
http://archvlsi.ics.forth.gr/~kateveni/534/

7.1 output Scheduling for QoS 1

CS-534 - Copyright University of Crete 1

7.1 Output Scheduling for QoS

• Single-resource (≠ crossbar) scheduling for advanced QoS
• Work-Conserving Scheduling – Delay Conservation Law

– you can favor (delay-wise) some flows only at the expense of other flows

• Series composition: Policer, Regulator (Shaper), Scheduler
• Hierarchical comp.: schedule among, then within Flow Aggregates
• Strict Priority Scheduling (static sequence) – danger of starvation
• Round-Robin (RR) Scheduling (circular sequence)

– Max-Min Fairness: equal “shares”, equally allocate unused BW to all others

• Weighted Round Robin (WRR), Weighted Fair Queueing (WFQ)
– allocate throughput in proportion to arbitrary “weight factors”
– smoothness of allocation – static (periodic) schedules, dynamic schedules

• Reading: S. Keshav: “An Engineering Approach to Computer Networking”,
Addison Wesley, 1997, ISBN 0-201-63442-2: Chapter 9 (“Scheduling”).

CS-534 - Copyright University of Crete 2

http://archvlsi.ics.forth.gr/~kateveni/534/

7.1 output Scheduling for QoS 2

CS-534 - Copyright University of Crete 3

CS-534 - Copyright University of Crete 4

Delay Conservation Law – Sketch of Proof

• Plot “Cumulative Byte Arrivals”, A(t), and “Cumulative Byte
Departures”, D(t), as functions of time, like we did in § 1.1.3

• Departures curve, D(t), is independent of scheduling policy:
– Work-Conserving Scheduling means departure rate = maximum link rate at

any time there is a backlog, i.e. whenever D(t) < A(t)
• Delay of a packet = tdeparture – tarrival

– for FIFO scheduling: D(tdeparture) = A(tarrival)
• Express the area between A(t) and D(t) as a sum of packet delays:

– under FIFO: sum of areas of horizontal slices; delays weighted by pck size
– exchange the departure order of two bytes: individual byte delays change,

but their sum does not ⇒ total area and sum of byte delays is invariant wrt.
scheduling policy (careful when translating byte delays to packet delays)

• Divide by time to translate cumulative bytes into average rates
– ∑delaysFIFO = ∑delaysflow1 + ∑delaysflow2 + … + ∑delaysflowN

– ∑delays = cumBytes × avgDelay; cumBytes = timeWindow × avgRate

http://archvlsi.ics.forth.gr/~kateveni/534/

7.1 output Scheduling for QoS 3

CS-534 - Copyright University of Crete 5

CS-534 - Copyright University of Crete 6

http://archvlsi.ics.forth.gr/~kateveni/534/

7.1 output Scheduling for QoS 4

CS-534 - Copyright University of Crete 7

CS-534 - Copyright University of Crete 8

http://archvlsi.ics.forth.gr/~kateveni/534/

7.1 output Scheduling for QoS 5

CS-534 - Copyright University of Crete 9

CS-534 - Copyright University of Crete 10

http://archvlsi.ics.forth.gr/~kateveni/534/

7.1 output Scheduling for QoS 6

CS-534 - Copyright University of Crete 11

Comments on Re-Insertion Point for newly-Eligible Flows

• Let us call “uncongested flows” the flows whose bottleneck is not this network link –
their bottleneck may be their source (end-to-end flow control) or another network link
(either a link upstream of this link, or a downstream link but with hop-by-hop flow
control). Uncongested flows ususally have (almost) empty queues, because these
queues are served (emptied) more frequently that they are filled. Newly arriving cells or
packets will usually be inserted into empty queues, causing the flow to re-become
elligible. Then, the queue will be served before a second cell or packet arrives in it,
causing the queue to re-become empty and the flow to become inelligible.

• Insertions (b) penalize the uncongested (“well behaved”) flows by causing them to
undergo the worst-case delay, while this yields no appreciable gain for the congested
flows: congested flows undergo a very long delay anyway – what matters for these
latter flows is throughput, not delay. Insertions (c) offer only a 50% (average)
improvement over (b) for uncongested flows.

• An alternative is to use insertions (a) when we have verified that the flow is
uncongested, else use insertions (b) (or (c)?) when it looks like the flow is congested.
To verify that the flow is well behaved (uncongested), we need to maintain per-flow last-
service timestamps. – [text continued on next slide] →

CS-534 - Copyright University of Crete 12

Max-Min Fairness

[text continued from previous slide] When a formerly-inelligible flow becomes elligible
again, we look at the difference of the current time minus the last-service time of the flow; if
this difference is larger than the average "circular scan" time, then the flow is (currently)
uncongested, else it is (currently) congested on this link. The "circular scan" time is the
time it takes our server to go once around the circular list of eligible flows. We need a "fixed
pointer" into the list to compute this: every time the server passes over this "marked" flow,
we read that flow's last-service timestamp, and see how much time has elapsed since then.
Refer to exercise 11.2 for more details on this scheme.

• Equally distribute link throughput among all flows on this link
– determines the link’s “fair share”

• Flows bottlenecked elsewhere use up less than their fair share
• Equally distribute unused throughput among all remaing flows

– increases this link’s fair share ⇒ the bottleneck of some flows may shift
elsewhere ⇒ equally reallocate unused throughput, and so on and so forth

⇒ distributed process to determine max-min equilibrium (does it oscillate???)

http://archvlsi.ics.forth.gr/~kateveni/534/

7.1 output Scheduling for QoS 7

CS-534 - Copyright University of Crete 13

CS-534 - Copyright University of Crete 14

http://archvlsi.ics.forth.gr/~kateveni/534/

7.1 output Scheduling for QoS 8

CS-534 - Copyright University of Crete 15

CS-534 - Copyright University of Crete 16

http://archvlsi.ics.forth.gr/~kateveni/534/

7.1 output Scheduling for QoS 9

CS-534 - Copyright University of Crete 17

CS-534 - Copyright University of Crete 18

min

http://archvlsi.ics.forth.gr/muqpro/wrrSched.html

