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3.3  Multiple Queues 3.4  Multicast Queues

Table of Contents:

• 3.3  Multiple Queues within a Buffer Memory
– partitioned queue space: circular-buffer queue
– shared queue space: linked-list queues
– DRAM optimizations, free-list bypass / free-block cache

• 3.4  Queueing for Multicast Traffic
– each segment allowed in single queue
– each segment allowed in multiple queues
– decoupled linked-list node from data-block addresses
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3.3 Multiple Queues within a Buffer Memory
Separate Destinations & Priorities ⇒ Multiple Queues

• Switch 
controller must 
have access to 
any packet that 
is candidate to 
depart next

⇒ Packets that 
are allowed to 
bypass others 
cannot reside 
in the same 
FIFO structure

• Controller needs separate per-destination and per-priority
queue (FIFO) data structures to keep track of packets
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Reminder: Circular Array Implem. of FIFO Queue
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3.3 Multiple Queues  – 1 of 2
Statically Partitioned Space

• Multiple queues within a same SRAM block
• Each queue: circular array implementation
• Control overhead: two pointer words per 

queue (head, tail), incrementor, comparator
• Queue space bounds (partitions) can be 

hardwired, or off-line configurable (when 
queues are empty); in the latter case,      
also need bounds pointers.

+ Advantage: simplicity.
- Disadvantage: partitioned memory space 

leads to underutilization – one queue may 
overflow while lots of empty space exists in 
other memory space partitions.
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Multiple Queues  – 2 of 2
Dynamically Shared Space

• Linked List 
implem. of 
queues

• Pointers in 
separate 
memories: 
accessed  
in parallel
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• Each data block allowed to 
belong in at most one queue

• Next-pointer memory can be 
large, off-chip; each enq or 
deq operation only needs one 
access to it ⇒ matches wide-
mem. data rate = 1 block/ck

• Empty/Hd/Tl usually on-chip
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Data vs. Pointer Access Rate – Free List Bypass

• Data memory throughput = 2 cells/cell-time (1 write + 1 read)
⇒ data memory access rate = 2 addresses/cell-time

• Both Queue & Free-List operations touch the Next-Pointers, once per op
⇒ naïve implementation would require 4 addresses/cell-time to nxtPtr

• Free List Bypass: put incoming cell into just freed block of departing cell
⇒ next -pointer memory access rate = 2 addresses/cell-time

• When no arrival or no departure, other side can use full 2 acc/cl-time rate
• Multicast: departure not always frees the block ⇒ use Free Block Cache
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nxtPtr in DRAM – Free Block Preallocation

• To economize on nxtPtr memory, place these pointers inside data DRAM
⇒ conventional enq costs twice the number of DRAM row activate’s

• Preallocate one free block per queue, at tail, to remedy this
• Reference: Nikologiannis, Katevenis: “Efficient per-flow queueing in DRAM at OC-

192 line rate using out-of-order execution…”, IEEE Int. Conf. Commun. (ICC) 2001.
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3.4 Queueing for Multicast Traffic
• Multicast traffic is expected to become very important in the future

– but so has it been for many years in the past…
• Supporting multicast traffic usually increases complexity and cost
• Queueing for Multicast Traffic:

– Each segment (block) allowed in only one queue ⇒ HOL blocking
– Each segment allowed in multiple queues ⇒ need many nxtPtr’s
– Enqueue throughput and nxtPtr space: static vs. dynamic sharing

• References:
– F. Chiussi, Y. Xia, V. Kumar: “Performance of Shared-Memory 

Switches under Multicast Bursty Traffic”, IEEE Jour. Sel. Areas in 
Communications (JSAC), vol. 15, no. 3, April 1997, pp. 473-487.

– D. Stiliadis: “Efficient Multicast Algorithms for High-Speed Routers”, 
Proc. IEEE Workshop on High Performance Switching and Routing 
(HPSR 2003), Torino, Italy, June 2003, pp. 117-122.
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Same or Different Queues with Unicast Traffic?
Case 1: Each segment is only allowed to belong to a single queue

• Impractical to have
per-output multicast
queues: would need 
O(2n) queues

• We may have a different set of these queues (including multicast)
per priority level, but it may still happen that traffic destined to 
outputs A and C currently exists at priority levels higher than 
“our” cell A-C while all queues destined to B and D at priority levels 
above “our cell” B-D are empty.
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Case 2: Each segment is allowed to belong to multiple queues

• Solves all QoS problems!
but…

• Increases the worst-case
queue-operation rate
by a factor of N
(N=number of output ports)!
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Data Structures for 
a segment to belong to 
up to N queues:
Case 2A:
N nxtPtr’s per 
memory block

• Most segments are unicast
next pointers are 
grossly underutilized!
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Case 2B: Decouple 
Linked List Nodes 
From Data Buffer
Addresses

• twice the cost per nxtPtr
(need a segPtr as well now)
but …

• Much fewer than NxS
descriptors (based on avg ratio 
of unicast-to-multicast segments, 
and avg fan-out of multicast 
segments, e.g. f =2)

Optimization:
Partition the address space of
queue member descriptors into 2 parts:
• 0 to S-1: unicast-only segments, 

no segPtr needed (segPtr[I] =I)
• S to fS-1: full queue member descriptors,

with nxtPtr and segPtr, intended 
to use by multicast segments
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Enqueue operation rate for multicast segments
into multiple per output queues
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•References:
–F. Chiussi, Y. Xia, V. Kumar: IEEE  JSAC, April 1997, pp. 473-487.

–D. Stiliadis: IEEE HPSR 2003, June 2003, pp. 117-122.


