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8. Networks on Chip (NoCs)
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8.0 NoCs for CMPs & SoCs

• Chip multi-processors (CMPs)

– modern processors (~ 2007-) scale up by 

increasing the number of cores per chip, not 

the frequency

• Systems on chip (SoCs)

– integrate a full system on chip to economize 

on number of discrete components

– CPUs, GPUs, accel., netw. interfaces (NICs),  

caches, DRAM ctrl…

• As chips integrate more elements, they use a NoC for their interconnect

– nodes communicate using (“universal”) network packets (header + payload)
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8.0 Networks on Chip

• Typically direct networks

– each node both a terminal and router

– versus indirect networks, like banyan, 

Benes, etc, commonly used in fabrics 

• Point-to-point links between routers

• NoCs similar to off-chip networks ( & fabrics) but many trade-offs differ

– signals don’t cross chips boundaries: power consumption mainly due to buffers, 

wires & logic, not due to transmissions

– buffers are expensive (compared to other components) and therefore small

– channels (parallel wires instead of optical/fiber links) are cheap(er) and can be 

made fast (=wide)

9-node mesh NoC
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8.0 Traditional on-chip interconnects

• Separate wires/buses, sometimes arbitrarily 

connected, like in hardware design

– per purpose / protocol / speed

• Buses can offer high speed (if short), but turn-

around ovrhd is a concern 

– separate wires for sending address/ctrl 

– accesses serialized by bus arbiter  

– limit on number of devices

• Multiple (hierarchical) buses

– for scalability and to bridge 

different bus protocols or speeds

• Bus-like on-chip interconnects are used today (2015) 

– ring networks in CMPs with up to 8-16 (32?) cores

• Scalable prototypes & next-generation CMPs (will) rely on NoCs
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8.1 Torus : k-ary n-cubes 

• N= kn nodes in a n-dimensional cube

– 2n + 1 ports per router 

• k = number of nodes along each dimension

• Each node has a n-digit radix-k address 

• Two nodes are (adjacent) connected w.  a 

bidir channel iff they differ by (1 mod k) in 

one or more digits 

4-ary 1-cube (ring)

Recursive definition

• How to create a k-ary n-cube: 

– stack k k-ary (n-1)-cubes  

– add 1 new MS addr. digit to each node

 different for every (n-1)-cube

– connect adjacent nodes

Current NOCs limited to 2D but 

might change with 3D 

integration

4-ary 2-cube
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8.1 Torus : k-ary n-cubes 

4-ary 1-cube (ring)

• Higher dimensional tori 

– more bisection b/w (less blocking) for fixed 

number of nodes

– and smaller latency

– at the cost of 2 extra router ports / dimension

4-ary 2-cube

• For fixed N, going from n to 

n’=n+1

– k’ = (k)^(n/n+1) < k 

– for small n, k’ << k

• Bisection wire count

– 2 k n-1 (= 2N/k) same-direction wires available 

to kn /2 (N/2) nodes

• Torus are blocking

– worst-case bisection channel load k/4

– for uniform traffic: k/8



8. U.Crete - N. Chrysos - CS-534 8

8.1 Mesh: k-ary n-cubes 

4-ary 1-mesh 4-ary 2-mesh

• Tori networks w/o wrap- around 

channels

• Bisection wire count

– kn-1 half  than tori netw.

4-ary 3-mesh

Routers in the middle 

have  2 n + 1 ports

Routers at the border 

of i dimensions have i

less ports – excess 

ports can be used for 

I/O or express 

channels

• Meshes may use node-concentration

– multiple nodes / router 

• or express channels or multiple nets or …)

• For up to 64 nodes, simple meshes offer 

better throughput per power performance

– Psathakis, e.a., “A Systematic Evaluation of 

Emerging Mesh-like CMP NoCs”, ANCS 

2015
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8.1: Cubes vs. Crossbar & Clos for NoCs

• Why do most NoCs (and several multiprocessors/ supercomputers) use Tori 

and meshes instead of indirect (banyan, Clos, Benes) networks ?

– shorter links  smaller latency & power consumption, especially for NoCs

 chip end-to-end communication latency (measured in clock cycles) is substantial and 

becomes worse with new technologies

• Cubes favor neighbor communic.: common in multiproc. & scientific computing

• Cubes have worse bisection bandwidth, and don’t offer equidistant paths 

– takes longer to travel “further away” (and the probability of congestion increases)

– innermost links tend to experience higher load under e.g. all-to-all traffic

• Crossbars & Clos have been used to build efficient on-chip netw. or switches

– Passas, e.a., “The Combined Input-Output Queued (CIOQ) Crossbar Architecture for High-Radix 

On-Chip Switches", IEEE Micro, 2015.

– Chrysos, e.a., “High-Radix Switches Made of Bufferless Clos Networks”, IEEE HPCA, 2015.

• Mesh preferred over Tori, because of no wrap-around links – simpler to 

provide deadlock-free operation using e.g. X-Y routing 

– meshes also have same-length links, but so do Tori if we redraw them appropriately
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8.2 The unit(s) of communication in NoCs

• Messages: 

– generated by the user / app (e.g. cache line)

• Packets:

– msg segments that make sense to the network

– each pkt has a hdr:  dst, src, seq, etc.

– all bits (flits) of a pkt follow the same path

• Flit (flow control units): 

– flits = packet segments

– buffers reserved at the granularity of flits

– head flit (carries the dest addr) and establishes the 

path of the pkt

– body and tail flits follow the path of the head flit 

 zero or many body flits -- head may be = tail

• Phits (datapath width):

– all bits (e.g. 32, 128) of a phit transmitted in parallel

– commonly 1 flit = 1 phit

Similar terminology in 

off-chip multiprocessor 

networks
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8.3 Flow control 

Flow control determines when buffers and links are assigned to msgs/packets

• a good flow control reduces packet latency & increases utilization of resources

– in a cost-effective manner…

• Bufferless flow control: no buffers inside the network

– message-based circuit switching: 

 setup flit travels to dest and reserves links on the way

 ack flit travels back to source

 payload flits go through the network with no delay (no buffers needed)

 termination flit de-allocates each reserved hop

– packet based deflection routing (misrouting): no setup ovrhd, each pkt tries to reach destination; if 

conflict on next hop, misroute packets = send them to idle ports (# inputs / router = # outputs / router); 

in a mesh network, they will be able to reach their dest, but with what latency (priority to older pkts)

• Buffered flow control (mostly pkt-based - msgs too long for on-chip buffers)

– store-and-forward : switch buffers reserved for entire packet

 store full packet (all flits) before transmitting it downstream

– virtual cut-through : switch buffers reserved for entire packet

 can transmit head before receiving tail
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8.3 Packet-based (buffered) flow control 

• Packet-based flow control

– latency:  # hops x pkt xmit time

• Virtual cut-through

– latency : # hops + pkt xmit time 

• Disadvantages:

– router buffer size proportional to packet size 

 maybe too large for on-chip networks

– if a packet is blocked (cannot move downstream), buffers cannot be reused 

by other pkts

4-flit packet from node 2 to node 0
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8.3 Wormhole (flit-based) flow control

• Like in virtual cut-through, flits are forwarded before receiving full packet

– latency = first-bits in to last-bit out of network = ~ # hops + pkt xmit time 

• However, buffers reserved at the granularity of flits

– buffers at routers can be smaller than packets

• Head flit governs route = the next output channel at each router 

– remaining flits follow in a pipeline fashion

• Cannot have flits from different packets in the same queue

– in case of contention, flits may wait in upstream routers 

 congestion/blocking spreading

• Also, output channel reserved until all flits of a packet have crossed it, and 

have departed from downstream queue  needless (~HOL) blocking

4-flit packet from 

node 2 to node 0

Other pkts cannot use channel 21
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8.3 Virtual channel flow control

Virtual channels

• Multiple buffers/queues (virtual channels) at each sw. input

– used for HOL de-blocking, ~ VOQs but not necessarily one VC per output; instead 

one VC per pkt

– used also for deadlock avoidance

• Virtual channels can be applied to packet- or flit-based flow control

Virtual channel flit-based flow control (wormhole-like)

• At any given router, all flits of the same pkt are stored in the same VC buffer

• Like wormhole: head flit governs output port -- now also the next-hop VC

– next flits follow; each flit has to secure downstream credits for the next-hop VC

• Flits that have acquired next-hop VCs can be interleaved on outputs

Drawbacks: 

• Each VC (input queue) held for the duration of a pkt – compared e.g. to 

ATLAS, where a VC can store multiple packets  

• Also multiple VCs at one input may be allocated to pkts going to the same 

destination  pkts to non-congested outputs may not find available VC 

– see also chapter 6
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8.3 Overview of NoC virtual channel router 

• Commonly ΙQ input-queued xbar

– few ports / router  xbar OK

• Credits counters maintained by 

VC allocator

– credits sent/received from 

separate wires (out-of-band)

• 5-stage processing pipeline 

– FW: write flit at input buffer

– R: find output (only head flit)

– VA: allocate next-hop virtual channel 

(only head flit)

 a downstream VC available only iff 

corresponding VC cred-count full?

– SA : crossbar scheduler

– ST: switch traversal 

• Latency can be reduced using e.g. speculation
– Peh and Dally “A Delay Model and Speculative Architecture for Pipelined Routers”, HPCA 2011
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8.4 Routing Deadlocks

Deadlocks: routing or protocol induced

• no progress  disaster!

(livelock: pkts move, but no “real progress”  is 

made, e.g. bouncing back and forth)

Routing deadlock (w. wormhole)

• Figure (wormhole): four pkts, none can move

– green occupies left link, needs top

– yellow occupies top link, needs right

– red occupies right link, needs bottom   

– blue occupies bottom link, needs left

–  circular dependency

DEADLOCK

In routing deadlock, buffers usually fill up

no packet can proceed, because downstream buffer occupied by other packet(s)



8. U.Crete - N. Chrysos - CS-534 17

8.4 Routing Deadlocks

• All possible turns in mesh networks 

– they permit circular link dependencies

• Dimension ordered routing (DOR) 

– disallow turns to prevent dependencies

• Example X-Y (DOR) routing   

• Prevents circles but single-path / 

deterministic routing 

– even worse, some paths can never be used...

NO deadlock
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8.4 Routing Deadlocks

• Change (increment) VC at every hop – too many VCs if too many hops

• Change the VC when crossing the “timeline “ (see example)

 Dally, “Deadlock-free adaptive routing in multicomputer networks using virtual 

channels”,  IEEE TPDS, 1993

• Theory: Duato, “A new theory of deadlock-free adaptive routing in wormhole networks”, 

IEEE TPDS 1993

Use virtual channels to enable arbitrary, e.g. adaptive, routing

(NoC-style adaptive routing: the head flit dynamically selects path - other flits follow)


