Lecture 09: Introduction to Scala

Computer Science Department, University of Crete

Multicore Processor Programming

Based on slides by D. Malayeri, S.D. Vick, P. Haller, and M. Madsen

Pratikakis (CSD) Scala CS529, 2017 1/32

Introduction

@ Part 1: Introduction to Scala
@ Part 2: Concurrency in Scala

Pratikakis (CSD)

What is Scala?

@ Scala is a statically typed language

» Combines Object-Oriented Programming and Functional
Programming

» Developed in EPFL, lead by Martin Odersky

» Influenced by Java, ML, Haskell, Erlang, and other languages

@ Many high-level language abstractions

» Uniform object model

» Higher-order functions, pattern matching

» Novel ways to compose and abstract expressions
@ Managed language runtime

» Runs on the Java Virtual Machine
» Runs on the .NET Virtual Machine

Pratikakis (CSD) Scala CS529, 2017 3/32

Goals of Scala

@ Create a language with better support for component
software

@ Hypotheses:

» Programming language for component software should be
scalable

* The same concepts describe small and large parts
* Rather than adding lots of primitives, focus on abstraction,
composition, decomposition
» Language that unifies OOP and functional programming can
provide scalable support for components

Pratikakis (CSD) Scala CS529, 2017 4/32

Why use Scala?

@ Runs on the JVM

» Can use any Java code in Scala
» Almost as fast as Java

@ Much shorter code

» Odersky reports 50% reduction in most code
» Local type inference

@ Fewer errors
» No NullPointer errors

@ More flexibility

» As many public classes per source file as you want
» Operator overloading

@ All of the above, for .NET too

Pratikakis (CSD) Scala CS529, 2017 5/32

Why learn Scala?

@ Creating a trend in web service programming
LinkedIn

Twitter

Ebay

Foursquare

List is growing

v

vV vy VvYy

Pratikakis (CSD) Scala CS529, 2017 6/32

Features of Scala (1)

@ Both functional and object-oriented
» Every value is an object
» Every function is a value (including methods)

@ Scala is statically typed
» Includes local type inference system

Java 1.5

Pair p = new Pair<Integer, String>(1, "Scala”);

Scala

val p = new Pair(1, "Scala”);

Pratikakis (CSD) Scala CS529, 2017 7132

Features of Scala (2)

@ Supports lightweight syntax for anonymous functions,
higher-order functions, nested functions, currying

@ ML-style pattern matching
@ Integration with XML

» Can write XML directly in Scala program
» Can convert XML DTD into Scala class definitions

@ Support for regular expression patterns

@ Allows defining new control structures without using
macros, and while maintaining static typing

@ Any function can be used as an infix or postfix operator
@ Can define methods named +, <=or ::

Pratikakis (CSD) Scala CS529, 2017 8/32

Features of Scala (3)

Actor-based programming, distributed, concurrent
Embedded DSLs, usable as scripting language
Higher-kinded types, first class functions, closures
Delimited continuations

Abstract Types, Generics

Warning: Scala is the gateway drug to ML, Haskell, ...

Pratikakis (CSD) Scala CS529, 2017 9/32

An Example Class ...

Java

public class Person {
public final String name;
public final int age;
Person(String name, int age) {
this.name = name;
this.age = age;
b
}

Scala

class Person(val name: String, val age: Int) {}

Pratikakis (CSD) Scala CS529, 2017 10/32

... and its use

Java

import java.util. ArrayList;

Person[] people;

Person[] minors;

Person[] adults;

{ ArrayList<Person> minorsList = new ArrayList<Person>();
ArrayList<Person> adultsList = new ArrayList<Person>();
for (inti = 0; i < people.length; i++)

(peopleli]l.age < 18 ? minorsList : adultsList).add(peopleli]);
minors = minorsList.toArray(people);
adults = adultsList.toArray(people);
}

Scala

val people: Array[Person]
val (minors, adults) = people partition (_.age < 18)

Pratikakis (CSD) Scala CS529, 2017 11/32

... and its use

Java

import java.util. ArrayList;

Person[] people;

Person[] minors;

Person[] adults;

{ ArrayList<Person> minorsList = new ArrayList<Person>();
ArrayList<Person> adultsList = new ArrayList<Person>();
for (inti = 0; i < people.length; i++)

(peopleli]l.age < 18 ? minorsList : adultsList).add(peopleli]);
minors = minorsList.toArray(people);
adults = adultsList.toArray(people);

}

Scala e all
An infix method call __

val people: Array[Person]

val (minors, adults) = people partition{”.age < 18)

... and its use

Java

import java.util. ArrayList;

Person[] people;

Person[] minors;

Person[] adults;

{ ArrayList<Person> minorsList = new ArrayList<Person>();
ArrayList<Person> adultsList = new ArrayList<Person>();
for (inti = 0; i < people.length; i++)

(peopleli]l.age < 18 ? minorsList : adultsList).add(peopleli]);
minors = minorsList.toArray(people);
adults = adultsList.toArray(people);
}

v

_—
Scala

A function value

val people: Array[Person]
val (minors, adults) = people partition (_7&ge < 18)

Pratikakis (CSD) Scala CS529, 2017 11/32

... and its use

Java

import java.util. ArrayList;

Person[] people;

Person[] minors;

Person[] adults;

{ ArrayList<Person> minorsList = new ArrayList<Person>();
ArrayList<Person> adultsList = new ArrayList<Person>();
for (inti = 0; i < people.length; i++)

(peopleli]l.age < 18 ? minorsList : adultsList).add(peopleli]);
minors = minorsList.toArray(people);
adults = adultsList.toArray(people);

}
A pattern match >

ults) = people partition (_.age < 18)

Scala

val people: Arr
val (minors,

Pratikakis (CSD)

CS529, 2017 11/32

Class Hierarchies and Abstract Data Types

@ Scala unifies class hierarchies and abstract data types
(ADTs)

@ Introduces pattern matching for objects
@ Uses concise manipulation of immutable data structures

Pratikakis (CSD) Scala CS529, 2017 12/32

Example: Pattern matching

Class hierarchy for binary trees

abstract class Tree[T]
case object Empty extends Tree[Nothing]
case class Binary[T](elem: T, left: Tree[T], right: Tree[T]) extends Tree[T]

In-order traversal

def inOrder[T](t: Tree[T]): List[T] = t match {
case Empty =>
List()
case Binary(e, |, r) =>
inOrder(l) ::: List(e) ::: inOrder(r)
)

@ Extensibility
@ Encapsulation: only constructor params exposed
@ Representation independence

Pratikakis (CSD) Scala CS529, 2017 13/32

Functions and Collections

@ First-class functions make collections more powerful
@ Especially immutable ones

Container operations

people.filter(_.age >= 18)
.groupBy(_.surname)
.values
.count(_.length >= 2)

Pratikakis (CSD) Scala CS529, 2017 14/32

Functions and Collections

@ First-class functions make collections more powerful

@ Especially immutable ones

Container operatio : Map[String, List[Person]]

|

people.filter(_.age >= 18)
.groupBy(_.surname)
.values
.count(_.length >= 2)

Pratikakis (CSD) Scala

CS529, 2017

14/32

Functions and Collections

@ First-class functions make collections more powerful
@ Especially immutable ones

Container operations
: lterable[List[Person]]

people.filter(_.a
.groupBy(_.s
.values
.count(_.length >= 2)

Pratikakis (CSD) Scala CS529, 2017 14/32

The Scala Object System

@ Class-based
@ Single Inheritance
@ Can define singleton objects easily

@ Subtyping is nominal: it is a subtype if declared to be a
subtype
@ Traits, compound types, views
» Flexible abstractions

Pratikakis (CSD) Scala CS529, 2017 15/32

Classes and Objects

Classes and Objects

trait Nat;

object Zero extends Nat {
def isZero: boolean = true;
def pred: Nat =
throw new Error(”Zero.pred”);

}

class Succ(n: Nat) extends Nat {
def isZero: boolean = false;
def pred: Nat = n;

}

Pratikakis (CSD) Scala CS529, 2017 16/32

Traits

@ Similar to interfaces in Java

@ They may have implementations of methods
@ But cannot contain state

@ Can have multiple inheritance

Pratikakis (CSD) Scala CS529, 2017 17/32

Example: Traits

trait Similarity {
def isSimilar(x: Any): Boolean;
def isNotSimilar(x: Any): Boolean = !isSimilar(x);

}

class Point(xc: Int, yc: Int) with Similarity {
var x: Int = xc;
vary: Int = yc;
def isSimilar(obj: Any) =
obj.isInstanceOf[Point] &&
obj.aslnstanceOf[Point].x == Xx;

}

Pratikakis (CSD) Scala CS529, 2017 18/32

Mixin Class Composition (1)

@ Mixin: “A class which contains a combination of methods
from other classes. ”

@ Basic inheritance model is single inheritance

@ But mixin classes allow more flexibility

class Point2D(xc: Int, yc: Int) {
val x = xc;
valy = yc;
// methods for manipulating Point2Ds

class ColoredPoint2D(u: Int, v: Int, c: String) extends Point2D(u, v) {
var color = c;
def setColor(newCol: String): Unit = color = newCol;

class Point3D(xc: Int, yc: Int, zc: Int) extends Point2D(xc, yc) {
val z = zc;
// code for manipulating Point3Ds

class ColoredPoint3D(xc: Int, yc: Int, zc: Int, col: String)
extends Point3D(xc, yc, zc) with ColoredPoint2D(xc, yc, col);

Pratikakis (CSD) Scala CS529, 2017 19/32

Mixin Class Composition (2)

@ Mixin composition adds members explicitly defined in
ColoredPoint2D (members that were not inherited)

@ Mixing a class C into another class D is legal only as long
as D’s superclass is a subclass of C’s superclass.

@ i.e., D must inherit at least everything that C inherited
@ Why?

Pratikakis (CSD) Scala CS529, 2017 20/32

Mixin Class Composition (2)

@ Mixin composition adds members explicitly defined in
ColoredPoint2D (members that were not inherited)

@ Mixing a class C into another class D is legal only as long
as D’s superclass is a subclass of C’s superclass.

@ i.e., D must inherit at least everything that C inherited

Why?

@ Remember that only members explicitly defined in
ColoredPoint2D are mixin inherited

@ So, if those members refer to definitions that were
inherited from Point2D, they had better exist in
ColoredPoint3D

» They do, since ColoredPoint3D extends Point3D which
extends Point2D

Pratikakis (CSD) Scala CS529, 2017 20/32

Views (1)

@ Defines a coercion from one type to another
@ Similar to conversion operators in C++ and C#

trait Set {
def include(x: int): Set;
def contains(x: int): boolean

}

def view(list: List) : Set = new Set {
def include(x: int): Set = x prepend xs;
def contains(x: int): boolean =
lisEmpty && (list.head == x || list.tail contains x)

Pratikakis (CSD) Scala CS529, 2017 21/32

Views (2)

@ Views are inserted automatically by the Scala compiler
@ If e is of type T then a view is applied to e if:

» Expected type of e is not T (or a supertype)
» A member selected from e is not a member of T

@ Compiler uses only views in scope

Pratikakis (CSD) Scala CS529, 2017 22/32

Variance Annotations (1)

class Array[a] {
def get(index: int): a
def set(index: int, elem: a): unit;

}

@ Array[String] is not a subtype of Array[Any]
@ If it were, we could do the following:

val x = new Array[String](1);

val y : Array[Any] = x;

y.set(0, new FooBar());

// just stored a FooBar in a String array!

Pratikakis (CSD) Scala CS529, 2017 23/32

Variance Annotations (2)

@ Covariance is OK with functional data structures
@ ... because they are immutable

trait GenList[+T] {
def isEmpty: boolean;
def head: T;
def tail: GenList[T]

}

object Empty extends GenList[All] {
def isEmpty: boolean = true;
def head: All = throw new Error("Empty.head”);
def tail: List[All] = throw new Error("Empty.tail”);

)

class Cons[+T](x: T, xs: GenList[T]) extends GenList[T] {
def isEmpty: boolean = false;
def head: T = x;
def tail: GenList[T] = xs

)

Pratikakis (CSD) Scala CS529, 2017 24 /32

Variance Annotations (3)

@ Can also have contravariant type parameters
» Useful for an object that can only be written to

@ Scala checks that variance annotations are sound

» Covariant positions: Immutable field types, method results

» Contravariant: method argument types

» Type system ensures that covariant parameters are only
used covariant positions

» (similar for contravariant)

@ If no variance specified, then Invariant
» Neither superclass, nor subclass

Pratikakis (CSD) Scala CS529, 2017 25/32

Functions are Objects
@ Every function is a value
» Values are objects, so functions are also objects
@ The function type S => T is equivalent to the class type
scala.Functionl[S, T]

trait Functionl[-S, +T] {
def apply(x: S): T

@ For example, the anonymous successor function (x: Int)
=> X + 1lorinshorter code (+ 1) expands to

new Functionl[Int, Int] {
def apply(x: Int): Int =x + 1

Pratikakis (CSD) Scala CS529, 2017 26/32

Arrays are Objects

@ Arrays (mathematically): Mutable functions over integer
ranges

Syntactic Sugar

a(i) = a(i) + 2 for a.update(i, a.apply(i) + 2)

Example

final class Array[T](_length: Int)
extends java.io.Serializable

with java.lang.Cloneable {
def length: Int = ...

def apply(i: Int): T = ...
def update(i: Int, x: T): Unit = ...
override def clone: Array[T] =

}

v
Pratikakis (CSD) Scala

CS529, 2017 27/32

Partial Functions

@ Functions that are defined only for some objects
@ Test using isDefinedAt

Example

trait PartialFunction[-A, +B] extends (A => B) {
def isDefinedAt(x: A): Boolean
def orElse[Al <: A, B1 >: B]
(that: PartialFunction[Al, B1]): PartialFunction[Al, B1]
)

@ Blocks of pattern-matching cases are instances of partial
functions

@ This lets programmers write control structures that are not
easy to express otherwise

Pratikakis (CSD) Scala CS529, 2017 28/32

Automatic Closure Construction

@ Allows programmers to make their own control structures
@ Can tag the parameters of methods with the modifier def

@ When method is called, the actual def parameters are not
evaluated and a no-argument function is passed

Pratikakis (CSD) Scala CS529, 2017 29/32

Example: Custom loop construct

object TargetTestl with Application {
def loopWhile(def cond: Boolean)(def body: Unit): Unit =
if (cond) {
body;
loopWhile(cond)(body);
}

vari = 10;
loopWhile (i > 0) {
Console.printin(i);
i=i-1;
}
}

Pratikakis (CSD) Scala CS529, 2017 30/32

Types as Class Members

abstract class AbsCell {
type T;
val init: T;
private var value: T = init;
def get: T = value;
def set(x: T): unit = { value = x }

}
def createCell : AbsCell {

new AbsCell { type T = int; val init=1 }
}

@ Clients of createCell cannot rely on the fact that T is int,
since this information is hidden from them

Pratikakis (CSD) Scala CS529, 2017 31/32

Next time

@ Parallelism in Scala: actors and messages
@ Message passing programming

@ Event based programming

@ Map-Reduce and BSP

Pratikakis (CSD) Scala CS529, 2017 32/32

