
3. Output Queueing Architectures

4. Input Queueing Architectures

5. Switching Fabrics

6. Flow and Congestion Control in Sw. Fabrics

7. Output Scheduling for QoS Guarantees

8. Networks On Chip

Nikolaos Chrysos, Manolis Katevenis

FORTH and Univ. of Crete, Greece

http://archvlsi.ics.forth.gr/~kateveni/534

Packet Switch Architecture

8. U.Crete - N. Chrysos - CS-534 2

8. Networks on Chip (NoCs)
Table of Contents:

• 8.0 Introduction

– chip multiprocessors / systems on chip

• 8.1 Direct topologies

– k-ary n-cubes

• 8.2 Flow control

– bufferless, store & forward, virtual cut-through, wormhole, virtual channel

• 8.3 Routers overview

• 8.4 Deadlocks & routing overview

8. U.Crete - N. Chrysos - CS-534 3

8.0 NoCs for CMPs & SoCs

• Chip multi-processors (CMPs)

– modern processors (~ 2007-) scale up by

increasing the number of cores per chip, not

the frequency

• Systems on chip (SoCs)

– integrate a full system on chip to economize

on number of discrete components

– CPUs, GPUs, accel., netw. interfaces (NICs),

caches, DRAM ctrl…

• As chips integrate more elements, they use a NoC for their interconnect

– nodes communicate using (“universal”) network packets (header + payload)

8. U.Crete - N. Chrysos - CS-534 4

8.0 Networks on Chip

• Typically direct networks

– each node both a terminal and router

– versus indirect networks, like banyan,

Benes, etc, commonly used in fabrics

• Point-to-point links between routers

• NoCs similar to off-chip networks (& fabrics) but many trade-offs differ

– signals don’t cross chips boundaries: power consumption mainly due to buffers,

wires & logic, not due to transmissions

– buffers are expensive (compared to other components) and therefore small

– channels (parallel wires instead of optical/fiber links) are cheap(er) and can be

made fast (=wide)

9-node mesh NoC

8. U.Crete - N. Chrysos - CS-534 5

8.0 Traditional on-chip interconnects

• Separate wires/buses, sometimes arbitrarily

connected, like in hardware design

– per purpose / protocol / speed

• Buses can offer high speed (if short), but turn-

around ovrhd is a concern

– separate wires for sending address/ctrl 

– accesses serialized by bus arbiter 

– limit on number of devices

• Multiple (hierarchical) buses

– for scalability and to bridge

different bus protocols or speeds

• Bus-like on-chip interconnects are used today (2015)

– ring networks in CMPs with up to 8-16 (32?) cores

• Scalable prototypes & next-generation CMPs (will) rely on NoCs

8. U.Crete - N. Chrysos - CS-534 6

8.1 Torus : k-ary n-cubes

• N= kn nodes in a n-dimensional cube

– 2n + 1 ports per router

• k = number of nodes along each dimension

• Each node has a n-digit radix-k address

• Two nodes are (adjacent) connected w. a

bidir channel iff they differ by (1 mod k) in

one or more digits

4-ary 1-cube (ring)

Recursive definition

• How to create a k-ary n-cube:

– stack k k-ary (n-1)-cubes

– add 1 new MS addr. digit to each node

 different for every (n-1)-cube

– connect adjacent nodes

Current NOCs limited to 2D but

might change with 3D

integration

4-ary 2-cube

8. U.Crete - N. Chrysos - CS-534 7

8.1 Torus : k-ary n-cubes

4-ary 1-cube (ring)

• Higher dimensional tori

– more bisection b/w (less blocking) for fixed

number of nodes

– and smaller latency

– at the cost of 2 extra router ports / dimension

4-ary 2-cube

• For fixed N, going from n to

n’=n+1

– k’ = (k)^(n/n+1) < k

– for small n, k’ << k

• Bisection wire count

– 2 k n-1 (= 2N/k) same-direction wires available

to kn /2 (N/2) nodes

• Torus are blocking

– worst-case bisection channel load k/4

– for uniform traffic: k/8

8. U.Crete - N. Chrysos - CS-534 8

8.1 Mesh: k-ary n-cubes

4-ary 1-mesh 4-ary 2-mesh

• Tori networks w/o wrap- around

channels

• Bisection wire count

– kn-1 half than tori netw.

4-ary 3-mesh

Routers in the middle

have 2 n + 1 ports

Routers at the border

of i dimensions have i

less ports – excess

ports can be used for

I/O or express

channels

• Meshes may use node-concentration

– multiple nodes / router

• or express channels or multiple nets or …)

• For up to 64 nodes, simple meshes offer

better throughput per power performance

– Psathakis, e.a., “A Systematic Evaluation of

Emerging Mesh-like CMP NoCs”, ANCS

2015

8. U.Crete - N. Chrysos - CS-534 9

8.1: Cubes vs. Crossbar & Clos for NoCs

• Why do most NoCs (and several multiprocessors/ supercomputers) use Tori

and meshes instead of indirect (banyan, Clos, Benes) networks ?

– shorter links  smaller latency & power consumption, especially for NoCs

 chip end-to-end communication latency (measured in clock cycles) is substantial and

becomes worse with new technologies

• Cubes favor neighbor communic.: common in multiproc. & scientific computing

• Cubes have worse bisection bandwidth, and don’t offer equidistant paths

– takes longer to travel “further away” (and the probability of congestion increases)

– innermost links tend to experience higher load under e.g. all-to-all traffic

• Crossbars & Clos have been used to build efficient on-chip netw. or switches

– Passas, e.a., “The Combined Input-Output Queued (CIOQ) Crossbar Architecture for High-Radix

On-Chip Switches", IEEE Micro, 2015.

– Chrysos, e.a., “High-Radix Switches Made of Bufferless Clos Networks”, IEEE HPCA, 2015.

• Mesh preferred over Tori, because of no wrap-around links – simpler to

provide deadlock-free operation using e.g. X-Y routing

– meshes also have same-length links, but so do Tori if we redraw them appropriately

8. U.Crete - N. Chrysos - CS-534 10

8.2 The unit(s) of communication in NoCs

• Messages:

– generated by the user / app (e.g. cache line)

• Packets:

– msg segments that make sense to the network

– each pkt has a hdr: dst, src, seq, etc.

– all bits (flits) of a pkt follow the same path

• Flit (flow control units):

– flits = packet segments

– buffers reserved at the granularity of flits

– head flit (carries the dest addr) and establishes the

path of the pkt

– body and tail flits follow the path of the head flit

 zero or many body flits -- head may be = tail

• Phits (datapath width):

– all bits (e.g. 32, 128) of a phit transmitted in parallel

– commonly 1 flit = 1 phit

Similar terminology in

off-chip multiprocessor

networks

8. U.Crete - N. Chrysos - CS-534 11

8.3 Flow control

Flow control determines when buffers and links are assigned to msgs/packets

• a good flow control reduces packet latency & increases utilization of resources

– in a cost-effective manner…

• Bufferless flow control: no buffers inside the network

– message-based circuit switching:

 setup flit travels to dest and reserves links on the way

 ack flit travels back to source

 payload flits go through the network with no delay (no buffers needed)

 termination flit de-allocates each reserved hop

– packet based deflection routing (misrouting): no setup ovrhd, each pkt tries to reach destination; if

conflict on next hop, misroute packets = send them to idle ports (# inputs / router = # outputs / router);

in a mesh network, they will be able to reach their dest, but with what latency (priority to older pkts)

• Buffered flow control (mostly pkt-based - msgs too long for on-chip buffers)

– store-and-forward : switch buffers reserved for entire packet

 store full packet (all flits) before transmitting it downstream

– virtual cut-through : switch buffers reserved for entire packet

 can transmit head before receiving tail

8. U.Crete - N. Chrysos - CS-534 12

8.3 Packet-based (buffered) flow control

• Packet-based flow control

– latency: # hops x pkt xmit time

• Virtual cut-through

– latency : # hops + pkt xmit time

• Disadvantages:

– router buffer size proportional to packet size

 maybe too large for on-chip networks

– if a packet is blocked (cannot move downstream), buffers cannot be reused

by other pkts

4-flit packet from node 2 to node 0

8. U.Crete - N. Chrysos - CS-534 13

8.3 Wormhole (flit-based) flow control

• Like in virtual cut-through, flits are forwarded before receiving full packet

– latency = first-bits in to last-bit out of network = ~ # hops + pkt xmit time

• However, buffers reserved at the granularity of flits

– buffers at routers can be smaller than packets

• Head flit governs route = the next output channel at each router

– remaining flits follow in a pipeline fashion

• Cannot have flits from different packets in the same queue

– in case of contention, flits may wait in upstream routers

 congestion/blocking spreading

• Also, output channel reserved until all flits of a packet have crossed it, and

have departed from downstream queue  needless (~HOL) blocking

4-flit packet from

node 2 to node 0

Other pkts cannot use channel 21

8. U.Crete - N. Chrysos - CS-534 14

8.3 Virtual channel flow control

Virtual channels

• Multiple buffers/queues (virtual channels) at each sw. input

– used for HOL de-blocking, ~ VOQs but not necessarily one VC per output; instead

one VC per pkt

– used also for deadlock avoidance

• Virtual channels can be applied to packet- or flit-based flow control

Virtual channel flit-based flow control (wormhole-like)

• At any given router, all flits of the same pkt are stored in the same VC buffer

• Like wormhole: head flit governs output port -- now also the next-hop VC

– next flits follow; each flit has to secure downstream credits for the next-hop VC

• Flits that have acquired next-hop VCs can be interleaved on outputs

Drawbacks:

• Each VC (input queue) held for the duration of a pkt – compared e.g. to

ATLAS, where a VC can store multiple packets

• Also multiple VCs at one input may be allocated to pkts going to the same

destination  pkts to non-congested outputs may not find available VC

– see also chapter 6

8. U.Crete - N. Chrysos - CS-534 15

8.3 Overview of NoC virtual channel router

• Commonly ΙQ input-queued xbar

– few ports / router  xbar OK

• Credits counters maintained by

VC allocator

– credits sent/received from

separate wires (out-of-band)

• 5-stage processing pipeline

– FW: write flit at input buffer

– R: find output (only head flit)

– VA: allocate next-hop virtual channel

(only head flit)

 a downstream VC available only iff

corresponding VC cred-count full?

– SA : crossbar scheduler

– ST: switch traversal

• Latency can be reduced using e.g. speculation
– Peh and Dally “A Delay Model and Speculative Architecture for Pipelined Routers”, HPCA 2011

8. U.Crete - N. Chrysos - CS-534 16

8.4 Routing Deadlocks

Deadlocks: routing or protocol induced

• no progress  disaster!

(livelock: pkts move, but no “real progress” is

made, e.g. bouncing back and forth)

Routing deadlock (w. wormhole)

• Figure (wormhole): four pkts, none can move

– green occupies left link, needs top

– yellow occupies top link, needs right

– red occupies right link, needs bottom

– blue occupies bottom link, needs left

–  circular dependency

DEADLOCK

In routing deadlock, buffers usually fill up

no packet can proceed, because downstream buffer occupied by other packet(s)

8. U.Crete - N. Chrysos - CS-534 17

8.4 Routing Deadlocks

• All possible turns in mesh networks 

– they permit circular link dependencies

• Dimension ordered routing (DOR) 

– disallow turns to prevent dependencies

• Example X-Y (DOR) routing 

• Prevents circles but single-path /

deterministic routing

– even worse, some paths can never be used...

NO deadlock

8. U.Crete - N. Chrysos - CS-534 18

8.4 Routing Deadlocks

• Change (increment) VC at every hop – too many VCs if too many hops

• Change the VC when crossing the “timeline “ (see example)

 Dally, “Deadlock-free adaptive routing in multicomputer networks using virtual

channels”, IEEE TPDS, 1993

• Theory: Duato, “A new theory of deadlock-free adaptive routing in wormhole networks”,

IEEE TPDS 1993

Use virtual channels to enable arbitrary, e.g. adaptive, routing

(NoC-style adaptive routing: the head flit dynamically selects path - other flits follow)

