
Parallel Programming with
Intel® Threading Building Blocks

Software and Solutions Group (SSG),
Developer Products Division

Alexey Kukanov

Copyright © 2008, Intel Corporation. All rights reserved.

Intel and Intel Core are trademarks of Intel Corporation in the U.S. and other countries.

Multicore Days 2008
Stockholm, September 11

2
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

2

Outline

What is TBB?

Task based parallelism

High-level blocks

Other functionality (primarily for reference)

Future directions

3
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

3

What Is TBB?

Intel Threading Building Blocks (Intel TBB) is a production
C++ library that simplifies threading for performance.

Not a new language or extension; works
with off-the-shelf C++ compilers.

Proven to be portable to new compilers,
operating systems, and architectures.

GPL license allows use on many platforms;
commercial license allows use in products.

http://threadingbuildingblocks.org

4
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

4

Family Tree

Chare Kernel
small tasks

Cilk
space efficient scheduler

cache-oblivious algorithms

OpenMP*
fork/join

tasks
JSR-166
(FJTask)

containers

OpenMP taskqueue
while & recursion

Intel® TBB

STL
generic

programming

STAPL
recursive ranges

Threaded-C
continuation tasks

task stealing

ECMA .NET*
parallel iteration classes

Libraries

1988

2001

2006

1995

Languages

Pragmas

*Other names and brands may be claimed as the property of others

5
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

5

TBB History

August, 2004

• the TBB project started at Intel.

June, 2006 – Intel® TBB 1.0

• Intel’s New Parallel Programming Model announced.

April, 2007 – Intel® TBB 1.1

• OS coverage, bug fixes & small improvements.

July, 2007 – Intel® TBB 2.0

• TBB announced as Open Source Software.

July, 2008 – Intel® TBB 2.1

• Offers much enriched functionality & enables new uses.

• Many features & improvements started as discussions with
community and customers.

6
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

6

Intel® TBB 2.1 Components

Synchronization Primitives
atomic, mutex, recursive_mutex

queuing_mutex, queuing_rw_mutex
spin_mutex, spin_rw_mutex

Parallel Algorithms
parallel_for

parallel_reduce
parallel_scan
parallel_do

pipeline
parallel_sort

Concurrent Containers
concurrent_hash_map

concurrent_queue
concurrent_vector

Task scheduler
task

task_scheduler_init
task_scheduler_observer

Memory Allocation
tbb_allocator

cache_aligned_allocator
scalable_allocator

Explicit Threading
tbb_thread

Miscellanea/Support
tick_count, task_group_context

blocked ranges, partitioners

7
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

7

Shift from Serial to Parallel

It’s all about managing dependences

• Find things that can be done (almost) independently.

• Analyze communication (dependences).

• Eliminate or organize dependences to exploit parallelism.

Allow parallelism, not mandate it

• Excessive concurrency has its problems.

• Mandatory parallelism is not composable.

• Good to have sequential execution e.g. for debugging.

• Also important for backward scaling.

8
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

8

Design for Scalability

Parallel slack

• Want potential parallelism to exceed HW parallelism

• Important for load balancing and forward scaling

• Functional decomposition does not scale

Data locality

• Memory latency varies (cache hierarchy, NUMA)

• Compute on data that is near, not far

• Avoid cache misses and sharing

9
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

9

Task Based Parallelism

Can be as fine-grain as necessary

Focus on the work, not workers

Parallelism is optional

Data decomposition naturally provides parallel slack

Allows exploiting data locality

10
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

10

Recursive Decomposition

Split the problem...

.. recursively...

...until too small.

11
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

11

Practical Task Based Programming with TBB

TBB allows you to program in terms of task objects.

Parallelism is expressed explicitly via TBB constructs.

• No magic bullets, and no free lunch

• Trust the programmer

Task scheduler maps user-defined logical tasks onto physical
threads.

• One SW thread per HW thread

• Work stealing balances load

• Data locality is controlled implicitly and explicitly

• Works well with nested parallelism

12
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

12

Two Possible Task Execution Orders

Small space

Excellent cache locality

No parallelism

Breadth First

(queue)

Large space

Poor cache locality

Maximum parallelism

Depth First

(stack)

13
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

13

Work Stealing

Each thread maintains an (approximate) deque of tasks

A thread performs depth-first execution

• Uses own deque as a stack

• Low space and good locality

If thread runs out of work

• Steal task, treat victim’s deque as queue

• Stolen task tends to be big, and distant from victim’s current
effort.

14
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

14

Work Depth First; Steal Breadth First

L1

L2

victim thread

Best choice for theft!
•big piece of work
•data far from victim’s
hot data.

Second best choice.

15
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

15

Initializing TBB

Create task_scheduler_init object in a thread that uses TBB.

Constructor specifies thread pool size (as automatic, explicit
or deferred) and thread stack size.

task_scheduler_init init(task_scheduler_init::automatic, my_stack_size);

Thread pool construction also tied to the life of this object

• Nested construction is reference counted, low overhead

• Keep init object lifetime high in call tree to avoid pool
reconstruction overhead

#include “tbb/task_scheduler_init.h”
using namespace tbb;
int main() {

task_scheduler_init init;
….
return 0;

}

16
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

16

Parallel Algorithms

Loop parallelization

• parallel_for

• parallel_reduce

• parallel_scan

Algorithms for Streams

• parallel_do

• pipeline

Sorting

• parallel_sort

17
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

17

Parallel Algorithms

Classic parallel programming

• Let non-expert get scalable parallel speedup on shared-
memory multi-core processor.

• Common simple patterns

• Coarse-grain (typically ≥104 instructions per serial chunk)

Implemented on top of work-stealing scheduler

• Algorithms designed to be easy to use in practical way

• Scheduler designed for efficiency

18
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

18

Generic Programming

Best known example is C++ Standard Template Library

Enables distribution of broadly-useful high-quality
algorithms and data structures

Write best possible algorithm in most general way

• Does not force particular data structure on user

– E.g., std::sort

– tbb::parallel_for does not require specific type of iteration
space, but only that it have signatures for recursive splitting

Instantiate algorithm to specific situation

• C++ template instantiation, partial specialization, and
inlining make resulting code efficient

• E.g., parallel loop templates use only one virtual function

19
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

19

STL

containeralgorithm
iterator

template<class InputIter, class Func>

Func for_each(InputIter first, InputIter last, Func f) {

while(first!=last) {

f(*first);

++first;

}

return f;

}

20
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

20

STL = Serial Template Library?

first!=last

f(*first)

++first

Dependence graph (loop carried dependences in blue)

21
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

21

Generic Serial Programming

Generalization of pointer bumping

4 of 5 iterator categories are inherently serial

Output

Input
Forward Bidirectional RandomAccess

22
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

22

Often Depends on Coordinated Bumping

template <class InputIter1, class InputIter2, class T>
T inner_product(InputIter first1, InputIter1 last1,

InputIter2 first2, T init)
{

while(first1!=last1) {
init = init + *first1 * *first2;
++first1;
++first2;

}
return init;

}

23
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

23

Need Richer Topology for Parallelism

Some choices

• Random access iterators

• Random access indices

• Recursively divisible ranges

– Scale invariant

– Subsumes random access iterators/indices

– Not limited to one dimensional spaces

– Good fit for divide and conquer

– Maps to work-stealing

24
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

24

Analogy

Serial

for(init; termination-condition; next)

Parallel

recurse(init; leaf-condition; split)

containeralgorithm
iterator

containeralgorithm
range

indicesalgorithm
range

container
indexing

OR

25
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

25

Serial Example

void SerialApplyFoo(float a[], size_t n) {

for(size_t i=0; i!=n; ++i)

Foo(a[i]);

}

Will parallelize by partitioning iteration space into chunks

26
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

26

Parallel Version

class ApplyFoo {
float *const my_a;

public:
ApplyFoo(float *a) : my_a(a) {}
void operator()(const blocked_range<size_t>& range) const {

float *a = my_a;
for(size_t i=range.begin(); i!=range.end(); ++i)

Foo(a[i]);
}

};

void ParallelApplyFoo(float a[], size_t n) {
parallel_for(blocked_range<size_t>(0, n),

ApplyFoo(a),
auto_partitioner());

}

Loop body as function object

Parallel algorithm

blue = original code
red = provided by TBB
black = boilerplate for library

Iteration space

Partitioning hint

27
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

27

With C++ 200x Lambda Expression

void ParallelApplyFoo(float a[], size_t n) {

parallel_for(blocked_range<size_t>(0, n),

[=](const blocked_range<size_t>& range) {

for(int i= range.begin(); i!=range.end(); ++i)

Foo(a[i]);

},

auto_partitioner());

}

28
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

28

Requirements for Body B

Process subrange.void B::operator() (Range& subrange) const

Destroy the copyB::~B()

Make a copyB::B(const B&)

parallel_for distributes subranges to worker threads

parallel_for does not interpret meaning of range

template <typename Range, typename Body>
void parallel_for (const Range& range,

const Body& body
[,partitioner [, task_group_context]]);

29
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

29

Range is Generic

Requirements for Range R

Library provides blocked_range, blocked_range2d, blocked_range3d

Programmer can define new kinds of ranges

Do not have to be dimensional!

Destroy the copyR::~R()

Is range empty?bool R::empty() const

Can range be split?bool R::is_divisible() const

Split r into two subrangesR::R (R& r, split)

Make a copyR::R (const R&)

30
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

30

Iteration↔↔↔↔Thread Affinity

Big win for serial repetition of a parallel loop.

• Numerical relaxation methods

• Time-stepping marches

affinity_partitioner ap;
...
for(t=0; ...; t++)

parallel_for(range, body, ap);

Cache 3Cache 2Cache 1Cache 0

Array

(Simple model of separate cache per thread)

31
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

31

template <typename Range, typename Body>
void parallel_reduce(const Range& range,

Body& body
[, partitioner [, task_group_context]]);

Requirements for parallel_reduce Body B

Operation not necessarily commutative

Reuses Range concept from parallel_for

Merge result of rhs into
the result of this.

void B::join(B& rhs);

Accumulate result from
subrange

void B::operator() (Range& subrange);

DestructorB::~B()

Splitting constructorB::B(B&, split)

32
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

32

Serial Example

// Find index of smallest element in a[0...n-1]

long SerialMinIndex (const float a[], size_t n) {

float value_of_min = FLT_MAX;

long index_of_min = -1;

for(size_t i=0; i<n; ++i) {

float value = a[i];

if(value<value_of_min) {

value_of_min = value;

index_of_min = i;

}

}

return index_of_min;

}

33
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

33

Parallel Version (1 of 2)

class MinIndexBody {

const float *const my_a;

public:

float value_of_min;

long index_of_min;

...

MinIndexBody (const float a[]) :

my_a(a),

value_of_min(FLT_MAX),

index_of_min(-1)

{}

};

// Find index of smallest element in a[0...n-1]

long ParallelMinIndex (const float a[], size_t n) {

MinIndexBody mib(a);

parallel_reduce(blocked_range<size_t>(0,n), mib, auto_partitioner());

return mib.index_of_min;

}

blue = original code
red = provided by TBB
black = boilerplate for library

34
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

34

class MinIndexBody {
const float *const my_a;

public:
float value_of_min;
long index_of_min;
void operator()(const blocked_range<size_t>& r) {

const float* a = my_a;
int end = r.end();
for(size_t i=r.begin(); i!=end; ++i) {

float value = a[i];
if(value<value_of_min) {

value_of_min = value;
index_of_min = i;

}
}

}
MinIndexBody(MinIndexBody& x, split) :

my_a(x.my_a),
value_of_min(FLT_MAX),
index_of_min(-1)

{}
void join(const MinIndexBody& y) {

if(y.value_of_min<x.value_of_min) {
value_of_min = y.value_of_min;
index_of_min = y.index_of_min;

}
}
...

};

accumulate result

split

join

Parallel Version (2 of 2)

35
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

35

Lazy Parallelism in parallel_reduce

Body(...,split) operator()(...) join()

operator()(...) operator()(...)

operator()(...)

If a spare thread is available

If no spare thread is available

36
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

36

template <typename Range, typename Body>
void parallel_scan(const Range& range, Body& body);

Requirements for parallel_scan Body B

Reuses Range concept from parallel_for

Compute final resultvoid B::operator()(Range& subrange, final_scan_tag);

Merge summary of lhs
into this.

void B::reverse_join(B& lhs);

Accumulate partial
summary.

void B::operator() (Range& subrange, pre_scan_tag);

DestructorB::~B()

Splitting constructorB::B(B&, split)

37
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

37

Remarks

Brick is efficient serial code

parallel_scan free to optimize evaluation order

• 1 pass for serial execution

• ≤2 passes for parallel execution

STL solution requires four passes for parallel execution

1. generate boolean vector that marks insertion points

2-3. partial_sum to compute destinations

4. copy and “correct” string.

38
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

38

template<typename Iterator, typename Body>
void parallel_do(Iterator first, Iterator last,

const Body& body);

• Exploit parallelism where loop bounds are not known, e.g. do
something in parallel on each element in a list.

• Works with standard containers

• Can add more work from inside the body

void Body::operator()(Body::argument_type item,
tbb::parallel_do_feeder& feeder) const

{
<do some work>
if(<another item produced>)

feeder.add(<the new item>);
};

39
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

39

Parallel pipeline

Linear pipeline of stages

• You specify maximum number of items that can be in flight

Each stage can be serial or parallel

• Serial stage processes one item at a time, in order.

• Parallel stage can process multiple items at a time, out of order.

Uses cache efficiently

• Each thread carries an item through as many stages as possible

• Biases towards finishing old items before tackling new ones

Functional decomposition is usually not scalable. It’s the parallel
stages that make tbb::pipeline scalable.

40
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

40

Parallel stage scales because

it can process items in parallel

or out of order.

Serial stage processes items

one at a time in order.
Another serial stage.

Items wait for turn

in serial stage

Controls excessive parallelism by

limiting total number of items

flowing through pipeline.

Uses sequence

numbers to recover

order for serial stage.

Tag incoming items with

sequence numbers
13

2

4

5

6

7

8

9

101112

Throughput limited by throughput
of the slowest serial stage.

Parallel pipeline

41
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

41

Summary of TBB Parallel Algorithms

Generic programming (not STL) is starting point

• C++ is language of choice for generic programming.

• Lambdas make it better

Explicit parallelism

• A little education goes a long way

• Programmer specifies logical parallelism

• Library maps parallelism to the machine

Three algorithms based on recursively divisible ranges

• parallel_for, parallel_reduce, parallel_scan

Grains of serial code provide the bricks

Not much new here – popularizing the classics!

42
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

42

Concurrent Containers

Intel® TBB provides concurrency-friendly containers

• STL containers are unsafe under concurrent operations

– attempting concurrent modifications could corrupt them

• Standard practice: wrap a lock around STL container
accesses

– Limits accessors to operating one at a time, killing scalability

TBB provides fine-grained locking for efficient, short term
contention

• Worse single-thread performance, but better scalability.

• Can be used with TBB, OpenMP, or native threads.

• STL-compatible interfaces also provided, documented as not
thread-safe

43
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

43

Concurrency-Friendly Interfaces

Some STL interfaces are inherently not concurrency-friendly

For example, suppose two threads share an STL queue:

Solution: tbb::concurrent_queue has pop_if_present

extern std::queue q;

if(!q.empty()) {

item=q.front();

q.pop();

}

At this instant, another thread
might pop last element.

44
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

44

concurrent_queue<T>

Preserves local FIFO order

• If thread pushes and another thread pops two values, they
come out in the same order that they went in.

• No global guarantees

Two kinds of pops

• Blocking: pop()

• Non-blocking: pop_if_present()

Method size() returns signed integer

• If size() returns –n, it means n pops await corresponding
pushes.

BUT beware: a queue is cache unfriendly. A pipeline pattern
might perform better…

45
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

45

concurrent_vector<T>

Dynamically growable array of T

• grow_by(n)

• grow_to_at_least(n)

Elements are not moved when vector grows

• Can concurrently access and grow

• Some methods are not thread-safe with respect to
access/resizing

Example
// Append sequence [begin,end) to x in thread-safe way.
template<typename T>
void Append(concurrent_vector<T>& x, const T* begin, const T* end)
{

std::copy (begin, end, x.begin() + x.grow_by(end-begin))
}

46
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

46

concurrent_hash_map<Key,T,HashCompare>

Associative table that maps a Key to an element of type T

• HashCompare is a class that specifies how keys are
hashed and compared

Allows concurrent access for reads and updates

– bool insert(accessor &result, const Key &key) to add or edit

– bool find(accessor &result, const Key &key) to edit

– bool find(const_accessor &result, const Key &key) to look up

– bool erase(const Key &key) to remove

Lifetime of accessor object delimits extent of the access

Reader locks coexist – writer locks are exclusive

47
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

47

Platform-Independent Thread Wrapper

Implementation of the thread class recently-proposed to standardize.

Motivation: Many requests from community and customers

• Task-based parallelism is great, but what if I really need a thread?

• Why should I need to learn both TBB and pthreads or winthreads?

Allows explicit thread creation for:

• GUI, file I/O or network interface threads.

• Threads that need to wait on external events.

• Programs that previously needed to use both threads and Intel®
TBB tasks

Makes threaded code more portable across platforms

• Easier to later migrate to ISO C++200x threads

WARNING: If you use threads, you may have all of the
oversubscription problems that tasks shield you from.

48
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

48

Timing

Problem

• Accessing a reliable, high resolution, thread independent,
real time clock is non-portable and complicated.

Solution

• The tick_count class offers convenient timing services.

– tick_count::now() returns current timestamp

– tick_count::interval_t::operator-(const tick_count &t1, const
tick_count &t2)

– double tick_count::interval_t::seconds() converts intervals to
real time

• Uses the highest resolution wall-clock which is consistent
between different threads.

49
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

49

Correctness Debugging of TBB programs

Debug single-threaded version first!

task_scheduler_init init(1);

Compile with macro TBB_DO_ASSERT=1 to enable checks in the
header/inline code

Compile with TBB_DO_THREADING_TOOLS=1 to enable hooks for
Intel’s Threading Analysis tools

• Intel® Thread Checker can detect potential race conditions

Link with libtbb_debug.* to enable internal checking

50
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

50

Performance Debugging

Study scalability by using explicit thread count argument.

task_scheduler_init init(number_of_threads);

Compile with TBB_DO_ASSERT=0 to disable checks in the
header/inline code.

Compile with TBB_DO_THREADING_TOOLS=1 to enable hooks for
Intel’s Threading Analysis tools.

• Intel® Thread Profiler can detect performance bottlenecks

Link with libtbb.* to get optimized library.

The tick_count class offers convenient timing services.

• uses the highest resolution wall clock consistent between
different threads.

51
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

51

Future Direction – Lambda Friendly
Interfaces

Example: parallel_reduce

• Current body argument encapsulates 3 pieces of information:

– How to initialize processing for a subrange

– How to process a leaf subrange

– How to merge results

• Lambda friendly version (already available in latest updates!)

– parallel_reduce(range, init, body, reduction [, partitioner]);

init: → Value

body: Range × Value → Value

reduction: Value × Value → Value

� Losing some in-place efficiency. Maybe rvalue references help?

52
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

52

Future Direction – Add STL Style Interfaces

☺ Familiar interface

� Often inefficient (blocking and fusion issues)

Examples

• parallel_for_each(first,last,func)

• parallel_accumulate(first,last,identity,binaryOp)

• parallel_partial_sum(first,last,result,identity,binaryOp)

• ?

void ParallelApplyFoo(float a[], size_t n) {

parallel_for_each(a, a+n, [=](float x) {Foo(x);});

}

Note: This particular example can be done in TBB 2.1 via parallel_do.

53
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

53

Wish List

Divide and conquer template

Practical fusion of algorithms via concept axioms

Practical library-only solution for stencil algorithms

Even better support for I/O mixed with computations

More and better concurrent containers (incl. non-blocking)

Better cooperation with other Intel’s parallel tools

Reap benefits provided by C++ 200x

Real time? Low power?

…

54
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

54

Summary of Intel® Threading Building Blocks

It is a library

You specify task patterns, not threads

Targets threading for robust performance

Does well with nested parallelism

Compatible with other threading packages

Emphasizes scalable, data parallel programming

Generic programming enables distribution of
broadly-useful high-quality algorithms and data
structures.

Available in open source version under GPL, as well
as commercially licensed.

55
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

55

Backup

56
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

56

Cache efficiency

Working on data, which is hot in cache, is more efficient

Data eviction can introduce noticeable penalty

Create Use

Thread 2Thread 1

57
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

57

Key points about Intel® Threading Building Blocks

• It is a template library intended to ease parallel programming for
C++ developers

– Relies on generic programming to deliver high performance parallel
algorithms with broad applicability

• It provides a high-level abstraction for parallelism
– Shifts focus from workers (threads) to the work

– Hides low level details of thread management

– Fully supports nested parallelism

• It facilitates scalable performance
– Designed for CPU bound computation

– Strives for efficient use of cache, and balances load

– Emphasizes data parallel programming as opposed to non-scalable
functional decomposition

• It works across a variety of machines today, and readies programs
for tomorrow

– Also can be used in concert with other threading packages such as
native threads and OpenMP.

58
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

58

Relaxed Sequential Semantics

TBB emphasizes relaxed sequential semantics

• Parallelism as accelerator, not mandatory for correctness.

Examples of mandatory parallelism

• Producer-consumer relationship with bounded buffer

• MPI programs with cyclic message passing

Evils of mandatory parallelism

• Understanding is harder (no sequential approximation)

• Debugging is complex (must debug the whole)

• Serial efficiency is hurt (context switching required)

• Throttling parallelism is tricky (cannot throttle to 1)

• Nested parallelism is inefficient

59
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

59

Scalability
Ideally you want Performance ∝∝∝∝ Number of hardware threads

Generally prepared to accept Performance ∝∝∝∝ Number of threads

Impediments to scalability

– Any code which executes once for each thread (e.g. a loop starting
threads)

– Coding for a fixed number of threads (can’t exploit extra hardware;
oversubscribes less hardware)

– Contention for shared data (locks cause serialization)

TBB approach

– Create tasks recursively (for a tree this is logarithmic in number of tasks)

– Deal with tasks not threads. Let the runtime (which knows about the
hardware on which it is running) deal with threads.

– Try to use partial ordering of tasks to avoid the need for locks.

• Provide efficient atomic operations and locks if you really need them.

60
Copyright © 2006, Intel Corporation. All rights reserved. Prices and availability subject to change without notice.

*Other brands and names are the property of their respective owners

60

A Non-feature: thread count

There is no function to let you discover the thread count.

You should not need to know…

• Not even the scheduler knows how many threads really are available

– There may be other processes running on the machine.

• Routine may be nested inside other parallel routines

Focus on dividing your program into tasks of sufficient size.

• Tasks should be big enough to amortize scheduler overhead

• Choose decompositions with good depth-first cache locality and
potential breadth-first parallelism

Let the scheduler do the mapping.

Worry about your algorithm and the work it needs to do, not the way
that happens.

