - Simple Charging Scheme
  - Properties and Incentives
  - Examples
  - Simplifications
- CBR and PVC Charging

Guaranteed Services-2

### Effective Bandwidths Reminder

 k traffic classes class i contributes  $n_i$  sources



- Which  $(n_1,...,n_k)$  do not violate QoS constraint (e.g.  $CLP \le e^{-\delta}$ )?
- → CAC can use Effective Bandwidths:

$$n_1 \cdot \alpha_1 + \dots + n_k \cdot \alpha_k \le C^* = C + \frac{1}{t}(B - \frac{\gamma}{s})$$

Guaranteed Services- 3

### Effective Bandwidth Formula

• Effective bandwidth of a source of type *j* 

$$\alpha_j(s,t) = \frac{1}{st} \log E \left[ e^{sY_j[0,t]} \right]$$

 $X_i[0,t]$ : load produced by source of type j in window t

• The effective bandwidth  $\alpha_i(s,t)$  quantifies resource usage for a particular operating point (s,t)

Guaranteed Services-4

### **ON/OFF Source Model**

- At each interval of duration t:
  - either OFF: X=0 (with probability 1-p)
  - or ON: X=ht (with probability p)



- mean rate m = p\*h
- effective bandwidth  $\alpha_{on/off}(s,t) = \frac{1}{st} \log \left[ 1 + \frac{m}{h} (e^{sth} 1) \right]$
- → ON/OFF has the largest possible effective bandwidth (over all traffic models) for given m and h and operating point

Guaranteed Services- 5

### Charging VBR Services - Idea 1

- Apply CAC with effective bandwidths and
- Charge (per unit time) each VBR call proportionally to effective bandwidth
  - Pro: Theoretically justifiable and fair
  - ▼ Con: Requires accurate a priori knowledge of complex traffic statistics
    - If empirical estimate from sampling previous calls is used, users have the wrong incentive to reach this value
    - user will tend to overload the network => similar to overeating in allyou-can-eat restaurants

Guaranteed Services-6

## Charging VBR Services - Idea 2 ■ Use traffic contracts specifying: ■ peak rate ■ sustainable cell rate, max burst size ■ Apply CAC with the worst-case effective bandwidths for contracts and ■ Charge each VBR call proportionally to worst-case effective bandwidth ■ Pro: No complicated traffic statistics ▼ Cons: Unfair to users with mean rate < SCR, or peak rate < h Provides the wrong incentive to increase traffic

### Why Failed So Far?

- Previous approaches only based on static a priori variables, determined by traffic contract
  - Provided wrong incentives to exhaust the resource usage permissible by contract
- Charging should also employ dynamic a posteriori variables, measured during call

Guaranteed Services-8

### Charging VBR Services - Idea 3

- Measure the effective bandwidth during each VBR call, and charge proportionally to it
  - ▲ Pro: Provides the right incentives
  - ▼ Con: Incompatible with static CAC
    users may possibly not pay for all the resources reserved by CAC
    e.g. a user with no traffic, would face 0 charge

Guaranteed Services- 9

Guaranteed Services- 11

### What is Needed?

- Charge according to both:
  - static variables reflecting traffic contract and resources reserved by CAC
  - dynamic variables reflecting actual usage
- Final charge should be close to actual effective bandwidth
- Allow the user to select a tariff:
  - selection should reveal some important additional information to the network

Guaranteed Services-10

### Simple Charging Scheme for VBR Services Assume per VBR call: only peak rate is policed known peak rate h, unknown mean rate M For each VBR call, the user selects a tariff, by declaring his prediction m for the mean rate; ■ e.g., by sampling the volume and duration of previous calls → Charge per unit time: $f(m; M) = a(m) + b(m) \cdot M$ for good choice of tariff, actual mean rate, measured in call as M = V/T = Volume / Timecharge is close to the worst-case (ON/OFF) user prediction of mean effective bandwidth permissible by contract rate - defines tariff F.P.Kelly, "Tariffs and Effective Bandwidths in Multiservice Networks", ITC 94



### Properties of Simple Charging Scheme

- Total charge =  $T \cdot f(m; M) = a(m) \cdot T + b(m) \cdot V$
- Fair: Charges both for
  - resource *usage* => volume-component
  - resource reservation => time-component
- Simple Accounting
  - Requires only *simple* measurements: *T* and *V*
- Choice of tariff reveals important user-information

Guaranteed Services- 13

### Incentives to the User

- Provides the user with the right incentives. In particular:
  - $\,\blacksquare\,$  Incentive to accurately declare the mean rate  $M_{\circ}$  if known a priori
  - $\blacksquare$  For random mean rate M : Expected charge is minimised for  $m\!=\!E[M]$ 
    - user has the incentive to estimate this (from empirical information), and declare it to the network
  - Incentive to shape traffic, thus reducing peak rate h and the charge

Guaranteed Services-14

### Incentive Compatibility

- User's optimal declaration of  $\emph{m}$  is  $\emph{informative}$  to the network provider
- Can be used by network provider in more efficient allocation of resources, thus improving operation of the network
- User's incentive to shape traffic reduces burstiness, thus also leading to more efficient operation of the network

Guaranteed Services- 15

### Computation of a(m) and b(m)

- Both a(m) and b(m) can be expressed in *closed* form
- Appropriate values of s,t can be derived /numerically

Guaranteed Services-16

Guaranteed Services-18

### **Examples of Tariffs**

| h=3       | = 1 sec/Mbit |      |
|-----------|--------------|------|
| M         | a(m)         | b(m) |
| 0.20 Mbps | 0.26         | 2.80 |
| 0.75 Mbps | 0.93         | 1.10 |
| 1.50 Mbps | 1.46         | 0.60 |
| 2.25 Mbps | 1.81         | 0.41 |
| 2.80 Mbps | 1.98         | 0.34 |

| h = 1.5 Mbps $st = 1$ sec/Mbit |      |      |  |  |
|--------------------------------|------|------|--|--|
| M                              | a(m) | b(m) |  |  |
| 0.20 Mbps                      | 0.06 | 1.59 |  |  |
| 0.75 Mbps                      | 0.37 | 0.85 |  |  |
| 1.50 Mbps                      | 0.72 | 0.52 |  |  |

a(m) => \$/sec b(m) => \$/Mbit

| h = 3 Mbps $st = 2$ sec/Mbit |      |      |  |  |
|------------------------------|------|------|--|--|
| M                            | a(m) | b(m) |  |  |
| 0.20 Mbps                    | 1.18 | 2.41 |  |  |
| 0.75 Mbps                    | 1.82 | 0.66 |  |  |
| 1.50 Mbps                    | 2.16 | 0.33 |  |  |
| 2.25 Mbps                    | 2.36 | 0.22 |  |  |
| 2.80 Mbps                    | 2.46 | 0.18 |  |  |

Guaranteed Services- 17

### How a(m) and b(m) Vary • For fixed h, s, t, as m increases: • a(m) increases • b(m) decreases • charge for time increases, while charge for volume decreases, because the ability for multiplexing diminishes $a(m_1)$ $a(m_2)$ $a(m_3)$

# How a(m) and b(m) Vary (continued) • For fixed m, s, t, as h increases: • both a(m) and b(m) increase • the source is more bursty, thus reserving and using more resources • The source is more bursty, thus reserving and using more resources









### Discouraging Splitting of Traffic - Fixed Charge Traffic splitting is undesirable to provider, because: may lead to reduced revenue set of available VPI/VCI may be exhausted increased signaling overhead for setting more VCs Splitting should be discouraged => add a fixed charge per VC Total Charge = a(m) ⋅ T + b(m) ⋅ V + c(m) However, traffic splitting could be beneficial to provider, if substreams can only be accommodated through different routes

### Examples of a, b,c Tariffs

| h = 3 Mbps $st = 1$ sec/Mbit |      |      |       |  |  |
|------------------------------|------|------|-------|--|--|
| M                            | a(m) | b(m) | c(m)  |  |  |
| 0.20 Mbps                    | 0.26 | 2.80 | 1.26  |  |  |
| 0.75 Mbps                    | 0.93 | 1.10 | 5.65  |  |  |
| 1.50 Mbps                    | 1.46 | 0.60 | 8.30  |  |  |
| 2.25 Mbps                    | 1.81 | 0.41 | 10.05 |  |  |
| 2.80 Mbps                    | 1.98 | 0.34 | 10.90 |  |  |

- Fixed charge c(m)
  - is expressed in \$
  - was taken (in the examples) as  $a(m)*5\sec+1$

Guaranteed Services- 25

### Alternative Discouraging of Traffic Splitting

Use homothetic tariffs, starting from the effective bandwidth curve for a par ular h



- Pros: convexity makes users reveal their mean rates, no incentive to split
- ▼ Cons: charge not proportional to effective bandwidth (but close!)

Guaranteed Services-26

### Extensions to the Simple Charging Scheme

- Simple charging scheme bounds the effective bandwidth according to the ON/OFF model
- Other concave bounds, parameterised with mean rate, can also be used
  - Same approach: charge per unit time derived according to the tangent selected by the user 

    ♠



### Outline of the VBR-Charging Approach

- Total charge for a call is a(...)T+b(...)V+c(...) where
  - *T* = duration of call (e.g. seconds)
  - V = volume of call (e.g. Mbits or Mcells)
  - a(...), b(...), c(...) capture QoS, traffic contract parameters, and user's choice of tariff



### Simpler Charging: Dispensing with Duration

- The time-component of charge can be eliminated
  - ⇒ total charge =  $b(m) \cdot V + c(m)$
  - tariff will be simpler
  - dependence of usage-charge on QoS will be clearer
- Motivation
  - c(m) can be set to account for typical time-charge too
  - For reasonable user declarations:  $T \approx V/m$  and  $a(m) \cdot T + b(m) \cdot V + c(m) \approx a(m) \cdot (V/m) + b(m) \cdot V + c(m) = b'(m) \cdot V + c(m)$
- However, users will have *no* incentive to close connections
  - set of available VPI/VCI may be exhausted
  - provider can limit the maximum number of VPI/VCIs permissible per user

Guaranteed Services- 29

### **Charging CBR Services**

- Simple charging scheme can also be applied to CBR services
  - users should declare m=h
  - Total Charge =  $a(h) \cdot T + b(h) \cdot V + c(h)$
  - Volume-charge does *not* vanish, because  $b(h) \neq 0$ 
    - → makes sense because unused bandwidth is taken by ABR
- CBR services should be charged only on the basis of time, if their peak rate is really reserved, and CBR is not multiplexed statistically
  - simpler scheme
  - already adopted in practice

Guaranteed Services- 30

### **Charging PVCs**

- So far have only dealt with Switched VCs for VBR services (SVCs)
- Simple charging scheme can also be applied to Permanent VCs (PVCs) for VBR services
- However, PVCs can also be charged only on the basis of time, if they are not multiplexed statistically, due to their long duration
  - simpler scheme
  - already adopted in practice

Guaranteed Services- 31