
5. Switching Fabrics 1

3. Output Queueing Architectures

4. Input Queueing Architectures

5. Switching Fabrics

6. Flow and Congestion Control in Sw. Fabrics

Manolis Katevenis, Nikolaos Chrysos

FORTH and Univ. of Crete, Greece

http://archvlsi.ics.forth.gr/~kateveni/534

Packet Switch Architecture

5. U.Crete - M. Katevenis, N. Chrysos - CS-534 2

5. Switching Fabrics
Table of Contents:

• 5.0 Introduction

– multistage netw., bisection b/w, non-blocking perf., routing categories

• 5.1 Inverse Multiplexing (Adaptive / Multipath Routing)

– byte-sliced switches, recursive definition of the Benes network

– load distribution & balancing, packet ordering & resequencing

• 5.2 Scalable Non-Blocking Switching Fabrics

– Banyan (k-ary n-flies), Benes, Clos – O(N·logN) cost & lower bound

– fat trees (k-ary n-trees) – controlled blocking, locality of traffic

– fully-connected networks – flat networks

– Dragonfly networks – few global links and small diameter

• 5.3 What about Scalable Scheduling?

– buffers in multi-stage fabrics

– scheduling bufferless Clos networks, load-balanced switches

– self-routing fabrics, sorting networks: bad solution

– fabrics with small internal buffers and flow control: good solution

5. Switching Fabrics 2

5. U.Crete - N. Chrysos- CS-534 3

5. Switching Fabrics

• What are switching fabrics (or multi-stage interconnection networks)?

– a network consisting of multiple smaller switches interconnected via

channels (point-to-point links)

 switches are usually crossbars, each one impl. in a single chip/board

• Why switching fabrics?

– crossbars do not scale to large port counts

 N2 crosspoints

 I/O chip bandwidth (# pins / HSS cores & power limitations)

• Where are they deployed?

– inside large routers/switches

 multi-chip/multi-chassis routers

 single-chip switches (internally multi-stage)

– inside modern datacenters and high-performance computers

– inside chip multi-processors (Networks-On-Chip)

5.0 - U.Crete - N. Chrysos- CS-534 4

5.0 Switching Fabrics: terminology

• Network = nodes + channels

– node= terminal or switch, channel= connection (link) between 2 nodes

• Path = a set of channels {c1, c2, …, cn} : dci
= sci+1

, for i in 1…(n-1)

• Hop count of path: the number of channels traversed in the path

• Connected network: path exists between any pair of terminals

• Minimal path from node x to node y = the path with the smallest hop count

connecting node x to node y

• Network diameter = the largest hop count over all pairs of terminals

5. Switching Fabrics 3

5.0 - U.Crete - N. Chrysos- CS-534 5

5.0 Switching Fabrics: performance

• Typically sub-optimal performance (compared to xbars)

– “ideally, we would like to connect all processors in a datacenter using a

single flat (crossbar-like) network”

• Challenges

– full / high tput irrespective of traffic pattern/orientation (routing)

– fairness (scheduling)

– flow isolation (congestion control)

– equidistant paths ?

 same latency irrespective to which ports communicate

• Recent trend: datacenters networks flattened datacenter fabrics

– replace previous “slim” datacenter nets w. high-performance fabrics

5.0 - U.Crete - N. Chrysos- CS-534 6

5.0 Non-Blocking Switching Fabrics

• Non-blocking fabrics/ networks

– can route any input-output permutation

 necessary condition: at least N! states ≥ log2(N!) crosspoints

– feasible traffic for network ports (for each port : sum load ≤ 1) feasible

for internal links as well

 necessary condition: full bisection bandwidth

• Strictly vs. rearrangeably non-blocking networks

– if netw. currently “switches” connections {1-0, 2-1, 0-3}

 adding 3-2 does not require rerouting connections (strictly non-blocking)

 adding 3-2 may require rerouting existing connections (rearrangeably non-blocking)

Typically, a network with path diversity (≥ 1 paths for port-pair flows)

becomes non-blocking only if appropriate routing is applied

5. Switching Fabrics 4

5.0 - U.Crete - N. Chrysos- CS-534 7

5.0 Bisection Bandwidth

• A bisection is a set of channels that partitions:

– nodes into two ~ equal groups: |N1| ≤ |N2| +1, |N2| ≤ |N1| +1

– terminals nodes into two ~equal groups : |n1| ≤ |n2| + 1, |n2| ≤ |n1| + 1

• Bisection bandwidth = minimum bandwidth over all bisections

– implementation cost (global wiring)

– non-blocking performance (if no “full bisection” then the network is blocking)

 however, full bisection does not guarantee non-blocking performance (routing)

Full bisection bandwidth network

• in each direction, the bisection

has the same capacity as N/2

ports

5.0 - U.Crete - N. Chrysos- CS-534 8

5.0 Bisection Bandwidth: examples

Bidirectional

networks

Unidirectional

networks

5. Switching Fabrics 5

5.1 - U.Crete - N. Chrysos- CS-534 9

5.1 Inverse Multiplexing

• What is it?

– a (multi-path) routing strategy that spreads the load (packets/flows)

equally among all available paths

 a technique for scalable, non-blocking switching fabrics

• Generalization of bit/byte slicing

– break packets into (“headerless”) slices; forwarded slices

synchronously via parallel wires/links or even subnets (Tiny-Tera)

 same idea: high-tput buffer from many lower-throughput buffers

– perfect load balancing (equal load on all links, ignoring padding

ovrhd) but not practical for distributed implementation (synchronous

subnets, central control)

• “inverse-multiplex” fragments of packets? yes, but header ovrhd

– practical only for large packets; done inside some (internally

multipath) routers working on “fixed-size” (e.g. 256-byte) segments

5.1 - U.Crete - M. Katevenis - CS-534 10

5.1 Parallelism for High-Thruput: Inverse Multiplexing

• Parallel wires or network routes for scaling (virtual) “link” throughput up

• Easy: central control, synchronized; Difficult: distributed control, asynch.

p a c k e t 1

p a c k e t 2

p a c k e t 3

p a c k e t 4

p a c k e t 5

p a c k e t 6

p a c k e t 7

p a c k e t 8

P a c k e t F lo w

f lo w 1

flo w 2

flo w 3

flo w 4

flo w 5

flo w 6

flo w 7

flo w 8

b it 1 o f 8

b it 2 o f 8

b it 3 o f 8

b it 4 o f 8

b it 5 o f 8

b it 6 o f 8

b it 7 o f 8

b it 8 o f 8

B y . 1 -8

B y . 5 7 -6 4

B y . 4 9 -5 6

B y . 9 -1 6

B y . 1 7 -2 4

B y . 2 5 -3 2

B y . 3 3 -4 0

B y . 4 1 -4 8

B it

o f 6 4 B c e ll
In v e rs e M u ltip le x in g

s a m e h a n d lin g fo r a ll w ire s d if fe re n t h a n d lin g

(s a m e t im e , s a m e d e s t in a t io n) (d if f . t im e s & d e s t in a t io n s)

B y te -S lic e

5. Switching Fabrics 6

5.1 - U.Crete - N. Chrysos- CS-534 11

5.1 Inverse Multiplexing: granularity of load balancing

• Fine grain: equalize load on a small time scale

• Coarse grain: danger of overshooting paths (& filling up buffers delay)

5.1 - U.Crete - M. Katevenis - CS-534 12

5.1 Byte-Slicing: Tiny Tera & other commercial chips

Mckeown e.a.: “Tiny Tera: a Packet Switch Core”, IEEE Micro, Jan.-Feb.’97

8

3 2

A rb ite r

C ontro l

D a tapa th

In

O u t

C a rd

L in e

1

L in e

L in e

L in e

C a rd

N In

L in e

O u t

L in e

s lice 4

s lice 3

s lice 2

s lice 1
xb a r

xb a r

xb a r

xb a r

3 2

8

8

N -2

N -1# 2

3

ch ip 1

ch ip 2

ch ip 3

ch ip 4

8

8

8

8

8

5. Switching Fabrics 7

5.2 - U.Crete - M. Katevenis - CS-534 13

5.2.1

Benes

Fabric:

Recursive

Definition

• Goal: reduce switch radix from N×N to (N/2)×(N/2): combine ports in pairs

• Port-pairs require links of twice the throughput: use inverse multiplexing

Use two switches, of half the radix each, in parallel to provide req’d thruput

n o n -b lo c k in g

(N /2) x (N /2)

n o n -b lo ck in g

(N /2) x (N /2)

N xN B e n e s n e tw o rk : re a rra n g e a b ly n o n -b lo ck in g

0

1

2

3

4

5

6

7

A

B

C

D

E

F

G

H

5.2 - U.Crete - M. Katevenis - CS-534 14

Full Construction of 16×16 Benes out of 2×2 Switches

b a n y a n re v e rs e b a n y a n

s te p -1 s u b -n e tw o rk s te p -3 s te p -2 s u b -n e tw o rk

5. Switching Fabrics 8

5.2 - U.Crete – N. Chrysos - CS-534 15

Hierarchical Crossbars: single-path non-blocking netw.

• No path diversity … but the network is non-blocking

• N2 crosspoints … but smaller crossbars can be implemented in

separate chips or chip tiles

• YARC (crossbar) 64x64 switch by Cray Inc., uses 64, 8x8 xbar tiles

– Scott, Steve, e.a. “The blackwidow High-Radix Clos Network.” ACM SIGARCH

Computer Architecture News. vol. 34, no. 2, 2006.

5.2 - U.Crete - M. Katevenis - CS-534 16

Inverse Multiplexing for Non-Blocking Operation

B

C

D

A
 3 ,j

2

1

3 ,j

2

1

3 ,j

2

1

2 ,i

2

1

2 ,i

2 ,i

 3 ,j

2 ,i

6 ,j

2

1

6 ,j

6 ,j

2

1

6 ,j

4 x4 n o n -b lo ck in g

i

j

8 x8 n o n -b lo ck in g

0

1

2

3

4

5

6

7

5. Switching Fabrics 9

5.2 - U.Crete - M. Katevenis - CS-534 17

Per-Flow Inverse Mux’ing for Non-Blocking Operation

• Prove that overall N×N network is non-blocking, i.e. any

feasible external traffic feasible rates on all internal links

• All traffic entering switch A is feasible, hence of aggregate

rate ≤ 1+1 = 2; it is split into two halves each of rate ≤ 1

 traffic entering each (N/2)×(N/2) subnetwork is feasible

• It does not suffice to balance (equalize) the aggregate load

out of switch A – must equally distribute individual (end-to-

end) flows – per-flow inverse multiplexing

 each of 2,i; 3,j; 6,j is individually split in two equal halves

 the sum of 3,j+6,j is also split in two equal halves

• All traffic exiting switch D is feasible, hence of aggregate rate

≤ 1+1 = 2; it enters D in two equal halves each of rate ≤ 1

 traffic exiting each (N/2)×(N/2) subnetwork is also feasible

5.2 - U.Crete - M. Katevenis - CS-534 18

Methods to implement (per-flow) Inverse Multiplexing

7

m u lt ip le x , th e n in v e rs e -m u lt ip le x

4 -w id e

m e rg e (a n d re s e q u e n c e) , th e n d e m u lt ip le x

8 -w id e

C o n c e p tu a l V ie w o f 8 x 8 B e n e s : V irtu a l P a ra lle l L in k s u s in g In v e rs e M u ltip le x in g

0

1

2

3

4

5

6

0

1

2

3

4

5

6

7

2 -w id e

• Per-Flow Round-Robin, at packet granularity

– for each flow, circularly and per-packet alternate among routes

– requires maintaining per-flow state

– danger of synchronized RR pointers: pck bursts to same route

– alternative: arbitrary route selection, provided the (per-flow)

imbalance counter has not exceeded upper bound value

5. Switching Fabrics 10

5.2 - U.Crete - M. Katevenis - CS-534 19

• Adaptive Routing, at packet granularity – usu. Indisciminate

– chose the route with least-occupied buffer (max. credits)

+ does not maintain or use per-flow state

− per-flow load balancing only “after-the-fact”, when buffers fill up

• Randomized Route Selection, at packet granularity

+ does not require maintaining per-flow state

− load balancing is approximate, and long-term

• Packet Resequencing (when needed): major cost of inv.mux’ng

– Chiussi, Khotimsky, Krishnan: IEEE GLOBECOM'98

• Hashed Route Selection at entire Flow Granularity

– route selection based on hash function of flow ID

+ all packets of given flow through same route in-order delivery

− poor load balancing when small number of flows

Methods to implement (per-flow) inverse multiplexing (continued)

5.2 - U.Crete - M. Katevenis - CS-534 20

1

1

A

B

C

D

E

F

G

H

4 x4 n o n -b lo ck in g

4 x4 n o n -b lo ck in g

0

1

2

3

4

5

6

7

A

B

H

G

D

F

• Circuit Connections: Start from an input, use one of the subnets

Benes Net under Telephony-Ckt Connection Requests

5. Switching Fabrics 11

5.2 - U.Crete - M. Katevenis - CS-534 21

• Continue from the brother port of the output, then the brother of the input

1

3

1

2

3

A

B

C

D

E

F

G

H

4x4 non-blocking

4x4 non-blocking

0

1

2

3

4

5

6

7

A

B

H

G

D

F

5.2 - U.Crete - M. Katevenis - CS-534 22

• Keep “threading” output and input switches, till closing or no-connection

5

1

3

1

5

2

3

4

A

B

C

D

E

F

G

H

4x4 non-blocking

4x4 non-blocking

0

1

2

3

4

5

6

7

A

B

H

G

D

F

5. Switching Fabrics 12

5.2 - U.Crete - M. Katevenis - CS-534 23

• Start a new “thread” (a) from an unconnected input, till completing all conn.

5

1

3

1

5
(a)

2

3

4

A

B

C

D

E

F

G

H

4 x4 n o n -b lo ck in g

4 x4 n o n -b lo ck in g

0

1

2

3

4

5

6

7

A

B

H

G

D

F

5.2 - U.Crete - M. Katevenis - CS-534 24

(A) Thread termination on input side (1 of 2)

• Threads always start

on the input side

• If a thread terminates

on the input side:

– all touched output

switches are

completely

connected

– concerning

touched input

switches:

(1) if thread closes,

all are complete,

…

1 1

3 3

2

2 4

4

A

B

C

D

E

F

G

H

0

1 F

2

3

4

5 B

6

7 D

A

C

su b n e t B

su b n e t A

E

...

5. Switching Fabrics 13

5.2 - U.Crete - M. Katevenis - CS-534 25

(A) Thread termination on input side (2 of 2)

• Threads always start

on the input side

• If a thread terminates

on the input side:

–all touched output

switches are

completely connected

–concerning touched

input switches:

(1) if thread closes (4),

all are complete,

(2) if thread terminates

on half-used input (b):

all touched input

switches are complete,

except the first one,

which is half-covered

by this thread

1 1

3 3

2

2 4

4

A

B

C

D

E

F

G

H

0

1 F

2

3

4

5 B

6

7 D

A

C

su b n e t B

su b n e t A

E

(a) (a)

(b)

(b)

...

5.2 - U.Crete - M. Katevenis - CS-534 26

(B) Thread termination on output side

• Threads always start

on the input side

• If a thread

terminates on the

output side:

– all touched output

switches are

completely

connected

– the first touched

input switch is

half-covered

1 1

3 3

2

2

A

B

C

D

E

F

G

H

0

1 H

2

3

4

5 B

6 G

7

A

su b n e t B

su b n e t A

E

5. Switching Fabrics 14

5.2 - U.Crete - M. Katevenis - CS-534 27

(C) Completing half-covered input switches

• New threads always start from a half-covered input switch, if there is one

 all threads cover all out-sw’s they touch, in-sw’s are covered in sequence

1 1

3 3

2

2

(a)

(a)

A

B

C

D

E

F

G

H

0

1 H

2

3

4

5 B

6 G

7

A

su b n e t B

su b n e t A

E

(b)(b)

5.2 - U.Crete - M. Katevenis - CS-534 28

Benes Fabric: Rearrangeably Non-Blocking

?

?

1 1

3 3

2

2

(a)

(a)

0 A

0 F

A

B

C

D

E

F

G

H

1 H

2

3

4

5 B

6 G

7

su b n e t B

su b n e t A

E

(b)(b)

5. Switching Fabrics 15

5.2 - U.Crete - M. Katevenis - CS-534 29

5.2.2 The Banyan (Butterfly) Network

• Single route from

given input to

given output

• Each input is the

root of a tree

leading to all

outputs

• Trees share nodes

• (Similarly, outputs

are roots of trees

feeding each from

all inputs)

• for N×N network

made of 2×2 sw.:

• log2N stages, of

• N/2 sw. per stage

5.2 - U.Crete - M. Katevenis - CS-534 30

The banyan network is internally blocking

• Consider circuits: each

i,j is either 1 or 0:

single connection per

port – “telephony” style

• There are N! such circuit

connection patterns for

a N×N network – each is

a permutation of the

numbers (1, 2, …, N)

b lo c k in g

in te rn a l

• Any network containing (N/2)·log2N or less 2×2 switches (like the banyan

does) has to be internally blocking, because it can only be placed into

less than N! states, hence cannot route all N! existing sets of con. req’s

• Each 2×2 switch can be placed in 2 different states; a network containing

(N/2)·log2N such switches can be placed into 2(N/2)·logN = N(N/2)

different states; N(N/2) = N · (N/2)(N/2)-1 · 2(N/2)-1 < N · [(N-1)·

… ·(N/2+1)] · [(N/2) · … ·2] = N! not enough states

5. Switching Fabrics 16

5.2 - U.Crete - N. Chrysos- CS-534 31

Butterfly (or k-ary n-fly) Network

• k = switch radix = number of switch ports

• n = number of stages

• Total number of ports = kn

– frequently called “banyan networks”

5.2 - U.Crete - N. Chrysos- CS-534 32

Butterfly Networks Are Self-Routing

• log2(N) stages, log2(N) bits in destination ID

• Each stage uses one destination bit for routing purposes

– if 0 route up, if 1 route down

• No need for routing tables: packets are self-routed

101

101

101

Variant 1

5. Switching Fabrics 17

5.2 - U.Crete - N. Chrysos- CS-534 33

Routing in Butterfly Networks

• log2(N) stages, log2(N) bits in destination ID

• Each stage uses one destination bit for routing purposes

– “0” route up, “1” route down

• No need for routing tables: packets are self-routed

101

101 101

Variant 1

34

Banyan & Butterfly Are Isomorphic

5.2 - U.Crete - N. Chrysos- CS-534

• Topologically equivalent network (isomorphic)

– interchange 1st-stage nodes 1 and 2 variant 1

 do not move inputs (left side) of 1st stage nodes

 equivalently, move inputs together with 1st stage nodes, and then shuffle them

Variant 2

5. Switching Fabrics 18

35

Shuffling The Input Ports

5.2 - U.Crete - N. Chrysos- CS-534

• Interchange inputs using the perfect shuffle

• Perfect shuffle - bitwise operation: shift left by 1, e.g. 100 001

– “cards of the “lower” deck perfectly interleaved with those of the upper one”

• Can route any “monotonically increasing” permutation

Variant 3

36

The Omega Network

5.2 - U.Crete - N. Chrysos- CS-534

• The outputs of one stage are connected to the inputs of the next using

the perfect shuffle permutation (circular shift to the left by one)

– interchange 2nd-stage nodes 1 and 2 to obtain variant 3

 move inputs of nodes (routers) as well

Variant 4

5. Switching Fabrics 19

5.2 - U.Crete - M. Katevenis - CS-534 37

Which is the lowest-cost non-blocking fabric?

• N×N Benes network, made of 2×2 switches:

– 2·(log2N)−1 stages (2 banyans back-to-back, 1 shared stage)

– N/2 switches per stage total switches = N·(log2N)−N/2

– number of states that the Benes network can be in = 2#switches =

2N·(logN)−N/2 = (2logN)N / 2N/2 = NN / 2N/2 = [N·…·N] ·

[(N/2)·…·(N/2)] > N·(N-1)·…·2·1 = N! Benes has more

states than the minimum required for a net to be non-blocking

– Benes was seen to be non-blocking: (i) circuits and the
“threading” algorithm, (ii) packets and inverse multiplexing

– “rearrangeably” non-blocking: in a partially connected network,
making a new connection may require re-routing existing ones

• Impossible for any network with about half the switches of the
Benes (e.g. banyan) to be non-blocking (# of states)

Benes is probably the lowest-cost practical non-blocking fabric

5.2 - U.Crete - M. Katevenis - CS-534 38

5.2.3 Clos Networks (generalization of Benes nets)

in p u ts

p e r

s w itc h

IN O U T

o u tp u ts

p e r

s w itc h
1

2

3

N 2

IN = 3

IN = 3

O U T = 3IN = 3

O U T = 3

O U T = 3

1

2

1

2

N 1 N 3

5-parameter Network: (IN, N1, N2, N3, OUT)

this example: the (3, 4, 5, 4, 3) Clos Network

usually: IN = OUT, and N1 = N3

other times, IN=IN1=N2=N3=OUT = sqrt (number of Clos ports)

5. Switching Fabrics 20

5.2 - U.Crete - M. Katevenis - CS-534 39

A

B

O U T -1

IN -1

IN -1

c o n n e c te d

a lre a d y

e ls e w h e re

C o n n e c t

th is la s t

f re e in p u t o n A

w ith th e la s t f re e

o u tp u t o n B

N 2 s w itc h e s > = IN + O U T - 1

O U T -1

e ls e w h e re

c o n n e c te d

a lre a d y

Clos

Networks

• Strictly non-blocking

if and only if N2 ≥ IN+OUT-1

• Rearrangeably non-blocking

if N2 ≥ max{IN, OUT}

5.2 - U.Crete – N. Chrysos - CS-534 40

5.2.4 Fat Trees: recursive definition

• A fat tree of height 0

consists of a single

vertex

– the root of the tree

• If we have a set of (sub) fat trees of height n-1

and we arbitrarily connect their roots to a set of

a new (vertices) roots fat-tree of height n

5. Switching Fabrics 21

5.2 - U.Crete – N. Chrysos - CS-534 41

5.2.4 Fat Trees: properties & routing

• At least one path from each leaf node to every root

– Bidirectional

• Non-minimal routing: route up an arbitrary root node, then route

down to destination

• Minimal routing : route up to closest common ancestor, then

down

5.2 - U.Crete – N. Chrysos - CS-534 42

5.2.4 Fat Trees: single-root trees

• (ultra) Slim trees

– poor bisection bandwidth

– constant switch radix

• (Fully-fledged) Fat trees

– full bisection bandwidth

 capacity to/from children =

capacity to/from parents

– switch radix increases as we

move towards the root

5. Switching Fabrics 22

5.2 - U.Crete – N. Chrysos - CS-534 43

5.2.4 Fat Trees: single root versus multiple roots

• Single root fat trees

– the radix of switches

increase

• Same bisection bandwidth w.

lower radix switches

– Can be built with constant radix

switches

5.2 - U.Crete – N. Chrysos - CS-534 44

5.2.4 Multi-root trees: k-ary n-trees

• Switches have 2k ports (but root nodes may have less)

– 2-ary 0-tree

5. Switching Fabrics 23

5.2 - U.Crete – N. Chrysos - CS-534 45

5.2.4 Multi-root trees: k-ary n-trees

• Switches have 2k ports (but root nodes may have less)

– 2-ary 1-tree

5.2 - U.Crete – N. Chrysos - CS-534 46

5.2.4 Multi-root trees: k-ary n-trees

• Switches have 2k ports (but root nodes may have less)

– 2-ary 2-tree

5. Switching Fabrics 24

5.2 - U.Crete – N. Chrysos - CS-534 47

5.2.4 Multi-root trees: k-ary n-trees

• Switches have 2k ports (but root nodes may have less)

– 2-ary 3-tree

5.2 - U.Crete – N. Chrysos - CS-534 48

5.2.4 Multi-root trees: k-ary n-trees

• 2k x 2k switches, tree height n

• kn leaf nodes (processors)

• n kn-1 switches in total

– kn-1 switches per stage

• nkn bidirectional links in total

2-ary 3-tree

• Relationship with banyan

– k-ary n-tree = bidirectional k-ary

n-fly

– transforming a fly into a tree, the

radix of switches doubles

height 0

height 1

height 2

height 3

roots

leafs

5. Switching Fabrics 25

5.2 - U.Crete – N. Chrysos - CS-534 49

5.2.4 Multi-root trees: k-ary n-trees

• 4-ary 3-tree

– 64 ports, 8 ports per switch, 64x3x2 unidirectional links

• 4-ary 3-fly
– 64 ports, 4 ports per switch, 64x4 unidirectional links

5.2 - U.Crete – N. Chrysos - CS-534 50

5.2.4 Spine-leaf (folded-Clos)

• Spine-leaf network is a 2-level fat-tree (4-ary 2-tree)

– all leaf switches are connected to every spine switch

• Spine-leaf = folded three-stage Clos network

– but minimal paths (shortcuts) do not exist in Clos

Spine nodes are the

roots of the fat tree,

and leaf nodes are

the switches at

height 1 – in k-ary n-

tree terminology, leaf

nodes are the

processors

Level 2

Spine switches

Level 1

Leaf switches

(top-of-rack)

Level 0 processors

5. Switching Fabrics 26

5.2 - U.Crete – N. Chrysos - CS-534 51

5.2.4 Fat Trees: equivalent networks

• All built using 4x4 switches

• All have same (full) bisection bandwidth

– same number of wires in total

• All have same number of paths per port pair

• But different number of switches

– savings on number of root switches

5.2 - U.Crete - M. Katevenis - CS-534 52

Switch Radix, Hop Count, Network Diameter

• Most of our examples used

unidirectional links – fig. (a)

– “indirect” nets have ports at edges.

• Most practical interconnects use

bidirectional links – fig. (b)

– “direct” nets provide external ports

on all switches.

• If some destinations are reachable at

reduced hop count (P2 in (b)), that is at

the expense of the total number of

destinations reachable at a given hop

count – or larger network diameter.

• Energy consumption to cross the net

critically depends on the number of

chip-to-chip hops, because chip power

is dominated by I/O pin driver consum.

4 x 4

4 x 4

4 x 4

4 x 4

4 x 4

4 x 4

4 x 4

4 x 4

P 2

P 3

P 1

(b)

P 2

P 3

P 2

P 1

P 1

(a)

5. Switching Fabrics 27

5.2 - U.Crete - M. Katevenis - CS-534 53

5.2.4 Fat Trees: customizable local versus global traffic

• Customizable percent fat – configurable amounts of internal blocking

• Bidirectional links, like most practical interconnects

• Skinny trees support local traffic – Full-fat tree is like folded Benes

2 -w id e

2 -w id e

4 -w id e
2 -w id e

2 -w id e

m e d iu m

fa t

m e d iu m fa t fu ll

fa t

(sk in n y)

n o rm a l 3 x 3 3 x 3 3 x 3 3 x 3

4 x 4 4 x 4 4 x 44 x 4

3 x 3 3 x 3

3 x 3 3 x 3 3 x 33 x 3

4 x 4 4 x 4 4 x 4

4 x 4 4 x 4 4 x 44 x 43 x 3 3 x 3 3 x 33 x 3

5.2 - U.Crete – N. Chrysos - CS-534 54

5.2.4 Cannot eliminate the roots of a 2-level fat-tree

• 4-ary 2-tree

– bisection bandwidth = 8 links

• Completely-connected netw.

of switches

– a bidi link between every

switch pair (“4 per 2” links)

– bisection b/w = 4 unidi. links

for 8 src’ing ports…not enough

What if each port in switch 0 wants to

talk to a distinct port in switch 1?

not

equiv.

Capacity up < down

5. Switching Fabrics 28

5.2 - U.Crete – N. Chrysos - CS-534 55

5.2.5 A fully-connected network

• Number of links = “6 per 2” = 6! / ((6-2)!*2!) = 15 (bidi.) or 30 (unidi.)

• Bisection b/w = 9 unidi. links for 12 src’ing ports (better)

• Switch 0 can “talk” to 1, if we use one extra hop (Valiant routing)

– but occupying 8 (almost 1/4 of the total) unidir. links in total

– if all (6) switches do the same, they need 6x8 = 48 unidi. links, and we

have 30 tput ~ 30 /48, better than minimal routing (tput 1/4)

• However, for uniformly-destined (all-to-all) traffic, tput of Valiant

routing ~ 30 /48 -- worse than minimal routing (tput 1)

Capacity up > down

5.2 - U.Crete – N. Chrysos - CS-534 56

5.2.6 Dragonfly (bidirectional) networks

• Groups (supernodes) has a switches

• Each switch (or node) p links to ports

• Switches in same group full-

connected (+a-1 local links / switch)

• Each switch +h links to other groups

– groups fully-connected global links

• Switches have k = p+h+a–1 ports

• N = ap(ah+1) ports, n = ah+1 groups

• Dragonfly tries to minimize the number of expensive global links while

maintaining a small diameter (critical for supercomputers)

• Minimal routing: local + global + local

– just one global link few (1 E/O + 1 O/E) power-hungry signal

conversions -- global links are long and thus optical (not electrical)

• Demand on local links 2x than on global or port links in all-to-all traffic

– selecting a ≥ 2h, a ≥ 2p balances the load on all links under all-to-all traffic

5. Switching Fabrics 29

5.2 - U.Crete – N. Chrysos - CS-534 57

5.2.6 Dragonfly networks versus fat-tree

• Dragonfly (common config.)

– a = 2h = 2p

– k = 4p-1, n=2p2+1, N=4p4+2p2

– size N = (k+1)4/ 64 + (k+1)2/8

– bisection b/w ~p4 links for 2p4 ports

• k-ary n-tree

– size N = (k/2)n

– N/2 links for N/2 ports

• Hop count comparison

– 5 vs. 4 (2-tree) vs. 6 (3-tree) vs. 8 (4-tree)

• Hop count (only global links)

– 1 vs. 2 (2-tree) vs. 4 (3-tree) vs. 6 (4-tree)

• Number of unidirectional global links (for network size N) comparison:

– N (dragonfly) vs. 2N (2-tree) vs. 4N (3-tree) vs. 6N (4-tree)

5.2 - U.Crete – N. Chrysos - CS-534 58

5.2.6 Server rack networks

• 72-port Dragonfly

– p=2,a=4, h=2

– 36, 7x7 switches

– 9 x 8 servers

– 72 global links

• 64-port 2-level fat-tree

(8-ary 2-tree or spine-leaf)

– 16, 8x8 switches

– 8x8 servers

– 128 global links

Global links implemented w. expensive optical links (electronic cables < 10 meter)

5. Switching Fabrics 30

5.2 - U.Crete – N. Chrysos - CS-534 59

5.2.6 System-level Valiant routing in Dragonflies

• Minimal routing:

– local + global + local

– when G1 talks to G7

 2p2 ports clash on one link

– G1 has 2p2 global outgoing links

(when p=h) but minimal uses 1…

• Valiant routing w. 1 random

intermediate group

– local+global+local+global+local

– full tput for G1 talking to G7

• But for uniform, minimal is better

– tput 1 (if a/2 ≥p,h and h ≥ p)

– Valiant uses two global unidi.

links / packet

 ~ tput = ½ h/p

• How to adaptively select between

the two?

72-port Dragonfly: p=2,a=4, h=2

(global links of G1 & G7 shown)

5.0 - U.Crete - N. Chrysos- CS-534 60

Offline

Routing Strategies: a taxonomy

Oblivious Adaptive

Single-path for

each src-dst pair

flow (deterministic)

Multi-path

(inv. mux’ing)

Pck- Flow-level

Per-flow Indiscriminate

Flow-levelPck-

s/d-mod-k

Online

Custom routing for

specific workload /

application phase

(done in HPC)

Flow starts w. a

single route:

change route if

conflict.

Pck.route =

F(Q.backlog);

start w.

minimal path ?

Flow-id hashing (e.g. TCP 5-tuple). Centrally compute

non-conflicting routes for large flows (SDN?)

?

Path = src-/dst-node

modulo #paths

5. Switching Fabrics 31

5.0 - U.Crete - N. Chrysos- CS-534 61

Additional routing categories

• Source (or explicit) routing

– path computed at source & carried in packet header

• Self-routing (network)

– path computed gradually at network nodes using header bits

 k-ary n-flies, k-ary n-trees, and Benes/Clos can operate as self-routing networks

(but usually more sophisticated decisions at stages where multiple paths available)

• Routing tables (e.g. Ethernet, IP, Infiniband)

– arbitrary routing, computed based on path costs or other metric

 distributed (e.g. IP BGP, Ethernet flooding/learning) or central (e.g. SDN)

 convergence time too long for microsecond-sensitive app’s

• Deflection routing: avoid link conflicts (used in some bufflerless nets)

• Valiant routing : src random intermediate dest dest

– load balances traffic on internal links avoids hotspots in adversarial patterns

 tput independent of spatial distribution of traffic pattern; tput of minimal depends..

– but each packet traverses two times more links

 extra latency at low loads

 extra load on internal links for balanced (e.g. all-to-all) patterns

5.3 - U.Crete - M. Katevenis - CS-534 62

5.3 Towards Scalable Switches

• Buffer throughput limitation use input queueing or CIOQ

• Input queued crossbar scalability limited primarily by:

– quadratic cost growth rate, O(N2), of crossbar

– scheduler complexity & efficiency, i.e. solving the output

contention (congestion management) problem

• To solve the crossbar cost use switching fabrics

• To solve the scheduler / contention / congestion problem:

– (sorting / self-routing networks – bad solution)

– Switching Fabrics with Small Internal Buffers, large input

VOQ’s, and Internal Backpressure (Flow Control)

5. Switching Fabrics 32

5.3 - U.Crete – N. Chrysos- CS-534 63

5.3.1 Buffer Organization in Switching Fabrics

• Bufferless fabrics : buffers at ports but not internally

– OQ: buffers only at outputs (expensive)

– IQ : buffers only at inputs (not scalable scheduling, poor performance)

– CIOQ: buffers at both inputs & outputs

• Buffered fabrics : internal buffers (in addition to port buffers)

– gradual contention resolution + better performance

– preferred nowadays : cables dictate cost, on-chip buffers are cheap

• Packet switched networks & fabrics

– buffers to resolve contention

5.3 - U.Crete – N. Chrysos - CS-534 64

5.3.1 Speedup In Switching Fabrics

• Internal speedup often used to improve the performance of CIOQ

– expensive for off-chip switching fabrics

(fabric-internal off-chip links run faster than ports)

 difficult to increase chip I/O bandwidth

 power consumption dictated by chip I/O bandwidth

– less expensive for on-chip switches and networks, e.g. inside a single-

chip crossbar or Clos

 wider datapath

• Input speedup

– input buffer read tput / input buffer write tput (= line tput)

• Output speedup

– output buffer write tput / output buffer read tput (= line tput)

5. Switching Fabrics 33

5.3 - U.Crete – N. Chrysos - CS-534 65

5.3.1 Modern CIOQ Switching Fabrics

• Single FIFO queue per input / output

– simple scheduling (one candidate per input)

– but first-in-first-out service and HOL block, simple

• Buffers at inputs & outputs

• Internal speedup

– internal links & switches run

s times faster than ports

5.3 - U.Crete – N. Chrysos - CS-534 66

5.3.1 CIOQ Switching Fabrics + Priorities

• Private queues per priority-level (service class)

– 2-16 priority levels

– typically separate buffers per priority-level

– only recently implemented in Ethernet

• Buffers at inputs & outputs

• Internal speedup

5. Switching Fabrics 34

5.3 - U.Crete – N. Chrysos - CS-534 67

5.3.1 CIOQ Switching Fabrics + Input VOQs

• Private input queues per output (VOQs)

– tens to thousands of destinations

– separate input buffers per VOQ?

– only inside router boxes neither Ethernet nor Infiniband

• Buffers at inputs & outputs

5.3 - U.Crete – N. Chrysos - CS-534 68

5.3.1 How Do Switching Nodes Look Like?

• Node network

– recursive definition of networks

• Modern switching nodes are CIOQ switch chips

– priority levels + local VOQs

• Switching elements (or nodes)

(building blocks of multi-stage

switching fabrics)

– single chip switch (in a board)

– switch/route box in a data center or

supercomputer

5. Switching Fabrics 35

5.3 - U.Crete – N. Chrysos - CS-534 69

5.3 Scheduling in Bufferless Clos Networks

• At each time-slot (packet time)

1) packet scheduling among non-empty VOQs

 bipartite graph matching (inputs/outputs)

– each input with one at most output

– each output with one at most input

2) route assignments for selected packets

 no two packets from same 1st or 3rd stage module use same route (color)

• VOQs at inputs

– separate queue at each

input for each fabric output

• No speedup

5.3 - U.Crete – N. Chrysos - CS-534 70

5.3 Iterative route assignments: non-backtracking algo

• Input: N packets (1 per port)

• Output: non-conflicting routes for

a subset of packet

• For i in 1 to num_iterations

– for each packet

 output module selects a

random locally available route

 if route also available at input

module reserve route

• Converges to maximal route

assignment

– new edges can be added only

if we rearrange existing ones

N=128, num of 1/3-stage modules = N / m

5. Switching Fabrics 36

5.3 - U.Crete – N. Chrysos - CS-534 71

5.3 Load-Balanced (Birkhoff-von Neumann) switches

• Valiant routing

• Permutations chosen so that no conflicts in distribution/routing networks

• Buffers/queues only at intermediate adapters (VOQs)

– ~ shared-memory switch

• Simple distributed control/scheduling - O(1) complexity

• But out-of-order (OOO) delivery at dests and O(N) packet latency even

at low loads

At time-slot t:

• input adapter i connected to

intermediate (i+t) mod N

• intermediate adapter j

connected to dest (j+t+x) mod

N

5.3 - U.Crete – N. Chrysos - CS-534 72

5.3 Load-Balanced (Birkhoff-von Neumann) switches

• First-level permutations make sure that each source distributes its load (on a

per-packet basis) to all middle-stage buffers

– Eventually, the packets for every destination are distributed evenly among all internal

buffers

At time-slot 0:

• input adapter i connected to

intermediate (i+0) mod N

• intermediate adapter j

connected to dest (j+1) mod N

5. Switching Fabrics 37

5.3 - U.Crete – N. Chrysos - CS-534 73

5.3 Load-Balanced (Birkhoff-von Neumann) switches

At time-slot 1:

• input adapter i connected to

intermediate (i+1) mod N

• intermediate adapter j

connected to dest (j+1+1)

mod N

• First-level permutations make sure that each source distributes its load (on a

per-packet basis) to all middle-stage buffers

– Eventually, the packets for every destination are distributed evenly among the N

internal buffers

• Second-level permutations connect each destination with the N middle-stage

buffers holding its packets

– Each destination reads 1/N of its traffic from every middle-stage buffer

– Middle stage buffers implement VOQs

5.3 - U.Crete - M. Katevenis - CS-534 74

5. Switching Fabrics 38

5.3 - U.Crete – N. Chrysos - CS-534 75

Sorting network

5.3 - U.Crete - M. Katevenis - CS-534 76

