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5. Switching Fabrics

Table of Contents:

• 5.1  Inverse Multiplexing (Adaptive / Multipath Routing)
– byte-sliced switches, recursive definition of the Benes network
– load distribution & balancing, packet ordering & resequencing

• 5.2  Scalable Non-Blocking Switching Fabrics
– banyan, Benes, Clos – O(N·logN) cost & lower bound
– fat trees – controlled blocking, locality of traffic

• 5.3  What about Scalable Scheduling?
– self-routing fabrics, sorting networks: bad solution
– fabrics with small internal buffers and flow control: good solution
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5.1  Parallelism for High-Thruput: Inverse Multiplexing

• Parallel wires or network routes for scaling (virtual) “link” throughput up
• Easy: central control, synchronized; Difficult: distributed control, asynch.
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5.1  Byte-Slicing: Tiny Tera & other commercial chips

Mckeown e.a.: “Tiny Tera: a Packet Switch Core”, IEEE Micro, Jan.-Feb.’97
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5.2.1
Benes 
Fabric: 
Recursive 
Definition

• Goal: reduce switch radix from N×N to (N/2)×(N/2): combine ports in pairs
• Port-pairs require links of twice the throughput: use inverse multiplexing
⇒Use two switches, of half the radix each, in parallel to provide req’d thruput

non-blocking
(N/2) x (N/2)

non-blocking
(N/2) x (N/2)

NxN Benes network: rearrangeably non-blocking
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Full Construction of 16×16 Benes out of 2×2 Switches
 

banyan reverse banyan

step-1 sub-network step-3 step-2 sub-network
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Inverse Multiplexing for Non-Blocking Operation
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Per-Flow Inverse Mux’ing for Non-Blocking Operation

• Prove that overall N×N network is non-blocking, i.e. any
feasible external traffic ⇒ feasible rates on all internal links

• All traffic entering switch A is feasible, hence of aggregate 
rate ≤ 1+1 = 2;  it is split into two halves  ⇒ each of rate ≤ 1 
⇒ traffic entering each (N/2)×(N/2) subnetwork is feasible

• It does not suffice to balance (equalize) the aggregate load 
out of switch A – must equally distribute individual (end-to-
end) flows – per-flow inverse multiplexing
⇒ each of λ2,i; λ3,j; λ6,j is individually split in two equal halves
⇒ the sum of λ3,j+λ6,j is also split in two equal halves

• All traffic exiting switch D is feasible, hence of aggregate rate 
≤ 1+1 = 2; it enters D in two equal halves ⇒ each of rate ≤ 1 
⇒ traffic exiting each (N/2)×(N/2) subnetwork is also feasible



5.2  - U.Crete - M. Katevenis - CS-534 9

Methods to implement (per-flow) Inverse Multiplexing
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Conceptual View of 8x8 Benes: Virtual Parallel Links using Inverse Multiplexing
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• Per-Flow Round-Robin, at packet granularity
– for each flow, circularly and per-packet alternate among routes
– requires maintaining per-flow state
– danger of synchronized RR pointers: pck bursts to same route
– alternative: arbitrary route selection, provided the (per-flow) 

imbalance counter has not exceeded upper bound value
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• Adaptive Routing, at packet granularity – usu. Indisciminate
– chose the route with least-occupied buffer (max. credits)
+ does not maintain or use per-flow state
− per-flow load balancing only “after-the-fact”, when buffers fill up

• Randomized Route Selection, at packet granularity
+ does not require maintaining per-flow state
− load balancing is approximate, and long-term

• Packet Resequencing (when needed): major cost of inv.mux’ng
– Chiussi, Khotimsky, Krishnan: IEEE GLOBECOM'98

• Hashed Route Selection at entire Flow Granularity
– route selection based on hash function of flow ID
+ all packets of given flow through same route ⇒ in-order delivery
− poor load balancing when small number of flows

Methods to implement (per-flow) inverse multiplexing (continued)
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5.2.2  The Banyan (Butterfly) Network
• Single route from 

given input to 
given output

• Each input is the 
root of a tree 
leading to all 
outputs

• Trees share nodes
• (Similarly, outputs 

are roots of trees 
feeding each from 
all inputs)

• for N×N network 
made of 2×2 sw.:

• log2N stages, of
• N/2 sw. per stage
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The banyan network is internally blocking
• Consider circuits: each 
λi,j is either 1 or 0: 
single connection per 
port – “telephony” style

• There are N! such circuit 
connection patterns for 
a N×N network – each is 
a permutation of the 
numbers (1, 2, …, N)

blocking

internal

• Any network containing (N/2)·log2N or less 2×2 switches (like the banyan 
does) has to be internally blocking, because it can only be placed into 
less than N! states, hence cannot route all N! existing sets of con. req’s

• Each 2×2 switch can be placed in 2 different states; a network containing 
(N/2)·log2N such switches can be placed into 2(N/2)·logN = N(N/2) 

different states; N(N/2) = N · (N/2)(N/2)-1 · 2(N/2)-1 < N · [(N-1)·
… ·(N/2+1)] · [(N/2) · … ·2] = N! ⇒ not enough states
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• Circuit Connections: Start from an input, use one of the subnets

Benes Net under Telephony-Ckt Connection Requests
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• Continue from the brother port of the output, then the brother of the input
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• Keep “threading” output and input switches, till closing or no-connection
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• Start a new “thread” (a) from an unconnected input, till completing all conn.
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(A) Thread termination on input side (1 of 2)

• Threads always start 
on the input side

• If a thread terminates 
on the input side:

– all touched output 
switches are 
completely 
connected

– concerning 
touched input 
switches:
(1) if thread closes, 
all are complete, 
…
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(A) Thread termination on input side (2 of 2)
• Threads always start 

on the input side
• If a thread terminates 

on the input side:
–all touched output 
switches are 
completely connected
–concerning touched 
input switches:
(1) if thread closes (4), 
all are complete,
(2) if thread terminates 
on half-used input (b): 
all touched input 
switches are complete, 
except the first one, 
which is half-covered 
by this thread
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(B) Thread termination on output side

• Threads always start 
on the input side

• If a thread 
terminates on the 
output side:

– all touched output 
switches are 
completely 
connected

– the first touched 
input switch is   
half-covered
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(C) Completing half-covered input switches

• New threads always start from a half-covered input switch, if there is one
⇒ all threads cover all out-sw’s they touch, in-sw’s are covered in sequence
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Benes Fabric: Rearrangeably Non-Blocking
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Which is the lowest-cost non-blocking fabric?
• N×N Benes network, made of 2×2 switches:

– 2·(log2N)−1 stages (2 banyans back-to-back, 1 shared stage)
– N/2 switches per stage ⇒ total switches = N·(log2N)−N/2
– number of states that the Benes network can be in = 2#switches = 

2N·(logN)−N/2 = (2logN)N / 2N/2 = NN / 2N/2 = [N·…·N] ·
[(N/2)·…·(N/2)] > N·(N-1)·…·2·1 = N! ⇒ Benes has more 
states than the minimum required for a net to be non-blocking

– Benes was seen to be non-blocking: (i) circuits and the 
“threading” algorithm, (ii) packets and inverse multiplexing

– “rearrangeably” non-blocking: in a partially connected network, 
making a new connection may require re-routing existing ones

• Impossible for any network with about half the switches of the 
Benes (e.g. banyan) to be non-blocking (# of states)

⇒Benes is probably the lowest-cost practical non-blocking fabric
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5.2.3  Clos Networks (generalization of Benes nets)

inputs 
per 

switch

IN OUT
outputs

per 
switch

1
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1

2

1

2

N1 N3

5-parameter Network: (IN, N1, N2, N3, OUT)
this example: the (3, 4, 5, 4, 3) Clos Network

usually: IN = OUT, and N1 = N3
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A

B

OUT-1

IN-1

IN-1

connected 
already

elsewhere

Connect 
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Clos 
Networks

• Strictly non-blocking 
if and only if N2 ≥ IN+OUT-1

• Rearrangeably non-blocking 
if N2 ≥ max{IN, OUT}
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5.2.4 Fat Trees: customizable local versus global traffic

• Customizable percent fat – configurable amounts of internal blocking
• Bidirectional links, like most practical interconnects
• Skinny trees support local traffic – Full-fat tree is like folded Benes
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Switch Radix, Hop Count, Network Diameter
• Most of our examples used 

unidirectional links – fig. (a)
– “indirect” nets have ports at edges.

• Most practical interconnects use 
bidirectional links – fig. (b)
– “direct” nets provide external ports 

on all switches.
• If some destinations are reachable at 

reduced hop count (P2 in (b)), that is at 
the expense of the total number of 
destinations reachable at a given hop 
count – or larger network diameter.

• Energy consumption to cross the net 
critically depends on the number of 
chip-to-chip hops, because chip power 
is dominated by I/O pin driver consum.
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5.3 Towards Scalable Switches

• Buffer throughput limitation ⇒ use input queueing or CIOQ
• Input queued crossbar scalability limited primarily by:

– quadratic cost growth rate, O(N2), of crossbar
– scheduler complexity & efficiency, i.e. solving the  output 

contention (congestion management) problem
• To solve the crossbar cost ⇒ use switching fabrics
• To solve the scheduler / contention / congestion problem:

– (sorting / self-routing networks – bad solution)
– Switching Fabrics with Small Internal Buffers, large input 

VOQ’s, and Internal Backpressure (Flow Control)
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