
3.3, 3.4: Multiple & Multicast Queues 1

3.1 TDM, Time Switching, Cut-Through
3.2 Wide Memories for High Thruput, Segm’tn Ovrhd
3.3 Multiple Queues within a Buffer Memory
3.4 Queueing for Multicast Traffic
3.5 Shared Buffering and the Output Q’ing Family

Manolis Katevenis
CS-534 – Univ. of Crete and FORTH, Greece

http://archvlsi.ics.forth.gr/~kateveni/534

3. Time Switching, Multi-Queue Memories,
Shared Buffers, Output Queueing Family

3.3 - U.Crete - M. Katevenis - CS-534 2

3.3 Multiple Queues 3.4 Multicast Queues

Table of Contents:

• 3.3 Multiple Queues within a Buffer Memory
– partitioned queue space: circular-buffer queue
– shared queue space: linked-list queues
– DRAM optimizations, free-list bypass / free-block cache

• 3.4 Queueing for Multicast Traffic
– each segment allowed in single queue
– each segment allowed in multiple queues
– decoupled linked-list node from data-block addresses

3.3, 3.4: Multiple & Multicast Queues 2

3.3 - U.Crete - M. Katevenis - CS-534 3

3.3 Multiple Queues within a Buffer Memory
Separate Destinations & Priorities ⇒ Multiple Queues

• Switch
controller must
have access to
any packet that
is candidate to
depart next

⇒ Packets that
are allowed to
bypass others
cannot reside
in the same
FIFO structure

• Controller needs separate per-destination and per-priority
queue (FIFO) data structures to keep track of packets

BA

Buffer Memory

Other Flows

Congested Output

QBhi

QAlo

QAhi

QBlo

high priority: bypass QBlo

AAAAAA

BB

A

B

3.3 - U.Crete - M. Katevenis - CS-534 4

Reminder: Circular Array Implem. of FIFO Queue

tl
hd

tlhd

hd hd
tl

tlhd

tl

hd

tl

hd

tl

(produce)
write

inc

inc

head
pointer

Empty

hd == tl

read
(consume)

tail
pointer

(def. 1) (def. 2)
Full Full

+ extra bit
of state

hd == (tl+1)
modulo Size

hd == tl

wrap around

3.3, 3.4: Multiple & Multicast Queues 3

3.3 - U.Crete - M. Katevenis - CS-534 5

3.3 Multiple Queues – 1 of 2
Statically Partitioned Space

• Multiple queues within a same SRAM block
• Each queue: circular array implementation
• Control overhead: two pointer words per

queue (head, tail), incrementor, comparator
• Queue space bounds (partitions) can be

hardwired, or off-line configurable (when
queues are empty); in the latter case,
also need bounds pointers.

+ Advantage: simplicity.
- Disadvantage: partitioned memory space

leads to underutilization – one queue may
overflow while lots of empty space exists in
other memory space partitions.

H1

T1

H2

T2

H3

T3

H4
T4

Q1

Q2

Q3

Q4

Q
1

Q
2

Q
3

Q
4

3.3 - U.Crete - M. Katevenis - CS-534 6

Multiple Queues – 2 of 2
Dynamically Shared Space

• Linked List
implem. of
queues

• Pointers in
separate
memories:
accessed
in parallel

Free Block List

0

1

2

3

4

5

6

...

N-2

N-1

0

1

2

3

4

5

6

...

N-2

N-1

0
1
2
3
4
5
6
7
8
9

...

...
2N-4
2N-3
2N-2
2N-1

10
11
12
13

E Head Tail
Q0
Q1

0
1Q3

Q2
4 6

1

60

0

3

2 2
0
0

5

. . .

N-2

DataMemnxtPtr

0 N-1 N-2

word addresses
block
addresses

• Each data block allowed to
belong in at most one queue

• Next-pointer memory can be
large, off-chip; each enq or
deq operation only needs one
access to it ⇒ matches wide-
mem. data rate = 1 block/ck

• Empty/Hd/Tl usually on-chip

3.3, 3.4: Multiple & Multicast Queues 4

3.3 - U.Crete - M. Katevenis - CS-534 7

Data vs. Pointer Access Rate – Free List Bypass

• Data memory throughput = 2 cells/cell-time (1 write + 1 read)
⇒ data memory access rate = 2 addresses/cell-time

• Both Queue & Free-List operations touch the Next-Pointers, once per op
⇒ naïve implementation would require 4 addresses/cell-time to nxtPtr

• Free List Bypass: put incoming cell into just freed block of departing cell
⇒ next -pointer memory access rate = 2 addresses/cell-time

• When no arrival or no departure, other side can use full 2 acc/cl-time rate
• Multicast: departure not always frees the block ⇒ use Free Block Cache

Free List

Data Memory

Queues

cell departures

write read

Free BlockbypassFree Block

enqdeq

enq deq
cell arrivals

3.3 - U.Crete - M. Katevenis - CS-534 8

nxtPtr in DRAM – Free Block Preallocation

• To economize on nxtPtr memory, place these pointers inside data DRAM
⇒ conventional enq costs twice the number of DRAM row activate’s

• Preallocate one free block per queue, at tail, to remedy this
• Reference: Nikologiannis, Katevenis: “Efficient per-flow queueing in DRAM at OC-

192 line rate using out-of-order execution…”, IEEE Int. Conf. Commun. (ICC) 2001.

DRAM burst access DRAM burst access

pck3_new

pck2_old

pck1_old

tail

head
Data

data here
write
ptr here
write

nxtPtr

pck3_new

pck2_old

pck1_old

tail

head
DatanxtPtr

data here
write
ptr here
write

Conventional Enqueue Enq. w. Free-Block Preallocation

new free allocated

3.3, 3.4: Multiple & Multicast Queues 5

3.4 - U.Crete - M. Katevenis - CS-534 9

3.4 Queueing for Multicast Traffic
• Multicast traffic is expected to become very important in the future

– but so has it been for many years in the past…
• Supporting multicast traffic usually increases complexity and cost
• Queueing for Multicast Traffic:

– Each segment (block) allowed in only one queue ⇒ HOL blocking
– Each segment allowed in multiple queues ⇒ need many nxtPtr’s
– Enqueue throughput and nxtPtr space: static vs. dynamic sharing

• References:
– F. Chiussi, Y. Xia, V. Kumar: “Performance of Shared-Memory

Switches under Multicast Bursty Traffic”, IEEE Jour. Sel. Areas in
Communications (JSAC), vol. 15, no. 3, April 1997, pp. 473-487.

– D. Stiliadis: “Efficient Multicast Algorithms for High-Speed Routers”,
Proc. IEEE Workshop on High Performance Switching and Routing
(HPSR 2003), Torino, Italy, June 2003, pp. 117-122.

3.4 - U.Crete - M. Katevenis - CS-534 10

Same or Different Queues with Unicast Traffic?
Case 1: Each segment is only allowed to belong to a single queue

• Impractical to have
per-output multicast
queues: would need
O(2n) queues

• We may have a different set of these queues (including multicast)
per priority level, but it may still happen that traffic destined to
outputs A and C currently exists at priority levels higher than
“our” cell A-C while all queues destined to B and D at priority levels
above “our cell” B-D are empty.

A

A

B

B

C

C

C

C DA

single multicast queueper-output unicast queues

Head-of-line Blocking!

CA
B

other
priority
level
queues

D

3.3, 3.4: Multiple & Multicast Queues 6

3.4 - U.Crete - M. Katevenis - CS-534 11

Case 2: Each segment is allowed to belong to multiple queues

• Solves all QoS problems!
but…

• Increases the worst-case
queue-operation rate
by a factor of N
(N=number of output ports)!

CA

B

DCBA

one copy of "37"

38
36 18

has departed
and decremented
the corresponding
reference count

40

Data Buffer
blocks:

per-output queues

addr:Counts:
Reference

27

33

34

35

0

2

361

(multicast)

371 (multicast)

381

0 39

1 40

(unicast)

(unicast)

(unicast)

331 (unicast)

D

35
37

37

35

3.4 - U.Crete - M. Katevenis - CS-534 12

Data Structures for
a segment to belong to
up to N queues:
Case 2A:
N nxtPtr’s per
memory block

• Most segments are unicast
next pointers are
grossly underutilized!

Data Buffer

79

135

block

75

77

319

82

82

1

1

0

1

2

1

1

QB1
QA2

QB2
QC1
QC2
QD1
QD2

QA1 72

nx
tP

trB

ne
xt

P
trA

nx
tP

trC

nx
tP

trD

R
ef

. C
ou

nt
s

73

76
75

75

77

78 3

#

73

74

75

76

72

77

78

79

Head Tail

3.3, 3.4: Multiple & Multicast Queues 7

3.4 - U.Crete - M. Katevenis - CS-534 13

Case 2B: Decouple
Linked List Nodes
From Data Buffer
Addresses

• twice the cost per nxtPtr
(need a segPtr as well now)
but …

• Much fewer than NxS
descriptors (based on avg ratio
of unicast-to-multicast segments,
and avg fan-out of multicast
segments, e.g. f =2)

Optimization:
Partition the address space of
queue member descriptors into 2 parts:
• 0 to S-1: unicast-only segments,

no segPtr needed (segPtr[I] =I)
• S to fS-1: full queue member descriptors,

with nxtPtr and segPtr, intended
to use by multicast segments

110

111

112

114

115

116

117

118

119

120

121

110

QA1

QB1

112

116 73

117 75

142 77

QC2

118

119 76

183 77

Queue Member Descriptors

113

nxtPtr segPtr

1

0

3

1

2

1

1

1

77

block
#

Cnt.
Ref.

Data Buffer

QA1

110
111 72

75

127 79

114

descriptors,fxS

121 75

125 78

f>1

73

74

75

76

78

79

72

blocksS

3.4 - U.Crete - M. Katevenis - CS-534 14

Enqueue operation rate for multicast segments
into multiple per output queues

f(avg) times
Replicateu+m>=1

Rate

Segments

TimeSlot
Buffer

Replic.

 ... unicast
 ... multicastm

u

Mcast
mrate

rate u
Unicast

Replication
1+S

enq

P
er

-O
ut

pu
t Q

ue
ue

s

rate
1+s-u

u

rate

=1+s-u
f f

(1-u)+s>=
f

>= m S >= m(f-1)m+s

Speedup S

Dequeue Rate:

enq

TimeSlot

TimeSlotdeq

Segments
Arriving

•References:
–F. Chiussi, Y. Xia, V. Kumar: IEEE JSAC, April 1997, pp. 473-487.

–D. Stiliadis: IEEE HPSR 2003, June 2003, pp. 117-122.

