
Lecture 07: Even More Java Threads

Computer Science Department, University of Crete

Parallel Programming

Based on slides by J. Foster, M. Hicks, D. Holmes, and D. Lea

Pratikakis (CSD) Java Threads CS529, 2017 1 / 35



Designing Objects for Concurrency
Isolation

▶ Avoid interference by not sharing
Immutability

▶ Avoid inteference by avoiding change
Locking

▶ Dynamically guarantee exclusive access
Splitting Objects

▶ Changing representation to facilitate concurrency control
Containment

▶ Guarantee exclusive control of internal components
▶ Manage ownership
▶ Protect unhidden components

Alternatives to Synchronization
▶ volatile variables and the Java Memory Model

Pratikakis (CSD) Java Threads CS529, 2017 2 / 35



Isolation

Objects that are not shared cannot suffer interference
▶ Heap objects accessible only from current thread
▶ Parameters and local variables

⋆ Applies to references, not the objects to which they refer
▶ java.lang.ThreadLocal

⋆ Simplifies access from other objects running in the same
thread

▶ No need for any synchronization
Objects can be accessed by multiple threads as long as
they are isolated to one thread at any given time

▶ Transfer of ownership protocols
⋆ Thread 1 uses the object, hands off to Thread 2 and then
never accesses the object again

▶ Transfer still requires synchronization

Pratikakis (CSD) Java Threads CS529, 2017 3 / 35



Thread Local Data

Suppose you want to run multiple web servers, each on
one thread, each using a different document directory
Could define a documentRoot field in the WebServer class
Or, define the document root as a variable tied to each
Thread object

▶ The easiest way: use java.lang.ThreadLocal
▶ Equivalent to adding instance variables to all Thread
objects

▶ No need to define subclasses or control thread creation
All methods running can access thread local data when
needed

▶ Frequent use: package accessible statistics
No interference when all accesses happen within the same
thread

Pratikakis (CSD) Java Threads CS529, 2017 4 / 35



Example: ThreadLocal

public class WebServer {
static final ThreadLocal documentRoot = new ThreadLocal();
...
public WebServer(int port, File root) throws IOException {
...
documentRoot.set(root);

}

private void processRequest(Socket sock) throws IOException {
File root = (File) documentRoot.get();
...

}
...

}
...

Pratikakis (CSD) Java Threads CS529, 2017 5 / 35



When to use ThreadLocal

Variables that apply per activity, not per object
▶ E.g., timeout value, transaction ID, current dirctory, default
parameters

Replacement for static variables
▶ When different threads should use different values

Tools to eliminate the need for synchronization
▶ Used internally in JVM to optimize memory allocation, lock
implementations, etc.

▶ E.g., per-thread caches, slabs

Pratikakis (CSD) Java Threads CS529, 2017 6 / 35



Stateless Objects

class StatelessAdder {
int addOne (int i) { return i + 1; }
int addTwo (int i) { return i + 2; }

}

There are no special concurrency concerns
▶ No per-instance state, therefore no storage conflicts
▶ No data representation, therefore no representation
invariants

▶ Multiple concurrent executions, therefore no liveness
problems

▶ No interaction with other objects, therefore no requirement
for synchronization protocol

Example: java.lang.Math

Pratikakis (CSD) Java Threads CS529, 2017 7 / 35



Immutable Objects

class ImmutableAdder {
private final int offset;
ImmutableAdder(int offset) { this.offset = offset; }
int add(int i) { return i + offset; }

}

Object state frozen upon initialization
▶ Still no safety or liveness concerns
▶ No interference as per-instance state never changes
▶ Java final fields enforce most senses of immutability

Immutability often suitable for closed Abstract Data Types
▶ E.g., String, Integer, etc.

Pratikakis (CSD) Java Threads CS529, 2017 8 / 35



Containment

Strict containment creates islands of objects
▶ Applies recursively

Allows code of “inner” objects to run faster
▶ Works with legacy sequential code

Requires inner code to be communication closed
▶ No unprotected calls into or out of island

Requires outer objects to never leak inner references
▶ Or uses ownership transfer protocol

By convention, can be difficult to enforce and check

Pratikakis (CSD) Java Threads CS529, 2017 9 / 35



Example: Containment (1)

class Statistics { // Mutable!
public long requests;
public double avgTime;
public Statistics(long requests, double avgTime) {
this.requests = requests;
this.avgTime = avgTime;

}
}

Fields are public and mutable
▶ Therefore, instances cannot be shared

Can be safely contained within a WebServer instance

Pratikakis (CSD) Java Threads CS529, 2017 10 / 35



Example: Containment (2)

class WebServer {
...
private final Statistics stats = new Statistics(0, 0.0);
public synchronized Statistics getStatistics() {
return new Statistics(stats.requests, stats.avgTime);

}
private void processRequest(Socket sock) throws IOException {
synchronized(this) {
double total = stats.avgTime * stats.requests + elapsed;
stats.avgTime = total / (++stats.requests);

}
}

}

Cannot expose mutable state
▶ Instead, make copies

Pratikakis (CSD) Java Threads CS529, 2017 11 / 35



Hierarchical Containment Locking

Applies when logically contained parts are not hidden from
clients
Avoids deadlocks that could occur if parts were fully
synchronized
All parts use lock provided by the common owner
Can use either internal or external conventions

Pratikakis (CSD) Java Threads CS529, 2017 12 / 35



Internal Containment Locking (1)

class Part {
protected Container owner_ ; // Never null
public Container owner() { return owner_; }
private void bareAction() { /* unsafe */ }
public void m() {
synchronized (owner()) { bareAction(); }

}
}

Visible components protect themselves using their
owner’s locks

▶ Parts do not deadlock when invoking each other’s methods
▶ Parts must be aware that they are contained

Pratikakis (CSD) Java Threads CS529, 2017 13 / 35



Internal Containment Locking (2)

class Container {
class Part {
...
public void m() {
synchronized (Container.this) { bareAction(); }

}
}

}

Implemented using inner classes
Do not require synchronized blocks synchronization

▶ Shared Lock objects
▶ Transaction locks
▶ etc.

Pratikakis (CSD) Java Threads CS529, 2017 14 / 35



External Containment Locking

class Client {
void f(Part p) {
synchronized (p.owner()) { p.bareAction(); }

}
}

External: rely on clients to provide locking (client-side)
Used in AWT

▶ java.awt.Component.getTreeLock()
Can sometimes avoid more locking overhead
... at price of fragility

▶ Can manually minimize use of synchronized
▶ Requires all callers to obey convention
▶ Effectiveness depends on context

⋆ Breaks encapsulation
⋆ Does not work with fancy schemes that do not rely on

synchronized blocks or similar methods of locking

Pratikakis (CSD) Java Threads CS529, 2017 15 / 35



Subclassing Unsafe Code (1)

Assume a method written in native code

class HandlerHelper {
native void mountFileSystem();

}

Suppose our method processRequest invokes
mountFileSystem();

Pratikakis (CSD) Java Threads CS529, 2017 16 / 35



Subclassing Unsafe Code (2)
We do not trust this class to be thread-safe

▶ Wrap calls in synchronized blocks (i.e., containment)
▶ Or, create a simple subclass that adds synchronization and
instantiate that class instead

class SafeHandlerHelper extends HandlerHelper {
synchronized void mountFileSystem() {
super.mountFileSystem();

}
}

▶ Localizes synchronization control where it is required

Subclassing is usually the most convenient way to do that
▶ Can also use unrelated wrapper classes and delegate
▶ Can generalize to “template method” schemes (later)

Pratikakis (CSD) Java Threads CS529, 2017 17 / 35



State Dependent Actions

State Dependence
Balking
Guarded Suspension
Optimistic Retries
Specifying Policies

Pratikakis (CSD) Java Threads CS529, 2017 18 / 35



Examples of State Dependent Actions

Operations on collections, streams, databases
▶ Remove an element from an empty queue
▶ Add an element to a full buffer

Operations on objects maintaining constrained values
▶ Withdraw money from an empty bank account

Operations requiring resources
▶ Print a file

Operations requiring particular message orderings
▶ Read an unopened file

Operations on external controllers
▶ Shift to reverse gear in a moving car

Pratikakis (CSD) Java Threads CS529, 2017 19 / 35



Policies for State Dependent Actions

Policy choices for dealing with preconditions and
postconditions

▶ Blind action: Proceed anyway, no guarantee of outcome
▶ Inaction: Ignore request if not in the right state
▶ Balking: Fail via exception if not in the right state
▶ Guarding: Suspend until in the right state
▶ Trying: Proceed, check if successful, roll back if not
▶ Retrying: Keep trying until successful
▶ Timeout: Wait or retry for a while, then fail
▶ Planning: First initiate activity that will achieve the right
state

How to convey policy in code?

Pratikakis (CSD) Java Threads CS529, 2017 20 / 35



Interfaces and Policies

public interface Buffer {
int capacity(); // Inv: capacity() > 0
int size(); // Inv: 0 ≤ size() ≤ capacity()

// Init : size() == 0
void put(Object x); // Pre: size() < capacity()
Object take(); // Pre: size() > 0

}

Interfaces alone cannot convey policy
Can suggest policy

▶ E.g., should take() throw exception? What kind?
▶ Different methods can support different policies for same
base actions

Can use manual annotations
▶ Declarative constraints form the basis of the
implementation

Pratikakis (CSD) Java Threads CS529, 2017 21 / 35



Balking
Check state upon method entry

▶ Must not change state in course of checking state
▶ Relevant state must be explicitly represented

⋆ So it can be checked on entry

Exit immediately if not in the right state
▶ Throw exception or return special value

⋆ In these examples, throw Failure
▶ Client is responsible for handling failure

The simplest policy for synchronized objects
▶ Useable in both sequential and concurrent contexts

⋆ Often used in Collection classes, e.g., Vector
▶ In concurrent contexts the host must always take
responsibility for entire check-act/check-fail sequence

⋆ Clients cannot preclude state changes between check and
act, so host must control

Pratikakis (CSD) Java Threads CS529, 2017 22 / 35



Example: Balking Bounded Buffer

public Class BalkingBoundedBuffer implements Buffer {
private List data;
private final int capacity;
public BalkingBoundedBuffer(int capacity) {
data = new ArrayList(capacity);
this.capacity = capacity;

}
public synchronized Object take() throws Failure {
if (data.size() == 0) throw new Failure(”Buffer Empty”);
Object temp = data.get(0);
data.remove(0);
return temp;

}
public synchronized void put(Object o) throws Failure {
if (data.size() == capacity) throw new Failure(”Buffer Full”);
data.add(o);

}
public synchronized int size() { return data.size(); }
public int capacity() { return capacity; }

}

Pratikakis (CSD) Java Threads CS529, 2017 23 / 35



Guarding

Generalization of locking for state dependent actions
▶ Locked: wait until ready (not engaged in other methods)
▶ Guarded: Wait until an arbitrary state predicate holds

Check state upon entry
▶ If not in right state, wait
▶ Some other action in some other thread may eventually
cause a state change that enables resumption

Introduces liveness concerns
▶ Relies on actions of other threads to make progress

Useless in sequential programs
▶ Client must ensure correct state before calling

Pratikakis (CSD) Java Threads CS529, 2017 24 / 35



Guarding Mechanisms: Busy wait

Thread continually spins until a condition holds

while(!condition) ; // spin
// use condition

▶ Requires multiple CPUs or timeslicing
⋆ No way to determin this until Java 1.4

int nCPUs = Runtime.availableProcessors();

▶ But busy waiting can sometimes be useful
⋆ When the conditions latch: once true, they never become
false

Pratikakis (CSD) Java Threads CS529, 2017 25 / 35



Guarding Mechanisms: Suspension (1)

Thread stops execution until notified that the condition
may be true
Supported in Java via wait sets and locks

synchronized (obj) {
while (!condition) {
try { obj.wait(); }
catch (InterruptedException e) { ... }

}
// use condition

}

Pratikakis (CSD) Java Threads CS529, 2017 26 / 35



Guarding Mechanisms: Suspension (2)

Changing a condition

synchronized (obj) {
condition = true;
obj.notifyAll(); // or obj.notify()

}

▶ Or after Java 1.5, using Lock and Condition

Golden rule: always test a condition in a loop
▶ Change of state may not be what you need
▶ Condition may have changed again
▶ Break the rule only after proving it’s safe

Pratikakis (CSD) Java Threads CS529, 2017 27 / 35



Wait sets and Notification (1)

Every Java Object has a wait set
▶ Can only be manipulated while the object lock is held
▶ Otherwise, IllegalMonitorStateException

Threads enter the wait set by calling wait()
▶ wait() atomically releases the lock and suspends the
thread

⋆ Including re-entrant locks held multiple times
⋆ No other held locks are released

▶ Timed waiting via wait(long milliseconds)
⋆ No direct indication that a time-out occured
⋆ wait() and wait(0) mean wait forever
⋆ Nanosecond version too

Similar for explicit Lock objects after Java 1.5
▶ Differences in versatility: interruption, timeout notification,
separate acquire – release, etc.

Pratikakis (CSD) Java Threads CS529, 2017 28 / 35



Wait sets and Notification (2)
Threads are released from the wait set when

▶ notifyAll() invoked on the object (signalAll() invoked
on the condition)

⋆ Releases all threads
▶ notify() invoked on the object (signal() invoked on the
condition)

⋆ Releases one thread selected at “random”
▶ The specified timeout has elapsed
▶ interrupt() method called for current thread, causes
InterruptedException

▶ Spurious wakeup occurs when:
⋆ Inherited property of underlying synchronization
mechanisms: POSIX threads, Windows threads, Hardware
threads, etc.

Lock is always reacquired before wait() returns
▶ Restored lock count for re-entrant locks
▶ Cannot be acquired until notifying thread releases it
▶ All released threads contend for the lock

Pratikakis (CSD) Java Threads CS529, 2017 29 / 35



Wait sets and Notification (3)
Avoid notify() (and signal()), only use for optimization
when all the following hold:

▶ Only one thread can benefit from the change of state
▶ All threads are waiting for the same change of state

⋆ or else, another notify() is done by the released thread
▶ And these conditions also hold for all subclasses!

Conditional notification is another optimization
▶ When you know for what state changes the other threads
wait

▶ Warning: subclasses may invalidate your “knowledge”
Use of wait(), notifyAll(), notify() are similar to

▶ Condition queues of classic Monitors
▶ Condition variables of POSIX threads
▶ But, with only one queue per object

⋆ May complicate some designs and lead to nested monitor
lockouts

Any Java object can be used just for its wait set and lock
▶ After 1.5, use Lock objects

Pratikakis (CSD) Java Threads CS529, 2017 30 / 35



Example: Guarded Bounded Buffer
public class GuardedBoundedBuffer implements Buffer {
private List data;
private final int capacity;

public GuardedBoundedBuffer(int capacity) {
data = new ArrayList(capacity);
this.capacity = capacity;

}
public synchronized Object take() throws Failure {
while (data.size() == 0)
try { wait(); }
catch (InterruptedException e) { throw new Failure(); }

Object temp = data.get(0);
data.remove(0);
notifyAll();
return temp;

}
public synchronized void put(Object obj) throws Failure {
while (data.size() == capacity)
try { wait(); }
catch (InterruptedException e) { throw new Failure(); }

data.add(obj);
notifyAll();

}
public synchronized int size() { return data.size(); }
public int capacity() { return capacity; }

}
Pratikakis (CSD) Java Threads CS529, 2017 31 / 35



Timeout

Intermediate points between Balking and Guarding
▶ Can vary timeout parameter from zero to infinity

Useful for heuristic detection of failures
▶ Deadlocks, crashes, I/O problems, network disconnections

But cannot be used for high-precision timing or deadlines
▶ Time can elapse between wait and thread resumption
▶ Time can elapse after checking the time!

Java implementation constraints
▶ wait(ms) does not automatically tell you if it returs
because of notification or timeout

⋆ await(ms) does

Pratikakis (CSD) Java Threads CS529, 2017 32 / 35



Optimistic Techniques

Variations for recording versions of mutable data
▶ Immutable helper classes
▶ Version numbers
▶ Transaction IDs
▶ Time stamps

May be more efficient than guarded waiting
▶ When conflicts are rare and running on multiple CPUs

Retrying can livelock unless proven wait-free
▶ Analogous to deadlock in guarded waiting
▶ Should arrange to fail after a certain time or number of
attempts

Pratikakis (CSD) Java Threads CS529, 2017 33 / 35



Example: Optimistic Bounded Counter
public class OptimisticBoundedCounter {
private final long MIN, MAX;
private Long count; // MIN <= count <= MAX

public OptimisticBoundedCounter(long min, long max) {
MIN = min; MAX = max;
count = new Long(MIN);

}
public long value() { return count().longValue(); }
public synchronized Long count() { return count; }

private synchronized boolean commit(Long oldc, Long newc) {
boolean success = (count == oldc);
if (success) count = newc;
return success;

}
public void inc() throws InterruptedException {
for (;;) { // retry-based
if (Thread.interrupted())
throw new InterruptedException();

Long c = count();
long v = c.longValue();
if (v < MAX && commit(c, new Long(v+1)))
break;

Thread.yield(); // a good idea in spin loops
}

}
public void dec() { /* symmetrical */ }

} Pratikakis (CSD) Java Threads CS529, 2017 34 / 35



Specifying Policies

Some policies are per-type
▶ Optimistic approaches require all methods to conform

Some policies can be specified per-call
▶ Balking vs. Guarding vs. Guarding with time-out

Options for specifying per-call policy
▶ Extra parameters

⋆ void put(Object x, long timeout)
⋆ void put(Object x, boolean balk)

▶ Different name for Balking or Guarding
⋆ Balking: void tryPut(Object x)
⋆ Guarding: void put(Object x)

▶ May need different exception signatures

Pratikakis (CSD) Java Threads CS529, 2017 35 / 35


	Concurrent Objects
	Isolation
	Immutability
	Containment
	State Dependent Actions

