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5. Switching Fabrics
Table of Contents:

• 5.0 Introduction

– multistage netw., bisection b/w, non-blocking perf., routing categories

• 5.1  Inverse Multiplexing (Adaptive / Multipath Routing)

– byte-sliced switches, recursive definition of the Benes network

– load distribution & balancing, packet ordering & resequencing

• 5.2  Scalable Non-Blocking Switching Fabrics

– Banyan (k-ary n-flies), Benes, Clos – O(N·logN) cost & lower bound

– fat trees (k-ary n-trees) – controlled blocking, locality of traffic

– fully-connected networks – flat networks

– Dragonfly networks – few global links and small diameter

• 5.3  What about Scalable Scheduling?

– buffers in multi-stage fabrics

– scheduling bufferless Clos networks, load-balanced switches

– self-routing fabrics, sorting networks: bad solution

– fabrics with small internal buffers and flow control: good solution
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5. Switching Fabrics

• What are switching fabrics (or multi-stage interconnection networks)?

– a network consisting of multiple smaller switches interconnected via 

channels (point-to-point links)

 switches are usually crossbars, each one impl. in a single chip/board

• Why switching fabrics?

– crossbars do not scale to large port counts

 N2 crosspoints 

 I/O chip bandwidth (# pins / HSS cores &  power limitations)

• Where are they deployed?

– inside large routers/switches

 multi-chip/multi-chassis routers

 single-chip switches (internally multi-stage)

– inside modern datacenters and high-performance computers

– inside chip multi-processors (Networks-On-Chip)
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5.0 Switching Fabrics: terminology

• Network = nodes + channels

– node= terminal or switch, channel= connection (link) between 2 nodes

• Path =  a set of channels {c1, c2, …, cn} : dci
= sci+1

, for i in 1…(n-1)

• Hop count of path: the number of channels traversed in the path

• Connected network: path exists between any pair of terminals

• Minimal path from node x to node y = the path with the smallest hop count 

connecting node x to node y

• Network diameter = the largest hop count over all pairs of terminals
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5.0 Switching Fabrics: performance

• Typically sub-optimal performance (compared to xbars)

– “ideally, we would like to connect all processors in a datacenter using a 

single flat (crossbar-like) network”

• Challenges

– full / high tput irrespective of traffic pattern/orientation (routing)

– fairness (scheduling)

– flow isolation (congestion control)

– equidistant paths ?

 same latency irrespective to which ports communicate

• Recent trend: datacenters networks  flattened datacenter fabrics

– replace previous “slim” datacenter nets w. high-performance fabrics
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5.0 Non-Blocking Switching Fabrics

• Non-blocking fabrics/ networks

– can route any input-output permutation

 necessary condition: at least N! states  ≥ log2(N!) crosspoints

– feasible traffic for network ports (for each port : sum load ≤ 1) feasible 

for internal links as well 

 necessary condition: full bisection bandwidth

• Strictly vs. rearrangeably non-blocking networks

– if netw. currently “switches” connections {1-0, 2-1, 0-3}

 adding 3-2 does not require rerouting connections (strictly non-blocking)

 adding 3-2 may require rerouting existing connections (rearrangeably non-blocking)

Typically, a network with path diversity (≥ 1 paths for port-pair flows) 

becomes non-blocking only if appropriate routing is applied
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5.0 Bisection Bandwidth

• A bisection is a set of channels that partitions:

– nodes into two ~ equal groups: |N1| ≤ |N2| +1, |N2| ≤ |N1| +1

– terminals nodes into two ~equal groups : |n1| ≤ |n2| + 1, |n2| ≤ |n1| + 1 

• Bisection bandwidth = minimum bandwidth over all bisections

– implementation cost (global wiring) 

– non-blocking performance (if no “full bisection” then the network is blocking)

 however, full bisection does not guarantee non-blocking performance (routing)

Full bisection bandwidth network

• in each direction, the bisection 

has the same capacity as N/2 

ports  
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5.0 Bisection Bandwidth: examples

Bidirectional 

networks

Unidirectional

networks
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5.1 Inverse Multiplexing

• What is it?

– a (multi-path) routing strategy that spreads the load (packets/flows) 

equally among all available paths

 a technique for scalable, non-blocking switching fabrics

• Generalization of bit/byte slicing

– break packets into (“headerless”) slices; forwarded slices 

synchronously via parallel wires/links or even subnets (Tiny-Tera)

 same idea: high-tput buffer from many lower-throughput buffers

– perfect load balancing (equal load on all links, ignoring padding 

ovrhd) but not practical for distributed implementation (synchronous 

subnets, central control)

• “inverse-multiplex” fragments of packets? yes, but header ovrhd

– practical only for large packets; done inside some (internally 

multipath) routers working on “fixed-size” (e.g. 256-byte) segments 
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5.1  Parallelism for High-Thruput: Inverse Multiplexing

• Parallel wires or network routes for scaling (virtual) “link” throughput up

• Easy: central control, synchronized; Difficult: distributed control, asynch.
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5.1 Inverse Multiplexing: granularity of load balancing

• Fine grain: equalize load on a small time scale

• Coarse grain: danger of overshooting paths (& filling up buffers  delay)
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5.1  Byte-Slicing: Tiny Tera & other commercial chips

Mckeown e.a.: “Tiny Tera: a Packet Switch Core”, IEEE Micro, Jan.-Feb.’97
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5.2.1

Benes 

Fabric: 

Recursive 

Definition

• Goal: reduce switch radix from N×N to (N/2)×(N/2): combine ports in pairs

• Port-pairs require links of twice the throughput: use inverse multiplexing

Use two switches, of half the radix each, in parallel to provide req’d thruput
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Full Construction of 16×16 Benes out of 2×2 Switches
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Hierarchical Crossbars: single-path non-blocking netw.

• No path diversity … but the network is non-blocking

• N2 crosspoints … but smaller crossbars  can be implemented in 

separate chips or chip tiles

• YARC (crossbar) 64x64 switch by Cray Inc., uses 64, 8x8 xbar tiles

– Scott, Steve, e.a. “The blackwidow High-Radix Clos Network.” ACM SIGARCH 

Computer Architecture News. vol. 34, no. 2,  2006.
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Inverse Multiplexing for Non-Blocking Operation
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Per-Flow Inverse Mux’ing for Non-Blocking Operation

• Prove that overall N×N network is non-blocking, i.e. any

feasible external traffic  feasible rates on all internal links

• All traffic entering switch A is feasible, hence of aggregate 

rate ≤ 1+1 = 2;  it is split into two halves   each of rate ≤ 1 

 traffic entering each (N/2)×(N/2) subnetwork is feasible

• It does not suffice to balance (equalize) the aggregate load 

out of switch A – must equally distribute individual (end-to-

end) flows – per-flow inverse multiplexing

 each of 2,i; 3,j; 6,j is individually split in two equal halves

 the sum of 3,j+6,j is also split in two equal halves

• All traffic exiting switch D is feasible, hence of aggregate rate 

≤ 1+1 = 2; it enters D in two equal halves  each of rate ≤ 1 

 traffic exiting each (N/2)×(N/2) subnetwork is also feasible
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Methods to implement (per-flow) Inverse Multiplexing
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• Per-Flow Round-Robin, at packet granularity

– for each flow, circularly and per-packet alternate among routes

– requires maintaining per-flow state

– danger of synchronized RR pointers: pck bursts to same route

– alternative: arbitrary route selection, provided the (per-flow) 

imbalance counter has not exceeded upper bound value
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• Adaptive Routing, at packet granularity – usu. Indisciminate

– chose the route with least-occupied buffer (max. credits)

+ does not maintain or use per-flow state

− per-flow load balancing only “after-the-fact”, when buffers fill up

• Randomized Route Selection, at packet granularity

+ does not require maintaining per-flow state

− load balancing is approximate, and long-term

• Packet Resequencing (when needed): major cost of inv.mux’ng

– Chiussi, Khotimsky, Krishnan: IEEE GLOBECOM'98

• Hashed Route Selection at entire Flow Granularity

– route selection based on hash function of flow ID

+ all packets of given flow through same route  in-order delivery

− poor load balancing when small number of flows

Methods to implement (per-flow) inverse multiplexing (continued)
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• Circuit Connections: Start from an input, use one of the subnets

Benes Net under Telephony-Ckt Connection Requests
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• Continue from the brother port of the output, then the brother of the input
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• Keep “threading” output and input switches, till closing or no-connection
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• Start a new “thread” (a) from an unconnected input, till completing all conn.
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(A) Thread termination on input side (1 of 2)

• Threads always start 

on the input side

• If a thread terminates 

on the input side:

– all touched output 

switches are 

completely 

connected

– concerning 

touched input 

switches:

(1) if thread closes, 

all are complete, 

…
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(A) Thread termination on input side (2 of 2)

• Threads always start 

on the input side

• If a thread terminates 

on the input side:

–all touched output 

switches are 

completely connected

–concerning touched 

input switches:

(1) if thread closes (4), 

all are complete,

(2) if thread terminates 

on half-used input (b): 

all touched input 

switches are complete, 

except the first one, 

which is half-covered 

by this thread
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(B) Thread termination on output side

• Threads always start 

on the input side

• If a thread 

terminates on the 

output side:

– all touched output 

switches are 

completely 

connected

– the first touched 

input switch is   

half-covered
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(C) Completing half-covered input switches

• New threads always start from a half-covered input switch, if there is one

 all threads cover all out-sw’s they touch, in-sw’s are covered in sequence
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Benes Fabric: Rearrangeably Non-Blocking
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5.2.2  The Banyan (Butterfly) Network

• Single route from 

given input to 

given output

• Each input is the 

root of a tree 

leading to all 

outputs

• Trees share nodes

• (Similarly, outputs 

are roots of trees 

feeding each from 

all inputs)

• for N×N network 

made of 2×2 sw.:

• log2N stages, of

• N/2 sw. per stage
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The banyan network is internally blocking

• Consider circuits: each 

i,j is either 1 or 0: 

single connection per 

port – “telephony” style

• There are N! such circuit 

connection patterns for 

a N×N network – each is 

a permutation of the 

numbers (1, 2, …, N)

b lo c k in g

in te rn a l

• Any network containing (N/2)·log2N or less 2×2 switches (like the banyan 

does) has to be internally blocking, because it can only be placed into 

less than N! states, hence cannot route all N! existing sets of con. req’s

• Each 2×2 switch can be placed in 2 different states; a network containing 

(N/2)·log2N such switches can be placed into 2(N/2)·logN = N(N/2) 

different states; N(N/2) = N · (N/2)(N/2)-1 · 2(N/2)-1 < N · [(N-1)· 

… ·(N/2+1)] · [(N/2) · … ·2] = N!  not enough states
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Butterfly (or k-ary n-fly) Network 

• k = switch radix = number of switch ports

• n = number of stages 

• Total number of ports = kn

– frequently called “banyan networks”
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Butterfly Networks Are Self-Routing

• log2(N) stages, log2(N) bits in destination ID

• Each stage uses one destination bit for routing purposes

– if 0 route up, if 1 route down

• No need for routing tables: packets are self-routed

101

101

101

Variant 1
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Routing in Butterfly Networks

• log2(N) stages, log2(N) bits in destination ID

• Each stage uses one destination bit for routing purposes

– “0” route up, “1” route down

• No need for routing tables: packets are self-routed

101

101 101

Variant 1

34

Banyan & Butterfly Are Isomorphic

5.2  - U.Crete - N. Chrysos- CS-534

• Topologically equivalent network (isomorphic) 

– interchange 1st-stage nodes 1 and 2  variant 1

 do not move inputs (left side) of 1st stage nodes  

 equivalently, move inputs together with 1st stage nodes, and then shuffle them

Variant 2
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35

Shuffling The Input Ports 

5.2  - U.Crete - N. Chrysos- CS-534

• Interchange inputs using the perfect shuffle

• Perfect shuffle - bitwise operation: shift left by 1, e.g. 100  001

– “cards of the “lower” deck perfectly interleaved with those of the upper one”

• Can route any “monotonically increasing” permutation

Variant 3

36

The Omega Network

5.2  - U.Crete - N. Chrysos- CS-534

• The outputs of one stage are connected to the inputs of the next using 

the perfect shuffle permutation (circular shift to the left by one)

– interchange 2nd-stage nodes 1 and 2 to obtain variant 3

 move inputs of nodes (routers) as well

Variant 4
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Which is the lowest-cost non-blocking fabric?

• N×N Benes network, made of 2×2 switches:

– 2·(log2N)−1 stages (2 banyans back-to-back, 1 shared stage)

– N/2 switches per stage  total switches = N·(log2N)−N/2

– number of states that the Benes network can be in = 2#switches = 

2N·(logN)−N/2 = (2logN)N / 2N/2 = NN / 2N/2 = [N·…·N] · 

[(N/2)·…·(N/2)] > N·(N-1)·…·2·1 = N!  Benes has more 

states than the minimum required for a net to be non-blocking

– Benes was seen to be non-blocking: (i) circuits and the 
“threading” algorithm, (ii) packets and inverse multiplexing

– “rearrangeably” non-blocking: in a partially connected network, 
making a new connection may require re-routing existing ones

• Impossible for any network with about half the switches of the 
Benes (e.g. banyan) to be non-blocking (# of states)

Benes is probably the lowest-cost practical non-blocking fabric
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5.2.3  Clos Networks (generalization of Benes nets)

in p u ts  

p e r  

s w itc h

IN  O U T

o u tp u ts

p e r  

s w itc h
1

2

3

N 2

IN = 3

IN = 3

O U T = 3IN = 3

O U T = 3

O U T = 3

1

2

1

2

N 1 N 3

5-parameter Network: (IN, N1, N2, N3, OUT)

this example: the (3, 4, 5, 4, 3) Clos Network

usually: IN = OUT, and N1 = N3

other times, IN=IN1=N2=N3=OUT = sqrt (number of Clos ports )
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Clos 

Networks

• Strictly non-blocking 

if and only if N2 ≥ IN+OUT-1

• Rearrangeably non-blocking 

if N2 ≥ max{IN, OUT}
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5.2.4 Fat Trees: recursive definition

• A fat tree of height 0 

consists of a single 

vertex

– the root of the tree

• If we have a set of (sub) fat trees of height n-1

and we arbitrarily connect their roots to a set of 

a new (vertices) roots  fat-tree of height n
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5.2.4 Fat Trees: properties & routing

• At least one path from each leaf node to every root

– Bidirectional

• Non-minimal routing: route up an arbitrary root node, then route 

down to destination

• Minimal routing : route up to closest common ancestor, then 

down
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5.2.4 Fat Trees: single-root trees

• (ultra) Slim trees

– poor bisection bandwidth

– constant switch radix

• (Fully-fledged) Fat trees 

– full bisection bandwidth

 capacity to/from children = 

capacity to/from parents

– switch radix increases as we 

move towards the root
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5.2.4 Fat Trees: single root versus multiple roots

• Single root fat trees

– the radix of switches 

increase

• Same bisection bandwidth w. 

lower radix switches

– Can be built with constant radix 

switches
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5.2.4 Multi-root trees: k-ary n-trees

• Switches have 2k ports (but root nodes may have less) 

– 2-ary 0-tree
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5.2.4 Multi-root trees: k-ary n-trees

• Switches have 2k ports (but root nodes may have less) 

– 2-ary 1-tree
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5.2.4 Multi-root trees: k-ary n-trees

• Switches have 2k ports (but root nodes may have less) 

– 2-ary 2-tree
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5.2.4 Multi-root trees: k-ary n-trees

• Switches have 2k ports (but root nodes may have less) 

– 2-ary 3-tree
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5.2.4 Multi-root trees: k-ary n-trees

• 2k x 2k switches, tree height n

• kn leaf nodes (processors)

• n kn-1 switches in total

– kn-1 switches per stage

• nkn bidirectional links in total

2-ary 3-tree

• Relationship with banyan 

– k-ary n-tree = bidirectional k-ary 

n-fly

– transforming a fly into a tree, the 

radix of switches doubles

height 0 

height 1

height 2

height 3

roots

leafs
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5.2.4 Multi-root trees: k-ary n-trees

• 4-ary 3-tree

– 64 ports, 8 ports per switch, 64x3x2 unidirectional links

• 4-ary 3-fly 
– 64 ports, 4 ports per switch, 64x4 unidirectional links
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5.2.4 Spine-leaf (folded-Clos)

• Spine-leaf network is a 2-level fat-tree (4-ary 2-tree)

– all leaf switches are connected to every spine switch

• Spine-leaf = folded three-stage Clos network 

– but minimal paths (shortcuts) do not exist in Clos

Spine nodes are the 

roots of the fat tree, 

and leaf nodes are 

the switches at 

height 1 – in k-ary n-

tree terminology, leaf 

nodes are the 

processors

Level 2

Spine switches

Level 1 

Leaf switches

(top-of-rack)

Level 0          processors
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5.2.4 Fat Trees: equivalent networks

• All built using 4x4 switches

• All have same (full) bisection bandwidth

– same number of wires in total

• All have same number of paths per port pair

• But different number of switches

– savings on number of root switches
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Switch Radix, Hop Count, Network Diameter

• Most of our examples used 

unidirectional links – fig. (a)

– “indirect” nets have ports at edges.

• Most practical interconnects use 

bidirectional links – fig. (b)

– “direct” nets provide external ports 

on all switches.

• If some destinations are reachable at 

reduced hop count (P2 in (b)), that is at 

the expense of the total number of 

destinations reachable at a given hop 

count – or larger network diameter.

• Energy consumption to cross the net 

critically depends on the number of 

chip-to-chip hops, because chip power 

is dominated by I/O pin driver consum.

4 x 4

4 x 4

4 x 4

4 x 4

4 x 4

4 x 4

4 x 4

4 x 4

P 2

P 3

P 1

(b )

P 2

P 3

P 2

P 1

P 1

(a )
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5.2.4 Fat Trees: customizable local versus global traffic

• Customizable percent fat – configurable amounts of internal blocking

• Bidirectional links, like most practical interconnects

• Skinny trees support local traffic – Full-fat tree is like folded Benes

2 -w id e

2 -w id e

4 -w id e
2 -w id e

2 -w id e

m e d iu m

fa t

m e d iu m  fa t fu ll

fa t

(sk in n y)

n o rm a l 3 x 3 3 x 3 3 x 3 3 x 3

4 x 4 4 x 4 4 x 44 x 4

3 x 3 3 x 3

3 x 3 3 x 3 3 x 33 x 3

4 x 4 4 x 4 4 x 4

4 x 4 4 x 4 4 x 44 x 43 x 3 3 x 3 3 x 33 x 3
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5.2.4 Cannot eliminate the roots of a 2-level fat-tree

• 4-ary 2-tree 

– bisection bandwidth = 8 links

• Completely-connected netw. 

of switches

– a bidi link between every 

switch pair (“4 per 2” links)

– bisection b/w = 4 unidi. links 

for 8 src’ing ports…not enough

What if each port in switch 0 wants to 

talk  to a distinct port in switch 1?

not

equiv.

Capacity up < down
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5.2.5 A fully-connected network

• Number of  links = “6 per 2” = 6! / ( (6-2)!*2! ) = 15 (bidi.) or  30 (unidi.)

• Bisection b/w = 9 unidi. links for 12 src’ing ports (better) 

• Switch 0 can “talk” to 1, if we use one extra hop (Valiant routing)

– but occupying 8 (almost 1/4 of the total) unidir. links in total 

– if all (6) switches do the same, they need 6x8 = 48 unidi. links, and  we 

have 30  tput ~ 30 /48, better than minimal routing (tput 1/4)

• However, for uniformly-destined (all-to-all) traffic, tput of Valiant 

routing ~ 30 /48 -- worse than minimal routing (tput 1)

Capacity up > down
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5.2.6 Dragonfly (bidirectional) networks

• Groups (supernodes) has a switches

• Each switch (or node) p links to ports  

• Switches in same group full-

connected (+a-1 local links / switch)

• Each switch +h links to other groups

– groups fully-connected global links

• Switches have k = p+h+a–1 ports

• N = ap(ah+1) ports, n = ah+1 groups

• Dragonfly tries to minimize the number of expensive global links while 

maintaining a small diameter (critical for supercomputers)

• Minimal routing: local + global + local 

– just one global link  few (1 E/O + 1 O/E ) power-hungry signal 

conversions -- global links are long and thus optical (not electrical)

• Demand on local links 2x than on global or port links in all-to-all traffic 

– selecting a ≥ 2h, a ≥ 2p balances the load on all links under all-to-all traffic 
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5.2.6 Dragonfly networks versus fat-tree

• Dragonfly (common config.)  

– a = 2h = 2p 

– k = 4p-1, n=2p2+1, N=4p4+2p2

– size N = (k+1)4/ 64 + (k+1)2/8

– bisection b/w ~p4 links for 2p4 ports

• k-ary n-tree 

– size N = (k/2)n

– N/2 links for N/2 ports

• Hop count comparison

– 5 vs. 4 (2-tree) vs. 6 (3-tree) vs. 8 (4-tree)

• Hop count  (only global links)

– 1 vs. 2 (2-tree) vs. 4 (3-tree) vs. 6 (4-tree)

• Number of unidirectional global links (for network size N) comparison:

– N (dragonfly) vs. 2N (2-tree) vs. 4N (3-tree) vs. 6N (4-tree)
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5.2.6 Server rack networks

• 72-port Dragonfly

– p=2,a=4, h=2

– 36, 7x7 switches

– 9 x 8 servers

– 72 global links

• 64-port 2-level fat-tree 

(8-ary 2-tree or spine-leaf)

– 16, 8x8 switches

– 8x8 servers

– 128 global links

Global links implemented w. expensive optical links (electronic cables < 10 meter)
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5.2.6 System-level Valiant routing in Dragonflies

• Minimal routing: 

– local + global + local 

– when G1 talks to G7

 2p2 ports clash on one link

– G1 has 2p2 global outgoing links 

(when p=h) but minimal uses 1…

• Valiant routing w. 1 random 

intermediate group 

– local+global+local+global+local

– full tput for G1 talking to G7

• But for uniform, minimal is better 

– tput 1 (if a/2 ≥p,h and h ≥ p)

– Valiant uses two global unidi. 

links / packet 

  ~ tput  = ½ h/p 

• How to adaptively select between 

the two?

72-port Dragonfly: p=2,a=4, h=2

(global links of G1 & G7 shown)

5.0 - U.Crete - N. Chrysos- CS-534 60

Offline

Routing Strategies: a taxonomy

Oblivious Adaptive

Single-path for 

each src-dst pair 

flow (deterministic)

Multi-path

(inv. mux’ing)

Pck- Flow-level

Per-flow Indiscriminate

Flow-levelPck-

s/d-mod-k

Online

Custom routing for 

specific workload / 

application phase 

(done in HPC)

Flow starts w. a 

single route: 

change route if 

conflict. 

Pck.route = 

F(Q.backlog);  

start w. 

minimal path ?

Flow-id hashing (e.g. TCP 5-tuple). Centrally compute 

non-conflicting routes for large flows (SDN?)

?

Path = src-/dst-node 

modulo #paths



5.  Switching Fabrics 31

5.0 - U.Crete - N. Chrysos- CS-534 61

Additional routing categories

• Source (or explicit) routing 

– path computed at source & carried in packet header

• Self-routing (network)

– path computed gradually at network nodes using header bits

 k-ary n-flies, k-ary n-trees, and Benes/Clos can operate as self-routing networks 

(but usually more sophisticated decisions at stages where multiple paths available)

• Routing tables (e.g. Ethernet, IP, Infiniband)

– arbitrary routing, computed based on path costs or other metric  

 distributed (e.g. IP BGP, Ethernet flooding/learning) or central (e.g. SDN)

 convergence time too long for microsecond-sensitive app’s  

• Deflection routing: avoid link conflicts (used in some bufflerless nets)

• Valiant routing : src  random intermediate dest  dest

– load balances traffic on internal links  avoids hotspots in adversarial patterns 

 tput independent of spatial distribution of traffic pattern; tput of minimal depends.. 

– but each packet traverses two times more links

 extra latency at low loads 

 extra load on internal links for balanced (e.g. all-to-all) patterns
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5.3 Towards Scalable Switches

• Buffer throughput limitation  use input queueing or CIOQ

• Input queued crossbar scalability limited primarily by:

– quadratic cost growth rate, O(N2), of crossbar

– scheduler complexity & efficiency, i.e. solving the  output 

contention (congestion management) problem

• To solve the crossbar cost  use switching fabrics

• To solve the scheduler / contention / congestion problem:

– (sorting / self-routing networks – bad solution)

– Switching Fabrics with Small Internal Buffers, large input 

VOQ’s, and Internal Backpressure (Flow Control)
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5.3.1 Buffer Organization in Switching Fabrics

• Bufferless fabrics : buffers at ports but not internally 

– OQ: buffers only at outputs (expensive)

– IQ  : buffers only at inputs (not scalable scheduling, poor performance)

– CIOQ: buffers at both inputs & outputs

• Buffered fabrics : internal buffers (in addition to port buffers)

– gradual contention resolution + better performance

– preferred nowadays : cables dictate cost, on-chip buffers are cheap

• Packet switched networks & fabrics

– buffers to resolve contention
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5.3.1 Speedup In Switching Fabrics

• Internal speedup often used to improve the performance of CIOQ

– expensive for off-chip switching fabrics 

(fabric-internal off-chip links run faster than ports)

 difficult to increase chip I/O bandwidth 

 power consumption dictated by chip I/O bandwidth

– less expensive for on-chip switches and networks, e.g. inside a single-

chip crossbar or Clos

 wider datapath

• Input speedup 

– input buffer read tput / input buffer write tput (= line tput) 

• Output speedup 

– output buffer write tput / output buffer read tput (= line tput)
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5.3.1 Modern CIOQ Switching Fabrics 

• Single FIFO queue per input / output

– simple scheduling (one candidate per input)

– but first-in-first-out service and HOL block, simple 

• Buffers at inputs & outputs

• Internal speedup

– internal links & switches run 

s times faster than ports
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5.3.1 CIOQ Switching Fabrics + Priorities

• Private queues per priority-level (service class)

– 2-16 priority levels

– typically separate buffers per priority-level

– only recently implemented in Ethernet

• Buffers at inputs & outputs

• Internal speedup 
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5.3.1 CIOQ Switching Fabrics + Input VOQs

• Private input queues per output (VOQs)

– tens to thousands of destinations

– separate input buffers per VOQ?

– only inside router boxes  neither Ethernet nor Infiniband

• Buffers at inputs & outputs
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5.3.1 How Do Switching Nodes Look Like?

• Node  network

– recursive definition of networks

• Modern switching nodes are CIOQ switch chips

– priority levels + local VOQs

• Switching elements (or nodes)

(building blocks of multi-stage 

switching fabrics)

– single chip switch (in a board)

– switch/route box in a data center or 

supercomputer 
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5.3 Scheduling in Bufferless Clos Networks

• At each time-slot (packet time)

1) packet scheduling among non-empty VOQs

 bipartite graph matching (inputs/outputs) 

– each input with one at most output

– each output with one at most input

2) route assignments for selected packets

 no two packets from same 1st or 3rd stage module use same route (color)

• VOQs at inputs

– separate queue at each 

input for each fabric output

• No speedup 
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5.3 Iterative route assignments: non-backtracking algo

• Input: N packets (1 per port)

• Output: non-conflicting routes for 

a subset of packet

• For i in 1 to num_iterations

– for each packet

 output module selects a 

random locally available route

 if route also available at input 

module  reserve route

• Converges to maximal route 

assignment

– new edges can be added only 

if we rearrange existing ones

N=128, num of 1/3-stage modules = N / m
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5.3 Load-Balanced (Birkhoff-von Neumann) switches 

• Valiant routing 

• Permutations chosen so that no conflicts in distribution/routing networks

• Buffers/queues only at intermediate adapters (VOQs)

– ~ shared-memory switch  

• Simple distributed control/scheduling - O(1) complexity

• But out-of-order (OOO) delivery at dests and O(N) packet latency even 

at low loads 

At time-slot t:

• input adapter i connected to 

intermediate (i+t) mod N

• intermediate adapter j 

connected to dest (j+t+x) mod 

N
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5.3 Load-Balanced (Birkhoff-von Neumann) switches 

• First-level permutations make sure that each source distributes its load (on a 

per-packet basis) to all middle-stage buffers

– Eventually, the packets for every destination are distributed evenly among all internal 

buffers

At time-slot 0:

• input adapter i connected to 

intermediate (i+0) mod N

• intermediate adapter j 

connected to dest (j+1) mod N
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5.3 Load-Balanced (Birkhoff-von Neumann) switches 

At time-slot 1:

• input adapter i connected to 

intermediate (i+1) mod N

• intermediate adapter j 

connected to dest (j+1+1) 

mod N

• First-level permutations make sure that each source distributes its load (on a 

per-packet basis) to all middle-stage buffers

– Eventually, the packets for every destination are distributed evenly among the N 

internal buffers

• Second-level permutations connect each destination with the N middle-stage 

buffers holding its packets

– Each destination reads 1/N of its traffic from every middle-stage buffer

– Middle stage buffers implement VOQs
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Sorting network
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