3. Time Switching, Multi-Queue Memories, Shared Buffers, Output Queueing Family

3.1 TDM, Time Switching, Cut-Through
3.2 Wide Memories for High Thruput, Segm’tn Ovrhd
3.3 Multiple Queues within a Buffer Memory
3.4 Queueing for Multicast Traffic

3.5 Shared Buffering and the Output Q’ing Family

Manolis Katevenis
CS-534 – Univ. of Crete and FORTH, Greece
http://archvlsi.ics.forth.gr/~kateveni/534

3.5 Output Queueing & Shared Buffer Family

Table of Contents:

• 3.5.1 The Output Queueing Family: Review
 – Buffer Memories in Output Queueing and in Shared Buffering
 – Per-output queue structures (& per-priority, per-flow-group)

• 3.5.2 Buffer Space Requirements Analysis Results
 – Caution: uniformly-destined, Bernoulli i.i.d. traffic...

• 3.5.3 Crosspoint Queueing and Generalizations
 – Block-Crosspoint Queueing, “shape” of the block

• (other, old: knock-out switch)
Output Queueing

The 'Reference' Architecture

"Top" Performance:
- no head-of-line blocking
- full outgoing throughput utilization (no internal blocking)
- "minimum" delay
- adaptable to any QoS policy
- multicast traffic handled cleanly at top performance

Unnecessarily High Cost:
- wasteful in memory throughput (but interesting for use with multicast packed pointers)
- partitioned buffer space is less efficient than shared

Shared Buffer:

Top Performance at Low Cost for small N
- total buffer memory throughput = 2N
 (versus N×(N-1) for output queuing)
- memory space is shared to better utilization

Same performance as output queueing for unicast traffic
- multiple logical queues in a single memory, at least per output, possibly also per priority/flow...

- for multicast packets: not enough throughput to enqueue each arriving packet into multiple (per output) queues. Hence, if fewer than 2^N multicast queues exist, some head-of-line blocking will occur in them. Interesting combination:
 - shared buffer for packet bodies
 - output queuing for queue pointers

3.5 - U. Crete - M. Katevenis - CS-534
3.5.2 Buffer Space Requirements: Analysis Results

- Analysis & simulation have yielded the results plotted below

- **Assuming** that the input traffic consists of packets with/from:
 - uniformly-distributed destination (output) ports,
 - independent, identically distributed (i.i.d.) Bernoulli processes,
 - fixed-size packet (cell) traffic

- **Attention:** results derived for i.i.d. Bernoulli (non-bursty) arrivals, with uniformly-distributed destination (no overloaded hot-spot output ports), are only useful for gaining a first, rough insight into the behavior of systems, but are usually not representative of the real behavior of systems under real traffic patterns!...
3.5 Output Queueing Family

Load = 85 %
3.5 Output Queueing Family

Crosspoint (Distributed) Queueing:

- Top performance, like output queuing.
- Even more wasteful in memory throughput, and even more partitioned space.
- Existence proof of top performance switches.
-
 \[\text{input block throughput} = \text{constant} \times 2N \text{ instead of } N \]
- Very expensive \((N N^2) \) for large \(N \).

Note: "..." is notation that this buffer was selected, in order for it to perform a sequence; it is the most primitive form of backpressure.

Block-Crosspoint Queueing:

- Combination of:
 - Crosspoint queueing
 - Shared buffer
- Interesting when \(N \) is so large that a single shared buffer would need too high a throughput.
- Applicable for arbitrarily large \(N \), but cost grows with \((N/c)^2 \).
3.5 Output Queueing Family

Other Variations of Output Queueing: **Knock-Out Switch**

- has m inputs and k outputs, $k \ll m$
- passes on up to k non-idle packets to its outputs
- when more than k packets arrive in the same time slot, all destined to the same output, k of them are passed and the rest are dropped
- if the traffic is uniformly destined, and k is on the order of 8 to 12, packets will rarely be dropped

Knock-Out Fabric:
- implemented as m parallel lines
- implemented as k parallel lines
