
Lecture 09: Introduction to Scala

Computer Science Department, University of Crete

Multicore Processor Programming

Based on slides by D. Malayeri, S.D. Vick, P. Haller, and M. Madsen

Pratikakis (CSD) Scala CS529, 2017 1 / 32

Introduction

Part 1: Introduction to Scala
Part 2: Concurrency in Scala

Pratikakis (CSD) Scala CS529, 2017 2 / 32

What is Scala?

Scala is a statically typed language
▶ Combines Object-Oriented Programming and Functional
Programming

▶ Developed in EPFL, lead by Martin Odersky
▶ Influenced by Java, ML, Haskell, Erlang, and other languages

Many high-level language abstractions
▶ Uniform object model
▶ Higher-order functions, pattern matching
▶ Novel ways to compose and abstract expressions

Managed language runtime
▶ Runs on the Java Virtual Machine
▶ Runs on the .NET Virtual Machine

Pratikakis (CSD) Scala CS529, 2017 3 / 32

Goals of Scala

Create a language with better support for component
software
Hypotheses:

▶ Programming language for component software should be
scalable

⋆ The same concepts describe small and large parts
⋆ Rather than adding lots of primitives, focus on abstraction,
composition, decomposition

▶ Language that unifies OOP and functional programming can
provide scalable support for components

Pratikakis (CSD) Scala CS529, 2017 4 / 32

Why use Scala?

Runs on the JVM
▶ Can use any Java code in Scala
▶ Almost as fast as Java

Much shorter code
▶ Odersky reports 50% reduction in most code
▶ Local type inference

Fewer errors
▶ No NullPointer errors

More flexibility
▶ As many public classes per source file as you want
▶ Operator overloading

All of the above, for .NET too

Pratikakis (CSD) Scala CS529, 2017 5 / 32

Why learn Scala?

Creating a trend in web service programming
▶ LinkedIn
▶ Twitter
▶ Ebay
▶ Foursquare
▶ List is growing

Pratikakis (CSD) Scala CS529, 2017 6 / 32

Features of Scala (1)

Both functional and object-oriented
▶ Every value is an object
▶ Every function is a value (including methods)

Scala is statically typed
▶ Includes local type inference system

Java 1.5

Pair p = new Pair<Integer, String>(1, ”Scala”);

Scala

val p = new Pair(1, ”Scala”);

Pratikakis (CSD) Scala CS529, 2017 7 / 32

Features of Scala (2)

Supports lightweight syntax for anonymous functions,
higher-order functions, nested functions, currying
ML-style pattern matching
Integration with XML

▶ Can write XML directly in Scala program
▶ Can convert XML DTD into Scala class definitions

Support for regular expression patterns
Allows defining new control structures without using
macros, and while maintaining static typing
Any function can be used as an infix or postfix operator
Can define methods named +, <= or ::

Pratikakis (CSD) Scala CS529, 2017 8 / 32

Features of Scala (3)

Actor-based programming, distributed, concurrent
Embedded DSLs, usable as scripting language
Higher-kinded types, first class functions, closures
Delimited continuations
Abstract Types, Generics

Warning: Scala is the gateway drug to ML, Haskell, ...

Pratikakis (CSD) Scala CS529, 2017 9 / 32

An Example Class ...

Java

public class Person {
public final String name;
public final int age;
Person(String name, int age) {
this.name = name;
this.age = age;

}
}

Scala

class Person(val name: String, val age: Int) {}

Pratikakis (CSD) Scala CS529, 2017 10 / 32

... and its use

Java

import java.util.ArrayList;
...
Person[] people;
Person[] minors;
Person[] adults;
{ ArrayList<Person> minorsList = new ArrayList<Person>();
ArrayList<Person> adultsList = new ArrayList<Person>();
for (int i = 0; i < people.length; i++)
(people[i].age < 18 ? minorsList : adultsList).add(people[i]);

minors = minorsList.toArray(people);
adults = adultsList.toArray(people);

}

Scala

val people: Array[Person]
val (minors, adults) = people partition (_.age < 18)

Pratikakis (CSD) Scala CS529, 2017 11 / 32

... and its use

Java

import java.util.ArrayList;
...
Person[] people;
Person[] minors;
Person[] adults;
{ ArrayList<Person> minorsList = new ArrayList<Person>();
ArrayList<Person> adultsList = new ArrayList<Person>();
for (int i = 0; i < people.length; i++)
(people[i].age < 18 ? minorsList : adultsList).add(people[i]);

minors = minorsList.toArray(people);
adults = adultsList.toArray(people);

}

Scala

val people: Array[Person]
val (minors, adults) = people partition (_.age < 18)

An infix method call

Pratikakis (CSD) Scala CS529, 2017 11 / 32

... and its use

Java

import java.util.ArrayList;
...
Person[] people;
Person[] minors;
Person[] adults;
{ ArrayList<Person> minorsList = new ArrayList<Person>();
ArrayList<Person> adultsList = new ArrayList<Person>();
for (int i = 0; i < people.length; i++)
(people[i].age < 18 ? minorsList : adultsList).add(people[i]);

minors = minorsList.toArray(people);
adults = adultsList.toArray(people);

}

Scala

val people: Array[Person]
val (minors, adults) = people partition (_.age < 18)

A function value

Pratikakis (CSD) Scala CS529, 2017 11 / 32

... and its use

Java

import java.util.ArrayList;
...
Person[] people;
Person[] minors;
Person[] adults;
{ ArrayList<Person> minorsList = new ArrayList<Person>();
ArrayList<Person> adultsList = new ArrayList<Person>();
for (int i = 0; i < people.length; i++)
(people[i].age < 18 ? minorsList : adultsList).add(people[i]);

minors = minorsList.toArray(people);
adults = adultsList.toArray(people);

}

Scala

val people: Array[Person]
val (minors, adults) = people partition (_.age < 18)

A pattern match

Pratikakis (CSD) Scala CS529, 2017 11 / 32

Class Hierarchies and Abstract Data Types

Scala unifies class hierarchies and abstract data types
(ADTs)
Introduces pattern matching for objects
Uses concise manipulation of immutable data structures

Pratikakis (CSD) Scala CS529, 2017 12 / 32

Example: Pattern matching
Class hierarchy for binary trees

abstract class Tree[T]
case object Empty extends Tree[Nothing]
case class Binary[T](elem: T, left: Tree[T], right: Tree[T]) extends Tree[T]

In-order traversal

def inOrder[T](t: Tree[T]): List[T] = t match {
case Empty =>
List()

case Binary(e, l, r) =>
inOrder(l) ::: List(e) ::: inOrder(r)

}

Extensibility
Encapsulation: only constructor params exposed
Representation independence

Pratikakis (CSD) Scala CS529, 2017 13 / 32

Functions and Collections

First-class functions make collections more powerful
Especially immutable ones

Container operations

people.filter(_.age >= 18)
.groupBy(_.surname)
.values
.count(_.length >= 2)

Pratikakis (CSD) Scala CS529, 2017 14 / 32

Functions and Collections

First-class functions make collections more powerful
Especially immutable ones

Container operations

people.filter(_.age >= 18)
.groupBy(_.surname)
.values
.count(_.length >= 2)

: Map[String, List[Person]]

Pratikakis (CSD) Scala CS529, 2017 14 / 32

Functions and Collections

First-class functions make collections more powerful
Especially immutable ones

Container operations

people.filter(_.age >= 18)
.groupBy(_.surname)
.values
.count(_.length >= 2)

: Iterable[List[Person]]

Pratikakis (CSD) Scala CS529, 2017 14 / 32

The Scala Object System

Class-based
Single Inheritance
Can define singleton objects easily
Subtyping is nominal: it is a subtype if declared to be a
subtype
Traits, compound types, views

▶ Flexible abstractions

Pratikakis (CSD) Scala CS529, 2017 15 / 32

Classes and Objects

Classes and Objects

trait Nat;

object Zero extends Nat {
def isZero: boolean = true;
def pred: Nat =
throw new Error(”Zero.pred”);

}

class Succ(n: Nat) extends Nat {
def isZero: boolean = false;
def pred: Nat = n;

}

Pratikakis (CSD) Scala CS529, 2017 16 / 32

Traits

Similar to interfaces in Java
They may have implementations of methods
But cannot contain state
Can have multiple inheritance

Pratikakis (CSD) Scala CS529, 2017 17 / 32

Example: Traits

trait Similarity {
def isSimilar(x: Any): Boolean;
def isNotSimilar(x: Any): Boolean = !isSimilar(x);

}

class Point(xc: Int, yc: Int) with Similarity {
var x: Int = xc;
var y: Int = yc;
def isSimilar(obj: Any) =
obj.isInstanceOf[Point] &&
obj.asInstanceOf[Point].x == x;

}

Pratikakis (CSD) Scala CS529, 2017 18 / 32

Mixin Class Composition (1)
Mixin: “A class which contains a combination of methods
from other classes. ”
Basic inheritance model is single inheritance
But mixin classes allow more flexibility

class Point2D(xc: Int, yc: Int) {
val x = xc;
val y = yc;
// methods for manipulating Point2Ds

}
class ColoredPoint2D(u: Int, v: Int, c: String) extends Point2D(u, v) {
var color = c;
def setColor(newCol: String): Unit = color = newCol;

}
class Point3D(xc: Int, yc: Int, zc: Int) extends Point2D(xc, yc) {
val z = zc;
// code for manipulating Point3Ds

}
class ColoredPoint3D(xc: Int, yc: Int, zc: Int, col: String)

extends Point3D(xc, yc, zc) with ColoredPoint2D(xc, yc, col);

Pratikakis (CSD) Scala CS529, 2017 19 / 32

Mixin Class Composition (2)

Mixin composition adds members explicitly defined in
ColoredPoint2D (members that were not inherited)
Mixing a class C into another class D is legal only as long
as D’s superclass is a subclass of C’s superclass.
i.e., D must inherit at least everything that C inherited
Why?

Remember that only members explicitly defined in
ColoredPoint2D are mixin inherited
So, if those members refer to definitions that were
inherited from Point2D, they had better exist in
ColoredPoint3D

▶ They do, since ColoredPoint3D extends Point3D which
extends Point2D

Pratikakis (CSD) Scala CS529, 2017 20 / 32

Mixin Class Composition (2)

Mixin composition adds members explicitly defined in
ColoredPoint2D (members that were not inherited)
Mixing a class C into another class D is legal only as long
as D’s superclass is a subclass of C’s superclass.
i.e., D must inherit at least everything that C inherited
Why?
Remember that only members explicitly defined in
ColoredPoint2D are mixin inherited
So, if those members refer to definitions that were
inherited from Point2D, they had better exist in
ColoredPoint3D

▶ They do, since ColoredPoint3D extends Point3D which
extends Point2D

Pratikakis (CSD) Scala CS529, 2017 20 / 32

Views (1)

Defines a coercion from one type to another
Similar to conversion operators in C++ and C#

trait Set {
def include(x: int): Set;
def contains(x: int): boolean

}

def view(list: List) : Set = new Set {
def include(x: int): Set = x prepend xs;
def contains(x: int): boolean =
!isEmpty && (list.head == x || list.tail contains x)

}

Pratikakis (CSD) Scala CS529, 2017 21 / 32

Views (2)

Views are inserted automatically by the Scala compiler
If e is of type T then a view is applied to e if:

▶ Expected type of e is not T (or a supertype)
▶ A member selected from e is not a member of T

Compiler uses only views in scope

Pratikakis (CSD) Scala CS529, 2017 22 / 32

Variance Annotations (1)

class Array[a] {
def get(index: int): a
def set(index: int, elem: a): unit;

}

Array[String] is not a subtype of Array[Any]
If it were, we could do the following:

val x = new Array[String](1);
val y : Array[Any] = x;
y.set(0, new FooBar());
// just stored a FooBar in a String array!

Pratikakis (CSD) Scala CS529, 2017 23 / 32

Variance Annotations (2)
Covariance is OK with functional data structures
... because they are immutable

trait GenList[+T] {
def isEmpty: boolean;
def head: T;
def tail: GenList[T]

}
object Empty extends GenList[All] {
def isEmpty: boolean = true;
def head: All = throw new Error(”Empty.head”);
def tail: List[All] = throw new Error(”Empty.tail”);

}
class Cons[+T](x: T, xs: GenList[T]) extends GenList[T] {
def isEmpty: boolean = false;
def head: T = x;
def tail: GenList[T] = xs

}

Pratikakis (CSD) Scala CS529, 2017 24 / 32

Variance Annotations (3)

Can also have contravariant type parameters
▶ Useful for an object that can only be written to

Scala checks that variance annotations are sound
▶ Covariant positions: Immutable field types, method results
▶ Contravariant: method argument types
▶ Type system ensures that covariant parameters are only
used covariant positions

▶ (similar for contravariant)
If no variance specified, then Invariant

▶ Neither superclass, nor subclass

Pratikakis (CSD) Scala CS529, 2017 25 / 32

Functions are Objects
Every function is a value

▶ Values are objects, so functions are also objects
The function type S => T is equivalent to the class type
scala.Function1[S, T]

trait Function1[-S, +T] {
def apply(x: S): T

}

For example, the anonymous successor function (x: Int)
=> x + 1 or in shorter code (_ + 1) expands to

new Function1[Int, Int] {
def apply(x: Int): Int = x + 1

}

Pratikakis (CSD) Scala CS529, 2017 26 / 32

Arrays are Objects
Arrays (mathematically): Mutable functions over integer
ranges

Syntactic Sugar

a(i) = a(i) + 2 for a.update(i, a.apply(i) + 2)

Example

final class Array[T](_length: Int)
extends java.io.Serializable

with java.lang.Cloneable {
def length: Int = ...
def apply(i: Int): T = ...
def update(i: Int, x: T): Unit = ...
override def clone: Array[T] = ...

}

Pratikakis (CSD) Scala CS529, 2017 27 / 32

Partial Functions
Functions that are defined only for some objects
Test using isDefinedAt

Example

trait PartialFunction[-A, +B] extends (A => B) {
def isDefinedAt(x: A): Boolean
def orElse[A1 <: A, B1 >: B]
(that: PartialFunction[A1, B1]): PartialFunction[A1, B1]

}

Blocks of pattern-matching cases are instances of partial
functions
This lets programmers write control structures that are not
easy to express otherwise

Pratikakis (CSD) Scala CS529, 2017 28 / 32

Automatic Closure Construction

Allows programmers to make their own control structures
Can tag the parameters of methods with the modifier def
When method is called, the actual def parameters are not
evaluated and a no-argument function is passed

Pratikakis (CSD) Scala CS529, 2017 29 / 32

Example: Custom loop construct

object TargetTest1 with Application {
def loopWhile(def cond: Boolean)(def body: Unit): Unit =
if (cond) {
body;
loopWhile(cond)(body);

}

var i = 10;
loopWhile (i > 0) {
Console.println(i);
i = i - 1;

}
}

Pratikakis (CSD) Scala CS529, 2017 30 / 32

Types as Class Members

abstract class AbsCell {
type T;
val init: T;
private var value: T = init;
def get: T = value;
def set(x: T): unit = { value = x }

}
def createCell : AbsCell {
new AbsCell { type T = int; val init = 1 }

}

Clients of createCell cannot rely on the fact that T is int,
since this information is hidden from them

Pratikakis (CSD) Scala CS529, 2017 31 / 32

Next time

Parallelism in Scala: actors and messages
Message passing programming
Event based programming
Map-Reduce and BSP

Pratikakis (CSD) Scala CS529, 2017 32 / 32

