
3. Output Queueing Architectures
4. input Queueing Architectures
5. Switching Fabrics
6. Flow and Congestion Control in Sw. Fabrics

Manolis Katevenis

FORTH and Univ. of Crete, Greece

http://archvlsi.ics.forth.gr/~kateveni/534

Packet Switch Architecture

5. U.Crete - M. Katevenis - CS-534 2

5. Switching Fabrics

Table of Contents:

• 5.1 Inverse Multiplexing (Adaptive / Multipath Routing)
– byte-sliced switches, recursive definition of the Benes network
– load distribution & balancing, packet ordering & resequencing

• 5.2 Scalable Non-Blocking Switching Fabrics
– banyan, Benes, Clos – O(N·logN) cost & lower bound
– fat trees – controlled blocking, locality of traffic

• 5.3 What about Scalable Scheduling?
– self-routing fabrics, sorting networks: bad solution
– fabrics with small internal buffers and flow control: good solution

5.1 - U.Crete - M. Katevenis - CS-534 3

5.1 Parallelism for High-Thruput: Inverse Multiplexing

• Parallel wires or network routes for scaling (virtual) “link” throughput up
• Easy: central control, synchronized; Difficult: distributed control, asynch.

packet 1

packet 2

packet 3

packet 4

packet 5

packet 6

packet 7

packet 8

Packet Flow
flow 1

flow 2

flow 3

flow 4

flow 5

flow 6

flow 7

flow 8

bit 1 of 8

bit 2 of 8

bit 3 of 8

bit 4 of 8

bit 5 of 8

bit 6 of 8

bit 7 of 8

bit 8 of 8

By. 1-8

By. 57-64

By. 49-56

By. 9-16

By. 17-24

By. 25-32

By. 33-40

By. 41-48

Bit

of 64B cell Inverse Multiplexing

same handling for all wires different handling
(same time, same destination) (diff. times & destinations)

Byte-Slice

5.1 - U.Crete - M. Katevenis - CS-534 4

5.1 Byte-Slicing: Tiny Tera & other commercial chips

Mckeown e.a.: “Tiny Tera: a Packet Switch Core”, IEEE Micro, Jan.-Feb.’97

8

32

Arbiter
Control

Datapath

In

Out

Card
Line

#1
Line

Line

Line
Card
#N In

Line
Out

Line

slice 4

slice 3

slice 2

slice 1xbar

xbar

xbar

xbar

32

8

8

#N-2

#N-1#2

#3

chip 1

chip 2

chip 3

chip 4

8

8

8

8

8

5.2 - U.Crete - M. Katevenis - CS-534 5

5.2.1
Benes
Fabric:
Recursive
Definition

• Goal: reduce switch radix from N×N to (N/2)×(N/2): combine ports in pairs
• Port-pairs require links of twice the throughput: use inverse multiplexing
⇒Use two switches, of half the radix each, in parallel to provide req’d thruput

non-blocking
(N/2) x (N/2)

non-blocking
(N/2) x (N/2)

NxN Benes network: rearrangeably non-blocking

0
1

2
3

4
5

6
7

A
B

C
D

E
F

G
H

5.2 - U.Crete - M. Katevenis - CS-534 6

Full Construction of 16×16 Benes out of 2×2 Switches

banyan reverse banyan

step-1 sub-network step-3 step-2 sub-network

5.2 - U.Crete - M. Katevenis - CS-534 7

Inverse Multiplexing for Non-Blocking Operation

B

C

D

Aλ3,j

2
1

3,jλ

2
1

3,jλ

2
1

2,iλ

2
1

2,iλ

2,iλ

λ3,j

2,i λ

6,jλ

2
1

6,jλ

6,jλ

2
1

6,jλ

4x4 non-blocking

i

j

8x8 non-blocking

0

1

2

3

4

5

6

7

5.2 - U.Crete - M. Katevenis - CS-534 8

Per-Flow Inverse Mux’ing for Non-Blocking Operation

• Prove that overall N×N network is non-blocking, i.e. any
feasible external traffic ⇒ feasible rates on all internal links

• All traffic entering switch A is feasible, hence of aggregate
rate ≤ 1+1 = 2; it is split into two halves ⇒ each of rate ≤ 1
⇒ traffic entering each (N/2)×(N/2) subnetwork is feasible

• It does not suffice to balance (equalize) the aggregate load
out of switch A – must equally distribute individual (end-to-
end) flows – per-flow inverse multiplexing
⇒ each of λ2,i; λ3,j; λ6,j is individually split in two equal halves
⇒ the sum of λ3,j+λ6,j is also split in two equal halves

• All traffic exiting switch D is feasible, hence of aggregate rate
≤ 1+1 = 2; it enters D in two equal halves ⇒ each of rate ≤ 1
⇒ traffic exiting each (N/2)×(N/2) subnetwork is also feasible

5.2 - U.Crete - M. Katevenis - CS-534 9

Methods to implement (per-flow) Inverse Multiplexing

7

multiplex, then inverse-multiplex

4-wide

merge (and resequence), then demultiplex

8-wide

Conceptual View of 8x8 Benes: Virtual Parallel Links using Inverse Multiplexing
0
1

2
3

4
5

6

0
1

2
3

4
5

6
7

2-wide

• Per-Flow Round-Robin, at packet granularity
– for each flow, circularly and per-packet alternate among routes
– requires maintaining per-flow state
– danger of synchronized RR pointers: pck bursts to same route
– alternative: arbitrary route selection, provided the (per-flow)

imbalance counter has not exceeded upper bound value

5.2 - U.Crete - M. Katevenis - CS-534 10

• Adaptive Routing, at packet granularity – usu. Indisciminate
– chose the route with least-occupied buffer (max. credits)
+ does not maintain or use per-flow state
− per-flow load balancing only “after-the-fact”, when buffers fill up

• Randomized Route Selection, at packet granularity
+ does not require maintaining per-flow state
− load balancing is approximate, and long-term

• Packet Resequencing (when needed): major cost of inv.mux’ng
– Chiussi, Khotimsky, Krishnan: IEEE GLOBECOM'98

• Hashed Route Selection at entire Flow Granularity
– route selection based on hash function of flow ID
+ all packets of given flow through same route ⇒ in-order delivery
− poor load balancing when small number of flows

Methods to implement (per-flow) inverse multiplexing (continued)

5.2 - U.Crete - M. Katevenis - CS-534 11

5.2.2 The Banyan (Butterfly) Network
• Single route from

given input to
given output

• Each input is the
root of a tree
leading to all
outputs

• Trees share nodes
• (Similarly, outputs

are roots of trees
feeding each from
all inputs)

• for N×N network
made of 2×2 sw.:

• log2N stages, of
• N/2 sw. per stage

5.2 - U.Crete - M. Katevenis - CS-534 12

The banyan network is internally blocking
• Consider circuits: each
λi,j is either 1 or 0:
single connection per
port – “telephony” style

• There are N! such circuit
connection patterns for
a N×N network – each is
a permutation of the
numbers (1, 2, …, N)

blocking

internal

• Any network containing (N/2)·log2N or less 2×2 switches (like the banyan
does) has to be internally blocking, because it can only be placed into
less than N! states, hence cannot route all N! existing sets of con. req’s

• Each 2×2 switch can be placed in 2 different states; a network containing
(N/2)·log2N such switches can be placed into 2(N/2)·logN = N(N/2)

different states; N(N/2) = N · (N/2)(N/2)-1 · 2(N/2)-1 < N · [(N-1)·
… ·(N/2+1)] · [(N/2) · … ·2] = N! ⇒ not enough states

5.2 - U.Crete - M. Katevenis - CS-534 13

1

1

A

B

C

D

E

F

G

H

4x4 non-blocking

4x4 non-blocking

0

1

2

3

4

5

6

7

A

B

H

G

D

F

• Circuit Connections: Start from an input, use one of the subnets

Benes Net under Telephony-Ckt Connection Requests

5.2 - U.Crete - M. Katevenis - CS-534 14
• Continue from the brother port of the output, then the brother of the input

1

3

1

2

3

A

B

C

D

E

F

G

H

4x4 non-blocking

4x4 non-blocking

0

1

2

3

4

5

6

7

A

B

H

G

D

F

5.2 - U.Crete - M. Katevenis - CS-534 15
• Keep “threading” output and input switches, till closing or no-connection

5

1

3

1

5

2

3

4

A

B

C

D

E

F

G

H

4x4 non-blocking

4x4 non-blocking

0

1

2

3

4

5

6

7

A

B

H

G

D

F

5.2 - U.Crete - M. Katevenis - CS-534 16
• Start a new “thread” (a) from an unconnected input, till completing all conn.

5

1

3

1

5(a)

2

3

4

A

B

C

D

E

F

G

H

4x4 non-blocking

4x4 non-blocking

0

1

2

3

4

5

6

7

A

B

H

G

D

F

5.2 - U.Crete - M. Katevenis - CS-534 17

(A) Thread termination on input side (1 of 2)

• Threads always start
on the input side

• If a thread terminates
on the input side:

– all touched output
switches are
completely
connected

– concerning
touched input
switches:
(1) if thread closes,
all are complete,
…

1 1

3 3

2

2 4

4

A

B

C

D

E

F

G

H

0

1 F

2

3

4

5 B

6

7 D

A

C

subnet B

subnet A

E

...

5.2 - U.Crete - M. Katevenis - CS-534 18

(A) Thread termination on input side (2 of 2)
• Threads always start

on the input side
• If a thread terminates

on the input side:
–all touched output
switches are
completely connected
–concerning touched
input switches:
(1) if thread closes (4),
all are complete,
(2) if thread terminates
on half-used input (b):
all touched input
switches are complete,
except the first one,
which is half-covered
by this thread

1 1

3 3

2

2 4

4

A

B

C

D

E

F

G

H

0

1 F

2

3

4

5 B

6

7 D

A

C

subnet B

subnet A

E

(a) (a)

(b)

(b)

...

5.2 - U.Crete - M. Katevenis - CS-534 19

(B) Thread termination on output side

• Threads always start
on the input side

• If a thread
terminates on the
output side:

– all touched output
switches are
completely
connected

– the first touched
input switch is
half-covered

1 1

3 3

2

2

A

B

C

D

E

F

G

H

0

1 H

2

3

4

5 B

6 G

7

A

subnet B

subnet A

E

5.2 - U.Crete - M. Katevenis - CS-534 20

(C) Completing half-covered input switches

• New threads always start from a half-covered input switch, if there is one
⇒ all threads cover all out-sw’s they touch, in-sw’s are covered in sequence

1 1

3 3

2

2

(a)

(a)

A

B

C

D

E

F

G

H

0

1 H

2

3

4

5 B

6 G

7

A

subnet B

subnet A

E

(b)(b)

5.2 - U.Crete - M. Katevenis - CS-534 21

Benes Fabric: Rearrangeably Non-Blocking

?

?
1 1

3 3

2

2

(a)

(a)

0 A
0 F

A

B

C

D

E

F

G

H

1 H

2

3

4

5 B

6 G

7

subnet B

subnet A

E

(b)(b)

5.2 - U.Crete - M. Katevenis - CS-534 22

Which is the lowest-cost non-blocking fabric?
• N×N Benes network, made of 2×2 switches:

– 2·(log2N)−1 stages (2 banyans back-to-back, 1 shared stage)
– N/2 switches per stage ⇒ total switches = N·(log2N)−N/2
– number of states that the Benes network can be in = 2#switches =

2N·(logN)−N/2 = (2logN)N / 2N/2 = NN / 2N/2 = [N·…·N] ·
[(N/2)·…·(N/2)] > N·(N-1)·…·2·1 = N! ⇒ Benes has more
states than the minimum required for a net to be non-blocking

– Benes was seen to be non-blocking: (i) circuits and the
“threading” algorithm, (ii) packets and inverse multiplexing

– “rearrangeably” non-blocking: in a partially connected network,
making a new connection may require re-routing existing ones

• Impossible for any network with about half the switches of the
Benes (e.g. banyan) to be non-blocking (# of states)

⇒Benes is probably the lowest-cost practical non-blocking fabric

5.2 - U.Crete - M. Katevenis - CS-534 23

5.2.3 Clos Networks (generalization of Benes nets)

inputs
per

switch

IN OUT
outputs

per
switch

1
2

3

N2

IN=3

IN=3

OUT=3IN=3

OUT=3

OUT=3

1

2

1

2

N1 N3

5-parameter Network: (IN, N1, N2, N3, OUT)
this example: the (3, 4, 5, 4, 3) Clos Network

usually: IN = OUT, and N1 = N3

5.2 - U.Crete - M. Katevenis - CS-534 24

A

B

OUT-1

IN-1

IN-1

connected
already

elsewhere

Connect
this last
free input on A
with the last free
output on B

N2 switches >= IN +OUT - 1

OUT-1
elsewhere
connected
already

Clos
Networks

• Strictly non-blocking
if and only if N2 ≥ IN+OUT-1

• Rearrangeably non-blocking
if N2 ≥ max{IN, OUT}

5.2 - U.Crete - M. Katevenis - CS-534 25

5.2.4 Fat Trees: customizable local versus global traffic

• Customizable percent fat – configurable amounts of internal blocking
• Bidirectional links, like most practical interconnects
• Skinny trees support local traffic – Full-fat tree is like folded Benes

2-wide

2-wide

4-wide2-wide

2-wide

medium
fat

medium fat full
fat

(skinny)
normal 3x3 3x3 3x3 3x3

4x4 4x4 4x44x4

3x3 3x3

3x3 3x3 3x33x3

4x4 4x4 4x4

4x4 4x4 4x44x43x3 3x3 3x33x3

5.2 - U.Crete - M. Katevenis - CS-534 26

Switch Radix, Hop Count, Network Diameter
• Most of our examples used

unidirectional links – fig. (a)
– “indirect” nets have ports at edges.

• Most practical interconnects use
bidirectional links – fig. (b)
– “direct” nets provide external ports

on all switches.
• If some destinations are reachable at

reduced hop count (P2 in (b)), that is at
the expense of the total number of
destinations reachable at a given hop
count – or larger network diameter.

• Energy consumption to cross the net
critically depends on the number of
chip-to-chip hops, because chip power
is dominated by I/O pin driver consum.

4x4

4x4

4x4

4x4

4x4

4x4

4x4
4x4

P2
P3

P1

(b)

P2

P3

P2

P1
P1

(a)

5.3 - U.Crete - M. Katevenis - CS-534 27

5.3 Towards Scalable Switches

• Buffer throughput limitation ⇒ use input queueing or CIOQ
• Input queued crossbar scalability limited primarily by:

– quadratic cost growth rate, O(N2), of crossbar
– scheduler complexity & efficiency, i.e. solving the output

contention (congestion management) problem
• To solve the crossbar cost ⇒ use switching fabrics
• To solve the scheduler / contention / congestion problem:

– (sorting / self-routing networks – bad solution)
– Switching Fabrics with Small Internal Buffers, large input

VOQ’s, and Internal Backpressure (Flow Control)

5.3 - U.Crete - M. Katevenis - CS-534 28

[intentionally left blank]

5.3 - U.Crete - M. Katevenis - CS-534 29

5.3 - U.Crete - M. Katevenis - CS-534 30

