
1.1 Rate, Throughput, Buffering (U.Crete, CS-534) http://archvlsi.ics.forth.gr/~kateveni/534/07a/s11_parSer_tx.html

1 of 8

CS-534: Packet Switch Architecture
Spring 2007

Department of Computer Science
© copyright: University of Crete, Greece

1.1 Parallel and Serial Links, Rate,
Throughput Conservation and Buffering

Switching, interconnections, and networking is about moving (digital) information around, from
place to place. Such movement can physically occur via wireless communication, optical fibers, or
metallic (usually copper) cables. The highest performance interconnects --the most challenging ones
for switch architectures-- use optical fibers or metallic cables. Transmission of information in these
media can be modeled as follows, at an abstraction level that suffices for the purposes of this course.

1.1.1 Parallel Transmission Links

Parallel transmission links, as illustrated in the figure, use multiple (n>1)
conductors to carry an entire word --rather than a single bit-- in each unit
of time. Parallel links are the customary form of interconnection in the
datapath of processors and other digital systems: single-bit timing and
control signals instruct the datapath how to process all n bits of the data at
once. For the link to be usable at low cost, all bits of the word are
synchronous to a given clock, ck. Usually, the need arises for one or more
framing wires, F, to accompany the data of the link, in order to delineate
cell or frame or packet boundaries; examples include signals to indicate
valid/idle link word, or start_of_packet / end_of_packet, or header/body
differentiation, etc. In a datapath terminology, framing information can be
thought of as part of either data or control, depending on its encoding and
its use. If the normal network traffic carried over the data wires does not
use all 2n combinations of the n bits, then in-band signaling can be used,
and the framing information can be carried over the data wires themselves,
as control words, encoded using the n-bit combinations that remain unused
by normal network traffic. Otherwise, when all bit combinations are
acceptable values inside the network traffic, or when convenience or
robustness dictates it, out-of-band signaling is used and separate framing wire(s) are included with
the link. When n is large, the "overhead" cost of distributing the clock to all users of the link and of
carrying the framing information on separate wires is small relative to the cost of the data wires
themselves.

When the clock frequency of a link is below the limits of technology for the driver circuits and the
transmission line, plain, conventional clocking is used, as illustrated in the upper part of the figure,
and as customary in ordinary digital systems employing edge-triggered flip-flops and registers: the
link carries (up to) one word per clock cycle. If, however, the clock frequency is at the upper limits
of technology, the following problem arises with conventional clocking: the pulse width on the
clock wire is half as short as the shortest pulse width on the data wires, because the clock transitions
twice per cycle, as compared to once per cycle for the data. That means that either the clock wire
operates at technology limits --but then there is room for the data wires to operate faster-- or else the
data wires operate at technology limits --but then it becomes impossible to send such a fast clock
signal. To rebalance the signaling rate used on the two kinds of wires, Double Data Rate (DDR)
Clocking is used: the link carries one word during the positive edge (or pulse) of the clock, and a
second word during the negative edge (or pulse) of it. DDR clocking became popular with the recent
generations of synchronous dynamic RAM (SDRAM). If f is the clock frequency (measured e.g. in
MHz), then the signaling rate on the wires (measured in MBaud) is f for conventional clocking and
2f for DDR clocking; the transmission rate or link throughput (measured in Mbits/s or Mb/s or
Mbps) is f·n for conventional clocking and 2f·n for DDR clocking (if the framing wire is included in
the count, the transmission rate becomes f·(n+1) or 2f·(n+1), respectively).

1.1 Rate, Throughput, Buffering (U.Crete, CS-534) http://archvlsi.ics.forth.gr/~kateveni/534/07a/s11_parSer_tx.html

2 of 8

In modern high-performance switching systems, parallel links are used extensively inside ASIC
chips, and in few cases between nearby chips, usually on the same printed circuit board (PCB). The
primary limitation of high-speed parallel links is timing skew among the n cables making up the
link. As clock frequency increases, when the bit-time gets so short as to be comparable to link skew,
synchronization among the bits of a word is lost, and the link becomes unusable in the simple way
outlined above; Skew increases with link length, when the link goes through connectors, and with
link width (the number of wires, n+2 or so); clock distribution may also introduce clock skew,
which adds to the data skew. When skew becomes severe, e.g. in chip-to-chip links operating at
several hundred MHz frequencies, two methods are used to alleviate it: (i) Source-Synchronous
Clocking: instead of distributing the clock from a central location to the driver and to the receiver of
the link, the link driver (source) sends the clock along with the data, through similar driver circuits
and parallel (same length) PCB traces, to the receiver; in this way, the clock delay becomes
comparable to the data delay, and skew among them is reduced; and (ii) Partial-Word Clocking:
when the link is very wide (e.g. 32 or 64 bits), a separate, source-synchronous clock signal is sent
along with every --e.g.-- 8 or 16 of the data wires; wire overhead stays low (1/8th or 1/16th), while
skew is reduced within each separate 8-bit or 16-bit sub-link.

Other Forms of Parallelism,
Inverse Multiplexing

Parallelism is the primary means to achieve high
performance in interconnects, as in most other
domains, too. The form of parallelism seen above
can be called bit-level parallelism, and makes sense
when all the wires of the link operate in synchrony
with a single clock. At higher rates or longer
distances, when such synchronous operation cannot
be maintained, the individual wires in the link
behave more like separate, independent sub-links.
Then, it becomes more natural to distribute the data over the sub-links not on a bit-by-bit basis but at
coarser granularity: bytes, or cell-slices, or packets, or flows, as illustrated in the figure, here.

Packet-level and flow-level parallelism is especially interesting, and has some important differences
from fine-grain parallelism: while all bits of a word and all slices of a cell can be shipped at about
the same time over all sub-links, all packets may not be available at the same time, and all flows
may not present the same load to the network. Inverse Multiplexing is the general term used to
describe these other forms of parallelism, and especially the coarse-grain ones: packet-level and
flow-level. As will be seen in the chapter on switching fabrics, inverse multiplexing is the primary
technique to achieve trully scalable high-performance switching.

1.1.2 Serial Transmission Links

Serial transmission links carry all of their information through a single line --electrical conductor or
optical fiber (the electrical conductor normally uses two wires, in the form of coaxial cable or
twisted pair). In the old times, at low signaling frequencies, the primary reason for using a single
line was cost reduction. Currently, in the Giga-Hertz era, where bit times are shorter than a
nanosecond, the primary reason is that the inevitable timing skew between any two signals carried
over a distance longer than a meter or so exceeds the bit time duration. Thus, for long and fast links,
it is impossible to maintain synchronization, not only among multiple data bits, but even between
one data and one clock wire. Consequently, the receiver is forced to extract the clock from the single
serial signal received over the single line. For long distances, even when cost is not an issue and we
use multiple parallel lines for performance reasons ("other forms of parallelism", above) (e.g.
multiple fibers or multiple wavelengths in one fiber - WDM), the simple clocking scheme of parallel
link (§1.1.1) cannot be used --the receiver is forced to extract a separate, individual clock from each
and every one of the multiple parallel conductors.

The functions typically present in a serial line receiver are illustrated in the block diagram: clock
recovery, serial-to-parallel conversion, and framing recovery. The incoming serial data waveform
may stay at high or low voltage for long time intervals, corresponding to trains of cosecutive 1's or
0's. For correct reception, we need to know the signaling rate to a certain degree of accuracy, related

1.1 Rate, Throughput, Buffering (U.Crete, CS-534) http://archvlsi.ics.forth.gr/~kateveni/534/07a/s11_parSer_tx.html

3 of 8

to the length of the longest sequence of 1's or 0's. Clock recovery begins with a local oscillator
whose frequency is
approximately equal to the
known signaling rate. Next,
the exact frequency and phase
of this oscillator must be
adjusted to match the
incoming serial signal, using a
phase-locked loop (PLL):
whenever an edge occurs on
the incoming serial data, the
timing of that edge is
compared to the phase of the oscillator; if a systematic bias is detected for a certain length of time,
the local oscillator phase is adjusted to compensate for that. The end result, when transmission
quality is good enough (low phase jitter on the serial data), is that the phase of the local oscillator
remains "locked" to the transitions of the incoming serial signal, thus forming the recovered clock,
ckfast. The other edge of this recovered clock --the edge that falls at the middle between signal
transitions-- is then used to sample the incoming signal, latching and holding the received data; in
the figure, the data being received is "11001".

Obviously, for clock recovery to be successful, the incoming serial signal must transition between 0
and 1 at least once every given number of clock periods (bit intervals). In other words, the maximum
length of trains of cosecutive 1's or 0's must be bounded; this bound is related to the phase jitter of
the signal and to the frequency difference between the transmitter and receiver oscillators. If
arbitrary (binary) user data are transmitted, this requirement may not be satisfied, --e.g. when a long
sequence of null bytes (or FF or -1 numbers) is being sent. To cope with that, proper line coding
schemes are used, which introduce a certain proportion of redundancy or overhead information to
ensure that signal transitions will occur often enough. A popular line code, used in Fibre Channel
and Gigabit Ethernet, is the 8B/10B encoding, which encodes each 8-bit byte using a 10-bit
codeword (even though capital, the B's in this name mean "bit", not "byte"!). 8B/10B encoding
provides for simple encoder and decoder circuits, and is robust in terms of oscillator and channel
(jitter) quality, at the expense of a high proportion of overhead bits relative to data: 25 percent (%).
Another popular line code is SONET (Synchronous Optical Network); it uses just around 3.5 % of
overhead bits, but requires better quality of channel and more expensive transmitters and receivers.

Line Codes and Framing:

The next problem after clock recovery is Framing: how to discover the boundaries of bytes and
cells/frames/packets in a long series of bits, in the lack of additional information. If these boundaries
are found once, i.e. if frame synchronization is achieved once, then, in theory, the system would be
able to maintain such synchronization forever: byte boundaries are found by counting bits
(eight-by-eight); cell or frame boundaries are found by counting bytes (modulo the fixed, known
cell or frame size); and for variable-size packets, their boundaries are found by looking at the packet
size field in the header of each packet to determine where this packet ends, hence where the next
packet begins, thus where that next packet's header and size field are, etc. However, a practical
system must operate robustly in the presence of noise and bit errors (including burst errors), hence
in the presence of occasional losses of bit and/or frame synchronization. Thus, the line coding
scheme must be properly designed in order to enable the receiver to recover frame synchronization
after occasional loss of it.

Line codes achieve the two above goals using the following general idea. Take the 8B/10B encoding
as an example. For each data byte, a 10-bit codeword is transmitted. There are 1024 different
codewords. Out of them, we must select 256 codewords to represent the 256 different data byte
values, plus a few more codewords to represent some control characters intended for out-of-band
signaling purposes. The rest of the 1024 existing codewords will be "banished" as illegal. First,
banish those codewords whose bit representation contains too few 0-1 or 1-0 transitions, i.e. which
contain sequences of 1's or 0's that are too long. Second, banish the codewords that, when placed
adjacent to other, legal codewords would result in too few transitions at the boundary between the
two codewords (i.e. a suffix of one word and a prefix of the other would form a sequences of 1's or
0's that is too long).

1.1 Rate, Throughput, Buffering (U.Crete, CS-534) http://archvlsi.ics.forth.gr/~kateveni/534/07a/s11_parSer_tx.html

4 of 8

Next, choose a codeword, called SYNC, that is appropriate as a synchronization control character;
SYNC characters are to be transmitted periodically in order for the receiver to use them when it
needs to recover byte and frame synchronization. When synchronization is lost (as detected by too
high of an error rate), the receiver examines all groups of 10 bits, starting at every arbitrary bit
position, looking for a SYNC character; when found, the SYNC character indicates byte boundaries,
and it may also indicate cell or frame or packet boundaries. Hence, the SYNC bit pattern must never
appear at the boundary of two legal codewords, i.e. a suffix of one legal codeword and a prefix of
another must never form the SYNC bit pattern. Finally, choose the required legal codewords (256
data byte values plus possibly a few more control characters) among the remaining codewords so as
to maximize the Hamming distance among legal words, in order for the code to possess good error
detection properties (the Hamming distance between two codewords is the minimum number of bit
inversions required to transform one of them into the other).

Control characters, as described above, are legal codewords that are distinct from the 256 data byte
values, and thus can be used for out-of-band signaling, i.e. to convey information --even in the
middle of cells/frames/packets-- that is not part of user headers or payload. The SYNC character, as
seen above, is one such control character. Other control characters may be intended for flow control
(backpressure) --e.g. XON/XOFF: start/stop transmission. When no useful data exist to be
transmitted over the link, a special control character must be transmitted instead --this can be
SYNC, or it can be another bit pattern, e.g. called IDLE.

Returning to the typical block diagram, in the figure above, the received data must be converted to
parallel form and decoded from the line code to plain, unencoded values. Serial to parallel
conversion is usually done in order to reduce clock frequency, because serial link transmission rate
is usually quite higher than ASIC clock frequencies. Other reasons include decoding from the line
code, and the usual form of on-chip processing in parallel rather than serial datapaths. The following
subsection defines various rate and throughput terms, and describes throughput relationships. Then
we discuss conversions between serial and parallel data formats.

Signaling Rate, Transmission Rate, Throughput, Capacity, and Load:

The Signaling Rate of a line (electrical conductor or fiber) is the number of data symbols that the
line carries per unit of time, where each symbol is carried "at once" --without the line transitioning
from one value to another while the symbol is being transmitted. The signaling rate is measured in
Baud. For the parallel link of §1.1.1 operating with a clock frequency f, the signaling rate is f for
conventional clocking and 2f for DDR clocking. For the serial link of §1.1.2, the signaling rate is
equal to the frequency of the recovered (fast) clock, ffast .

The Transmission Rate of a link is the number of raw bits that it carries per unit of time; hence, the
transmission rate is equal to the signaling rate times the number of bits per symbol. The transmission
rate is measured in bits/s or b/s or bps. Some communication links --not in our course-- carry digital
non-binary symbols; for example, if each symbol is a quantity (e.g. voltage) with 4 distinct
acceptable values, then that link carries 2 bits per symbol. For the n-wire parallel link of §1.1.1,
each symbol is an n-bit word, ignoring the framing wire, or an (n+1)-bit word if we include the
framing wire; thus, its transmission rate is f·n or 2f·n, --without the framing bit, for plain or DDR
clocking respectively-- or f·(n+1) or 2f·(n+1) when the framing wire is included in the count. For
the serial link of §1.1.2, each symbol is one bit, and its transmission rate is ffast .

The Throughput of a link is the number of useful bits that it carries per unit of time; we can say that
Throughput equals Transmission Rate minus Overhead. The definition of useful bits versus
overhead is context-dependent, and so is the definition of throughput. For the parallel link of §1.1.1,
if we assume that the n data wires carry useful information versus the overhead carried by the
framing wire, then throughput is f·n, as contrasted to the transmission rate of f·(n+1) (for plain
clocking). For the serial link example with the 8B/10B line code seen in §1.1.2, throughput is eight
tenths (8/10) of transmission rate. However, depending on context, additional bits may be
considered overhead. For example, in Gigabit Ethernet links, consecutive packets must be separated
by a 12-byte (minimum) interframe gap, and each packet must be preceeded by an 8-byte preamble;
these are additional types of overhead, further reducing the actual "user" throughput. In some
contexts, it may also be appropriate to consider encapsulation headers as overhead.

1.1 Rate, Throughput, Buffering (U.Crete, CS-534) http://archvlsi.ics.forth.gr/~kateveni/534/07a/s11_parSer_tx.html

5 of 8

The words "throughput" or "rate" may refer to the Peak Capacity of the link, or to the Current
(instantaneous or average) Load actually present on the link. Peak capacity refers to when the link
carries as much user information as possible per unit time ("back-to-back packets"); at other periods,
the actual load on the link may be less than peak capacity, because less user traffic is available for
transmission, thus leaving idle periods between packets. Again, the interpretation of "throughput" or
"rate" is context-dependent. For clarity, it is preferable to use the term "(peak) capacity" to refer to
the maximum throughput of the link, or the term "(current) load" to refer to the actually present
traffic. The single word "throughput" usually refers to link capacity, while the single word "rate"
sometimes refers to link load, especially in the context "traffic rate" or "flow rate". Load can be
measured in bits/s, like throughput, but it is also often measured as a fraction or percentage of peak
capacity --e.g. "load=0.8" or "80% load".

1.1.3 Throughput Conservation, Buffer Space, Delay

At the core of things, switching consists of a large collection of
devices where information from multiple sources is aggregated
onto a single link (called multiplexing), or information from a
single link is distributed to multiple destinations (called demultiplexing), or both at the same time.
The first metric to consider at such points is throughput: under one or another of the definitions
discussed above, throughput is conserved across these aggregation or distribution points. In the
case of the figure, where the n incoming links have a throughput of r each and the m outgoing links
have a throughput of r' each, the aggregate incoming throughput is n·r, and this must be equal to the
throughput R of the shared link, and to m·r', the aggregate departing throughput: n·r = R = m·r'.

The exact definition for throughput to be used in this conservation equation depends on the kind of
processing performed between lines. In the simplest case, totality of raw bits are transferred from
input to output, not dropping and not adding any overhead information (hence no memory is needed
other than sample-and-hold flip-flops). In this case, transmission rate is conserved across the
conversion point.

In other cases, code conversion or packet translation takes place: one protocol's overhead is dropped
from the incoming traffic, and another protocol's overhead is added to the outgoing stream;
however, the useful bits are preserved from input to output. Alternatively or at the same time, idle
periods may be squeezed out of the incoming line, with new, different idle periods added to the
outgoing stream; idle periods are transmitted when no useful traffic exists to be sent, or when it is
not appropriate to send traffic due to flow control (policing, shaping, backpressure, etc). Also,
filtering out or dropping some incoming packets, e.g. because they are destined elsewhere, is
equivalent to treating them as idle periods. In all such cases, throughput is conserved, where
throughput is defined based on which useful bits are carried intact from input to output.

For all these reasons, instantaneous (useful bit) throughput may be much below peak line
throughput (capacity), and may also differ a lot from average throughput. To smooth out the
fluctuations in instantaneous throughput, possibly adjusting the traffic to a different-capacity line or
to a different flow control scheme or domain, Buffer Memory is needed in order to be able to vary
the departure time of each bit (packet) relative to its arrival time, as illustrated in the figure.

Let A(t) be the function that describes the arrival of useful bits, while D(t) describes their departure.
These are both monotonically increasing functions of time, equal to the cumulative number of useful
bits that have flown through the respective interface since the beginning of time; "useful" bits are
the bits that are preserved from input to output, across whatever processing the node performs.
Because of causality (no bit can depart before its arrival), D(t) never exceeds A(t), at any given time
t. The difference A(t)-D(t) equals the number of bits that have arrived but not yet departed at time t;
these bits are necessarily stored in the buffer memory, hence A(t)-D(t) equals that buffer memory
occupancy at time t. The slope of A(t) is the rate of useful bit arrival, hence it equals the incoming
throughput; similarly, the slope of D(t) equals the outgoing throughput. At the clock cycle
granularity, information arrival and departure is quantized, so A(t) and D(t) are step functions; if line
capacity (peak throughput) is one word per cycle, then each step equals one word --the figure was
drawn assuming that word size on the input side is twice the word size on the output interface. At
coarser time granularity, we can approximate A(t) and D(t) as smooth functions. Slope (throughput)
is then approximated over a suitable time window: let w be the window from time t to time t+w;

1.1 Rate, Throughput, Buffering (U.Crete, CS-534) http://archvlsi.ics.forth.gr/~kateveni/534/07a/s11_parSer_tx.html

6 of 8

over that window, the incoming useful-bit rate (throughput) r and the outgoing rate r' are:

r = (A(t+w)-A(t)) / w ; r' = (D(t+w)-D(t)) / w
In the figure, during time window w1, the incoming
rate r1 equals peak line capacity (one word per
clock cycle), while the outgoing rate r1' is quite
below capacity. Conversely, during time window
w2, the input is idle for much of the time (rate r2
low) while output rate r2' equals the outgoing line
peak capacity. During the much wider interval w,
the two rates, r and r', differ much less one from the
other.

Assume that buffer occupancy, A(t)-D(t), never
exceeds B, at any time t, because flow control
appropriately adjusts rates r and r'; if B is the size
of the buffer memory, then this is the rate
adjustment necessary for the memory not to
overflow, hence for useful information not to be
lost. Since A(t+w)-D(t+w) is non-negative and does
not exceed B, and since the same is true for A(t)-D(t), then their difference |(A(t+w)-D(t+w)) -
(A(t)-D(t))| is bounded above (in absolute value) by B. This latter difference can be rewritten as
|(A(t+w)-A(t)) - (D(t+w)-D(t))|, which is equally bounded by B. Diving by w, the time window, we
get |(A(t+w)-A(t))/w - (D(t+w)-D(t))/w|, which is equal to |(r-r')|, the difference between the average
incoming and outgoing rates. We can then express the bound in the following forms, which we
discuss in the next few paragraphs:

The throughput difference, |r-r'|, averaged over w, is no more than (B/w); or:

The buffer memory, B, is at least |r-r'|·w

 Throughput Conservation Law: in the long-run, outgoing throughput equals incoming
throughput, no matter how large a buffer memory B we use. Throughput is computed based on the
"useful" bits that are preserved from input to output, and are not dropped e.g. due to buffer
overflow.

 Time Scale is proportional to Buffer Size: For the above (approximate) rate equality to hold,
throughput must be averaged over time windows longer than buffer memory size, B, divided by the
desired rate difference accurancy.

 Buffer is proportional to Burst Size: the buffer memory size needed to smooth out rate
differences between input and output is proportional to those differences, |r-r'|, and to the length of
the time window w over which these differences persist. A rate difference that persists for a certain
time is a burst, and burst size is this rate difference multiplied by its time length.

 Average Delay is proportional to Buffer Occupancy: in the above figure, the area between the
curves A(t) and D(t) can be expressed in two different ways. First, if we divide it into many vertical
slices of (horizontal) width one clock cycle each, the heigth of each slice equals the instantaneous
buffer occupancy. The area inside a long time window w, then, is equal to w times the average
buffer occupancy. Alternatively, we can divide the same area into many horizontal slices of
(vertical) width one bit (or byte) each. If bits (bytes) depart in the same order in which they arrived
(FIFO departures), then the length of each slice is the time difference between arrival and departure
of the respective byte, i.e. the delay undergone by that byte in its trip through the node. Using this
interpretation, the same above area is equal to the amount of useful bits that have gone through the
node times their average delay. Even with non-FIFO departures (some packets have higher priority
than others, so the former overtake the latter), the same average holds as we will see in the chapter
on Scheduling: when two bytes exchange their departure times, the delay of each changes but the
sum of their delays stays the same. Equating the two different ways in which we expressed the
above area between A(t) and D(t), we get:

(Avg. Buffer Occupancy) · (w) = (Avg. Delay) · (Traffic Volume)

1.1 Rate, Throughput, Buffering (U.Crete, CS-534) http://archvlsi.ics.forth.gr/~kateveni/534/07a/s11_parSer_tx.html

7 of 8

Traffic volume (number of bits) equals throughput (r or r', since they are equal to each other in the
long run) multiplied by the length of the time window w. Dividing both terms of the equation by the
traffic volume, expressed as r·w or r'·w, we get:

Average Delay = (Average Buffer Occupancy) / r (or divided by r')

We can view the buffer memory as a slow-down pipe of length b, where b is the average buffer
occupancy. When a byte enters the pipe, it finds b other bytes in front of it; they have to depart at
rate r' before "our" byte can depart, and it will take them b/r' time to depart, so "our" byte will be
delayed by that much. Alternatively, between the time "our" byte arrives (being last in the queue)
and the time it departs (being first in the queue), a queue of length b will build up behind it due to
new bytes arriving at a rate r; the time for this queue to build up is b/r, so this is the delay of "our"
byte.

1.1.4 Parallel-to-Serial Conversion: Multiplexing

Parallel links (§1.1.1) carry information on multiple wires, while
serial links (§1.1.2) serially transmit all information bits on a single
wire. Conversion of a link from the former to the latter type is
performed with the simple circuit shown in the upper part of the
figure. Given the law of throughput conservation (§1.1.3), which in
this case applies to the raw bits (transmission rate) of the links, the
signaling rate ckfast on the serial link must be n times higher than
the signaling rate ckslow on the parallel side, where n is the width of
the parallel link (in the figure, n=8). The main digital component to
perform the conversion is the multiplexor circuit: it circularly
selects each one of the n bits of the parallel word, placing them on
the serial line, for one clock period of the fast clock each; thus,
during each period of the slow clock (= n periods of the fast clock),
the multiplexor places all n bits on the serial line, one after the
other, and is then ready to do the same with the bits of the next
word during the next period of the slow clock. Note the similarity
of this circuit to an 8x1 memory, where all 8 locations are written
in parallel, but reading is sequential, one location at a time,
circularly reading from the 8 addresses; also, note the equivalence
to a parallel-in/serial-out shift register. Buffer memory is not
needed because transmission rates do not fluctuate. The amount of
(flip-flop) storage is limited to one (8-bit) word because the worst-case delay (last bit in each word)
equals one word time (one slow clock period).

The multiplexor circuit is used every time information from multiple source wires must be
(selectively) placed onto a single output wire. As discussed in §1.1.1, multiple wires often carry
traffic at various degrees of granularity --different bits of one word, or different bytes of a cell, or
different packets of a flow, or different flows. The portions of traffic on each wire may be related to
each other to a higher or lower degree: when individual bits are carried, they belong to a same word;
when different flows are carried, however, they may be quite unrelated to each other, with the only
common characteristic being that they share a common path through the network. The lower part of
the figure illustrates a case where multiplexing is used to aggregate such coarser-grain information
from eight incoming to one outgoing link. In such cases, it is customary to interleave the
information on the shared link not on a bit-by-bit but on a coarser granularity; as we will see soon,
this allows operation with wider buffer memories, hence at higher throughput.

The example labeled "byte-interleaved" in the figure illustrates a case where multiplexing is on a
byte-by-byte basis, as in digital telephony (§2.1). Again, for throughput conservation, the signaling
rate ckfast on the output link must be n=8 times higher than the signaling rate ckslow on the input
links. The output link, now, must carry all 8 bits of a byte from the first link, then all 8 bits of a byte
from the second link, and so forth, rather than 1 bit from each link. When the 8 bits of a byte are
transmitted on the output, they must be transmitted at the fast clock rate; however, these same 8 bits
arrive through their input at the slow clock rate, and thus the arrive during a time interval n=8 times
longer than the interval in which they must depart. To equalize the instantaneous rate difference at

1.1 Rate, Throughput, Buffering (U.Crete, CS-534) http://archvlsi.ics.forth.gr/~kateveni/534/07a/s11_parSer_tx.html

8 of 8

the byte level of granularity, a buffer of size one byte is needed per incoming line (§1.1.3). The
figure schematically illustrates each such buffer as a horizontal array of 8 flip-flops, which we
imagine as being filled from the left using the slow clock, and as emptying to the right using the fast
clock (filling occurs during all slow-clock periods; emptying occurs during 8 consecutive out of
every 64 fast-clock periods). The physical implementation of this buffer may be a dual-ported
register (flip-flop) file, or two shift registers using the double-buffering concept (shift-in to the first
register at the slow-clock rate, then transfer all 8 bits in parallel to the second register, then shift-out
of that second register at the fast-clock rate). Notice that the multiplexor now has to switch
selections at a slower rate: once every byte time on the fast link, rather than once every bit time in
the bit-interleaving configuration.

1.1.5 Serial-to-Parallel Conversion: Demultiplexing

In the previous section, 1.1.4, we saw that parallel-to-serial
converters resemble a memory with multiple, parallel (slow) write
ports and one sequential (fast) read port, used to circularly read the
memory. The central component was a multiplexor, used to
aggregate information from multiple sources to one destination.
Serial-to-parallel is the reverse conversion, and it is based on
demultiplexing, that is distributing information from one source to
multiple destinations. Not surprisingly, the demultiplexor, shown in
the figure, looks like a memory with one sequential (fast) write
port, circularly writing into all memory locations, and multiple,
parallel (slow) read ports, reading from all memory locations.

In the bit-interleaved version, the incoming serial link carries
frames of n bits containing 1 bit for each of the n parallel outputs
(n=8 in the figure). Each bit of the frame is latched into one of the
n=8 flip-flops, clocked by the appropriate phase, ö1 through ö8, of
the slow clock. As in the previous section, one period of the slow
clock equals n=8 periods of the fast clock; each phase differs from
the next by one fast-clock period, i.e. by one bit time on the serial
link. The net effect of the 8 phases is to circularly write into the 8
flip-flops of the 8x1 memory, in a way analogous to the circular
reading (using a counter to drive the multiplexor) in the previous
section (1.1.4). The proper alignment of ö1, so that it picks the first
bit of each frame, is based on framing information that has to be
extracted from the overhead bits of the serial link by the clock
recovery circuit (§1.1.2).

In the byte-interleaved version, incoming frames contain n=8 bytes each. All 8 bits of a byte arrive
contiguously in time and are destined to one of the output links. These 8 bits must be written into
the proper word (byte) of the 8x8 memory, at the rate of the fast clock at which they arrive; on the
output side, they are read out at the slow clock rate. Writing into each word (byte) of the 8x8
memory is enabled for 8 out of the 64 (fast) clocks of each frame; selection of the proper 8 of the 64
clocks is based on framing information, as above. Again, the net effect is to sequentially and
circularly write into the memory, while on the read side the n ports operate in parallel but at an n
times slower rate.

Up to the Home Page of CS-534

© copyright University of Crete, Greece.
Last updated: 11 Mar. 2007, by M. Katevenis.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

