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Sources of material

I Cilk 5.4.6 reference manual and the Cilk project
documentation, http://supertech.csail.mit.edu/cilk/

I Charles Leiserson, Bradley Kuzmaul, Michael Bender, and
Hua-wen Jing. MIT 6.895 lecture notes - Theory of Parallel
Systems.
http://theory.lcs.mit.edu/classes/6.895/fall03/scribe/master.ps
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Shared-memory architectures

I Hardware model
I Shared global memory
I processors virtually

equidistant from
memory

I Software model
I threads
I shared variables
I communication

I read shared data
(loads)

I write shared data
(stores)
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Introducing Cilk
cilk int fib (int n) {

int n1, n2;

if (n < 2) return n;
else {
n1 = spawn fib(n-1);
n2 = spawn fib(n-2);
sync;
return (n1 + n2);

}
}

I Cilk constructs
I cilk: Cilk function. Without it, functions are standard C
I spawn: call can execute asynchronously in a concurrent

thread
I sync: current thread waits for all locally-spawned functions
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Introducing Cilk

cilk int fib (int n) {

int n1, n2;

if (n < 2) return n;
else {
n1 = spawn fib(n-1);
n2 = spawn fib(n-2);
sync;
return (n1 + n2);

}
}

I Cilk constructs specify logical parallelism in the program
I what computations can be performed in parallel
I not mapping of tasks to processes
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The Cilk Language

I Cilk is a faithful extension of C
I if Cilk keywords are elided the program maintains C

program semantics
I Idiosyncrasies

I spawn keyword can only be applied to a cilk function
I spawn keyword cannot be used in a C function
I cilk function cannot be called with normal C call

conventions
I must be called with a spawn & waited for by a sync
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Cilk Terminology
I Parallel control = spawn, sync, return from spawned

function
I Thread = maximal sequence of instructions not containing

parallel control (task in earlier terminology)

cilk int fib (int n) {

int n1, n2;

if (n < 2) return n;
else {

n1 = spawn fib(n-1);
n2 = spawn fib(n-2);
sync;
return (n1 + n2);

}
}

Thread A:if statement up to first
spawn
Thread B:computation of n-2
before second spawn
Thread C:n1+n2 before return
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Sum of first N integers

#include <stdlib.h>
#include <stdio.h>
#include <cilk.h>
cilk double sum(int L, int U)
{
if (L == U) return L;
else {

double lower, upper;
int mid = (U+L)/2;
lower = spawn sum(L, mid);
upper = spawn sum(mid+ 1, U);
sync;
return (lower + upper);

}
}

cilk int main(int argc, char *argv[])
{

int n;
double result;
n = atoi(argv[1]);
if (n <= 0) {

printf("’n = %d:’"
"n must be positive\n",n);

} else {
result = spawn sum(1, n);
sync;
printf("Result: %lf\n", result);

}
return 0;

}
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Initialize and sum a vector

#include <stdlib.h>
#include <stdio.h>
#include <cilk.h>
int * v = 0;
cilk double sum(int L, int U)
{
if (L == U) return v[L];
else {

double lower, upper;
int mid = (U + L)/2;
lower = spawn sum(L, mid);
upper = spawn sum(mid+ 1, U);
sync;
return (lower + upper);

}
}

cilk void
init(int L, int U)
{

if (L == U) v[L] = L + 1;
else {

int mid = (U + L)/2;
spawn init(L, mid);
spawn init(mid + 1, U);
sync;

}
}
cilk int main(int argc, char *argv[])
{

int n; double result; n = atoi(argv[1]);
v = malloc(sizeof(int) * n);
spawn init(0, n-1); sync;
result = spawn sum(0, n-1); sync;
free(v);
printf("Result: %lf\n", result);
return 0;

}
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Example: N Queens

I Problem
I Place N queens on a N × N chess board
I no 2 queens in same row, column, or diagonal
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N Queens has many possible solutions
I Example: 8 queens

I 92 distinct solutions
I 12 unique solutions, if solutions derived from rotation and

reflection count as equivalent
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N Queens solutions sketch

Sequential recursive enumeration of all solutions

int nqueens(n, j, placement) {
// precondition: placed j queens so far
if (j == n) { print placement; return; }
for (k = 0; k < n; k++)

if putting j+1 queen in kth position in row j+1 is legal
add queen j+1 to placement
nqueens(n, j+1, placement)
remove queen j+1 from placement

}

I Potential for parallelism?
I Other issues to consider?
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N Queens solutions sketch

Sequential recursive enumeration of all solutions

int nqueens(n, j, placement) {
// precondition: placed j queens so far
if (j == n) { print placement; return; }
for (k = 0; k < n; k++)

if putting j+1 queen in kth position in row j+1 is legal
add queen j+1 to placement
nqueens(n, j+1, placement)
remove queen j+1 from placement

}

I Parallelism exists across correct placements
I Adding queens to placements needs synchronization
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N Queens solutions sketch

cilk void nqueens(n, j, placement) {
// precondition: placed j queens so far
if (j == n) { /* found a placement */ process placement; return; }
for (k = 1; k <= n; k++)

if putting j+1 queen in kth position in row j+1 is legal
copy placement into newplacement and add extra queen
spawn nqueens(n,j+1,newplacement)
discard newplacement

sync
}

I Issues regarding placements
I how can we report placements without conflicts?
I what if we only need one valid placement?

I no need to compute all legal placements
I need a way to terminate children that explore alternate

placements
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Approaches to reporting valid placements

I Count valid placements
I Need a protected counter

I Print valid placements
I Need thread-safe library for output

I Collect then print
I Need protected data structure for collection (e.g. array)
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Race Conditions (Data Races)
I Two or more concurrent accesses to the same address
I At least one is a write

cilk int f() {
int x = 0;
spawn g(&x);
spawn g(&x);
sync;
return x;

}

cilk void g (int *p)
{
*p += 1;

}

serial semantics:
f returns 2

parallel semantics:
may return 1 or 2

parallel execution of two instances of g: g,g,
many interleavings possible

one interleaving:
read x
read x
add 1
add 1
write x; x =1
write x; x=1!

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 18 / 67



Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

N Queens solution with races

cilk void nqueens(n, j, placement) {
// precondition: placed j queens so far
if (j == n) { /* found a placement */ process placement; return; }
for (k = 1; k <= n; k++)

if putting j+1 queen in kth position in row j+1 is legal
place j+1 queen in kth position in row j+1 in placement
spawn nqueens(n, j+1,placement)
remove queen in kth position in row j+1 in placement

sync
}
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Problems with races

I Different interleavings produce different results
I Hard to debug programs with races

I Non-deterministic execution, different outputs
I Bugs often appear during production runs
I Races can be benign or malicious!

I Busy-wait on a flag versus updating a shared counter
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Programming with race conditions

I First approach: avoid races completely
I No read-write sharing between tasks
I only share between parent and child tasks in Cilk

I Second approach: use caution and protection
I guard against data corruption

I word read-write operations are atomic in all modern
microprocessors

I definition of word is processor-specific, usually 32-bit or
64-bit

I locks can enforce atomic access to shared addresses
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inlets

I Normal spawn: x = spawn f(...);
I Result of f is copied to caller’s frame

I Problem:
I May need to handle receipt of result immediately after

spawned child returns
I Do not wait until sync point to collect result

I Nqueens: update legal placement upon return of child
I Solution: inlet

I block of code within a function used to process result of
function upon completion

I executes atomically with respect to enclosing function
I Syntax: inlets must appear in declarations
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inlets example

cilk int f(...) {
inlet void my_inlet (ResultType* result, iarg2, ..., iargn) {
// atomically incorporate result into f’s variables
return;

}
my_inlet(spawn g(...), iarg2, ..., iargn);

}
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inlet example

cilk int fib(int n) {
if (n < 2) return n;
else {

int n1, n2;
n1 = spawn fib(n-1);
n2 = spawn fib(n-2);
sync;
return (n1 + n2);

}
}

cilk int fib(int n) {
int result = 0;
inlet void add(int r) {

result += r;
return;

}
if (n < 2) return n;
else {

int n1, n2;
add(spawn fib(n-1));
add(spawn fib(n-2));
sync;
return result;

}
}

I Cilk guarantees that inlet instances are atomic with respect
to each other

I inlet has access to variables of enclosing context
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abort
I Syntax: abort;
I Where: within a cilk procedure p
I Purpose: terminate execution of all of p’s spawned children
I Does this help with an nqueens example for a single

solution?
cilk void nqueens(n,j, placement) {

// precondition: placed j queens so far
if (j == n) return placement
for (k = 0; k < n; k++)

if putting j+1 queen in kth position in row j+1 is legal
copy placement into newplacement and add extra queen
spawn nqueens(n,j+1,newplacement)
discard newplacement

sync;
if some child found a legal result return one, else return null

}

I Need a way to invoke abort when a child yields a solution
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Nqueens revisited

Solution that finishes after first legal result is found
cilk void nqueens(n,j,placement) {

int *result = null
// precondition: placed j queens so far
inlet void doresult(childplacement) {

if (childplacement == null) return; else { result = copy(childplacement); abort; }
}
if (j == n) return placement
for (k = 0; k < n; k++)

if putting j+1 queen in kth position in row j+1 is legal
copy placement into newplacement and add extra queen
doresult(spawn nqueens(n,j+1,...))
discard newplacement

sync
return result

}
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Implicit inlets

I General spawn syntax
I statement: [lhs op] spawn proc(arg1,...,argn);
I lhs op may be omitted

I spawn update(&data)
I if lhs is present

I it must be a variable matching the return type of the function
I op may be:

=, ∗ =, / =,% =,+ =,− =, <<=, >>=,& =,= , | =

I Implicit inlets execute atomically with respect to caller
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Using an implicit inlet

cilk int fib(int n) {
if (n < 2) return n;
else {

int n1, n2;
n1 = spawn fib(n-1);
n2 = spawn fib(n-2);
sync;
return (n1 + n2);

}
}

cilk int fib(int n) {
int result = 0;
if (n < 2) return n;
else {

int n1, n2;
result += spawn fib(n-1));
result += spawn fib(n-2));
sync;
return result;

}
}
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SYNCHED

I Determine if a procedure has any currently outstanding
children without executing sync

I if children have not completed
I SYNCHED=0

I if children have completed
I SYNCHED=1

I Why SYNCHED? Save storage and enhance locality

state *state1, state2;
state1 = (state *) Cilk_alloca(state_size);
spawn foo(state1); /* fill in state1 with data */
if (SYNCHED) state2 = state1;
else state2 = (state *) Cilk_alloca(state_size);
spawn bar(state2);
sync;
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Locks

I Why locks? Guarantee mutual exclusion while accessing
shared state

I Locks are the only way to guarantee atomicity when
concurrent procedure instances operate on shared data

I Library primitives for locking
Cilk_lock_init(Cilk_lockvar k)
Cilk_lock(Cilk_lockvar k)
Cilk_unlock(Cilk_lockvar k)

I Usage examples
I can use a lock to protect I/O from parallel writes in nqueens
I parallel solution could enumerate all solutions in the order

that they are found
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Cilk concurrency implications

I Cilk atomicity guarantees
I all threads of a single procedure operate atomically
I threads of a procedure include

I all code in the procedure body proper, including inlet code
I Guarantee implications

I can coordinate caller and callees using inlets without locks
I Only limited guarantees between descendants or

ancestors
I DAG precedence order maintained and nothing more
I atomicity can not be assumed across different procedures
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Cilk program execution as a DAG

B C A B C

fib(2)

A B C

fib(2)

A

fib(1)

AA

fib(1)

A

fib(1)

A

spawn return

fib(4)

fib(3)

fib(0)

fib(0)

spawn
return

A

A B C
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Thread scheduling in Cilk
I work-sharing: thread scheduled to run in parallel at every

spawn
I benefit: maximizes parallelism
I drawback: cost of setting up new threads to run remotely

(on another processor) is high
I work-stealing: processor looks for work when it becomes

idle
I lazy parallelism: put off extra work for parallel execution

until necessary
I benefits

I executes with precisely as much parallelism as needed
I minimizes the number of (Cilk) threads that must be set up
I runs with the same efficiency as serial program on

uniprocessor
I drawback: work stealing is an expensive operation

requiring synchronization and transfer of state
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Cilk performance metrics

I T1: sequential work; minimum running time on 1 processor
I Tp: minimum running time on p processors
I T∞: minimum running time on infinite number of

processors
I longest path in DAG

I length reflects the cost of computation at nodes along the
path

I known as critical path length
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Work and critical path example

C

fib(2)

A

fib(1)

AA

fib(1)

spawn return

fib(4)

fib(3)

fib(0)

fib(0)

spawn
return

A

A

fib(2)

A

fib(1)

A A

B C

C

CB

B A B
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Lower bounds on execution time

I Tp ≥ T1/P
I P processors can do at most P work in one step
I suppose Tp < T1/P1 then PTP < T1 (a contradiction)

I Tp ≥ T∞
I suppose not: Tp < T∞
I could use P of unlimited processors to reduce T∞

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 36 / 67



Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Greedy scheduling
I Types of schedule steps

I complete step
I at least P threads ready to run
I select any P and run them

I incomplete step
I strictly < P threads ready to run
I greedy scheduler runs them all

I Theorem: On P processors, a greedy scheduler executes
any computation G with work T1 and critical path of length
T∞ in time Tp ≤ T1/P + T∞

I Proof sketch
I only two types of scheduler steps: complete, incomplete
I cannot be more than T1/P complete steps, else work > T1
I every incomplete step reduces remaining critical path

length by 1
I No more than T∞ incomplete steps
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Speedup

I Ts/Tp = speedup
I with P processors, maximum speedup is P (for simplified

model)
I Possibilities

I linear speedup: Ts/Tp = Θ(P)
I sublinear speedup: Ts/Tp = o(P)
I superlinear speedup: Ts/Tp = Ω(P)

I P̄ = T1/T∞, maximum speedup on∞ processors
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Parallel slackness
I critical path overhead = smallest constant c∞ such that:

Tp ≤
T1

P
+ c∞T∞ (1)

Tp ≤
(

T1

T∞P
+ c∞

)
T∞ =

(
P̄
P

+ c∞

)
T∞ (2)

I Parallel slackness assumption

P̄
P

>> c∞ thus
T1

P
>> c∞T∞ (3)

Tp ≈
T1

P
(4)

I critical path overhead has little effect on performance when
sufficient parallel slackness exists
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Work overheads

c1 =
T1

Ts
work overhead (5)

Tp ≤ c1
Ts

P
+ c∞T∞ (6)

Tp ≈ c1
Ts

P
(7)

I Minimizing work overhead c1 at the expense of a larger
critical path overhead c∞ because work overhead has a
more direct impact on performance
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Compilation

Cilk compiler generates two copies of each procedure
I Fast clone: optimized execution on a single processor

I spawning threads is fast

I Slow clone: triggered by work stealing, support for parallel
execution

I handles execution of stolen procedure frames
I supports Cilk’s work stealing scheduler
I steals will be few if there is enough parallel slackness

I speed of slow copy is considered not critical for performance

I Work-first principle: minimize cost in fast clones
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I Nanoscheduler: compiled into cilk program
I executes cilk function and spawns in exactly the same

order as C
I on one core: when no microscheduling needed, same order

as C
I efficient coordination with microscheduler

I Microscheduler:
I schedules procedures across a fixed set of processors
I randomized work-stealing scheduler

I when a processor runs out of work it becomes a thief
I steals from a victim chosen uniformly at random

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 42 / 67



Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Fast clone and nanoscheduler

I Fast clone is never stolen
I converted to slow when

steal occurs
I enables optimizations

I No sync is needed in fast
clone

I No children spawned
I Frame saves state

I PC (entry number)
I live, dirty variables

I push, pop must be fast

int fib (int n) {
fib_frame *f; //frame pointer
f = alloc(sizeof(*f)); //allocate frame
f->sig = fib_sig;

//initialize frame
if (n<2) {

free(f,sizeof(*f)); //free frame
return n;

}
else {

int x, y;
f->entry=1; //save PC
f->n=n;

//save live variables
*T=f;

//store frame pointer
push(); //push frame
x = fib(n-1); //do C call
if (pop(x) == FAILURE)

return 0; //pop frame
free(f,sizeof(*f));
return(x+y);

}
}
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Nanoscheduler overheads

Basis for comparison: serial C
I Allocation and initialization of frame, push onto ’stack’

I a few assembly instructions
I Procedure’s state needs to be saved before each spawn

I entry number, live variables
I Check whether frame is stolen after each spawn

I two reads, compare, branch
I On return, free frame - a few instructions
I One extra variable to hold frame pointer
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Runtime support for scheduling

I Each processor has a ready deque (double ended queue)
I Tail: worker adds or removes procedures (like C call stack)
I Head: thief steals from head of a victim’s deque
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Scheduling using deques

I Deque grows forward
I Stack frame contains local variables for a procedure invocation
I Procedure call→ new frame is pushed onto the bottom of the

deque
I Procedure return→ bottom frame is popped from the deque
I Deque maintains order (synchronizes) between caller and callee
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Cilk cactus stacks

A cactus stack enables sharing of a C function’s local variables
F

A A

B

A

C

A

B

D

A

B

E

A

C

F

void C() { F(); }

void B() { D(); E;}

void A() { B(); C;}

void D() {}

void E() {}

void F() {}

A B C D E

I Pointers can be passed down call chain
I Can pass pointers up only if they point to the heap
I Functions can not return pointers to local variables
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Microscheduler
schedules procedures across a fixed set of processors

I When a processor runs out of work, it becomes a thief
I steals from victim processor chosen uniformly at random

I When it finds victim with frames in its deque
I takes the topmost frame (least recently pushed)
I places frame into its own deque
I gives the corresponding procedure to its own

nanoscheduler
I Microscheduler executes slow clone

I Receives only pointer to frame as argument
I Real args and local state are inside frame

I Restores program counter to proper place using switch
statement

I At a sync must wait for children
I before procedure returns, places return value into frame
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Coordinating thief and worker

I Runtime system uses a lock to manipulate each worker’s
deque

I Can use a lock-free deque data structure instead (Hakan
Sundell, Ph.D. Thesis, Chalmers University)

I Use a software mutex protocol
I Dijkstra’s algorithm
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Simplified scheduling protocol (without
exceptions)

I Shared memory deque
I T: first unused
I H: head
I E: exception

I Work-first
I move costs from worker

to thief
I One worker per deque
I One thief at a time

I enforced by lock

//Worker/Victim
push() {

T++
}

pop() {
T--;
if (H>T) {

T++;
lock(L);
T--;
if (H>T) {
T++;
unlock(L);
return FAILURE;

}
unlock(L);

}
return SUCCESS;

//Thief
steal() {

lock(L);
H++;
if (H>T) {
H--;
unlock(L);
return FAILURE;

}
unlock(L);
return SUCCESS;

}
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Deque pop

I (a) no conflict
I (b) At least one thief or

victim finds (H > T) and
backs up; other succeeds

I (c) Deque is empty, both
threads return
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Cilk++: Differences from Cilk
I cilk main instead of main
I cilk spawn instead of spawn
I No need to mark procedures with the cilk keyword

primitive
I can call procedures directly or use cilk spawn

I clik sync instead of sync
I cilk::mutex instead of Cilk lock variables

I methods: void lock(), void unlock(),
bool try lock()

I No support for abort
I cilk for

I cilk::hyperobject and reducers rather than inlets
I Race detection with cilkscreen
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Cilk++ parallel for: cilk for

cilk_for (T v = begin; v < end; v++) {
statement_1;
statement_2;
...

}

I Loop index v
I type T can be an integer, pointer, or a C++ random access

iterator
I Some restrictions

I must compare v with end value using <,<=, ! =, >=, >
I loop increment must use

++,−−,+ =, v = v + incr , v = v − incr
I if v not a signed integer, loop must count up

I runtime must be able to compute total number of iterations
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Cilk++ parallel for: more restrictions
I No early exit

I no break or return statement inside loop
I no goto in loop unless target is in loop body

I Illegal examples
I cilk for (unsigned int i,j=42; j<1; i++,j++)
{...}

I only one loop variable allowed
I cilk for (unsigned int i=1; i<16; ++i)
i=f();

I can’t modify variable inside loop
I cilk for (unsigned int i=1;i<x;++i) x=f();

I can’t modify loop bounds inside loop
I int i; cilk for(i=0;i<100;i++) {...}

I loop variable must be declared in loop header
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Cilk++ cilk for implementation

I Iterations divided into chunks to be executed serially
I chunk is sequential collection of one or more iterations

I Invisible cilk spawn for each chunk
I Maximum size of chunk is called “grain size”

I grain size too small: spawn overhead reduces performance
I grain size too large: reduces parallelism and hurts load

balancing
I Can override default grain size

I #pragma cilk grainsize = expr
I expression is any C++ expression that yields an integral type

(e.g. int, long) e.g. n/(4*workers)
I pragma should immediately precede cilk for to which it

applies
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Clik++ hyperobjects
I Nonlocal variables are a common programming construct

I nonlocal = declared in a scope outside that where it is used
I global variables = nonlocal variables in outermost scope

I Rewriting parallel applications to avoid them is painful
I Cilk++ hyperobjects support deterministic sharing of

non-local variables
I e.g. output stream, global sum, list, ...
I can be used without significant code restructuring

I Retain serial semantics
I result using reducers is same as serial version
I independent of # processors or scheduling

I Implemented efficiently
I Cilk Arts claim: runtime performance using reducers can be

better than passing variables as arguments
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Motivating example for hyperobjects

Computing cutaway view
Node *target;
std::list<Node *> output_list;
...
void walk(Node *x) {

switch (x->kind) {
case Node::LEAF:

if (target->collides_with(x))
output_list.push_back(x);

break;
case Node::INTERNAL:

for (Node::const_iterator
child = x->begin();
child != x->end();
++child)

walk(child);
break;

}
}
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Cilk++ parallelization of cutaway view

Computing cutaway view in
parallel

Node *target;
std::list<Node *> output_list;
...
void walk(Node *x) {
switch (x->kind) {
case Node::LEAF:

if (target->collides_with(x))
output_list.push_back(x);

break;
case Node::INTERNAL:

cilk_for (Node::const_iterator
child = x->begin();
child != x->end();
++child)

walk(child);
break;

}

Global list access creates races
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First solution: locking

Computing cutaway view in parallel
Node *target;
std::list<Node *> output_list;
cilk::cilk_mutex m;
...
void walk(Node *x) {
switch (x->kind) {
case Node::LEAF:

if (target->collides_with(x))
{ m.lock(); output_list.push_back(x); m.unlock(); }
break;

case Node::INTERNAL:
cilk_for (Node::const_iterator

child = x->begin();
child != x->end();
++child)

walk(child);
break;

}
}

I Add a mutex to
coordinate
accesses to
output list

I Drawback: lock
contention can
hurt parallelism
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Second solution: refactoring the code
Computing cutaway view in parallel

Node *target;
std::list<Node *> output_list;
...
void walk(Node *x, std::list<Node *> o_list) {
switch (x->kind) {
case Node::LEAF:

if (target->collides_with(x))
o_list.push_back(x);

break;
case Node::INTERNAL:

std::vector<std::list<Node *> >
children_list(x.num_children);

cilk_for (Node::const_iterator
child = x->begin();
child != x->end();
++child)

walk(child, children_list[child]);
for (int i=0; i < x.num_children; ++i)

o_list.splice( o_list.end(), children_list[i]);
break;

}

I Have each child
accumulate
results in a
separate list

I Splice them all
together

I Drawback:
development
time, debugging
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Third solution: using Cilk++ hyperobjects

Computing cutaway view in parallel
Node *target;
cilk::hyperobject< cilk::reducer_list_append<Node *>
> output_list;
...
void walk(Node *x) {
switch (x->kind) {
case Node::LEAF:

if (target->collides_with(x))
output_list().push_back(x);

break;
case Node::INTERNAL:

cilk_for (Node::const_iterator
child = x->begin();
child != x->end();
++child)q

walk(child);
break;

}
}

I Resolve data
races without
locking or
refactoring

I Parallel strands
may see different
views of
hyperobject, but
these views are
combined into a
single consistent
view
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Memory management

I Memory management issues
I C/C++ memory management routines are thread safe, but

I optimized for use in single-threaded environment
I uses global lock to provide exclusive access to allocator

state
I false sharing: different workers have different data in the

same cache line
I fragmentation

I Miser memory management
I separate pool per strand
I avoids fragmentation by rounding up to powers of 2 for <

256 bytes
I allocations for > 256 bytes use system allocator
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False sharing
Computing cutaway view in parallel

int* a = new int[n];
cilk_for(int i = 0; i < n; i++) {

// Populate A
a[i] = func(i);

}

I Elements in a are 4 bytes wide
I Cache lines in x86 architectures are typically 64 bytes
I Example contains on races

I result will be correct when loop terminates
I If two processors store in different element locations in the

same cache line, each store on one processor will
invalidate the cache line on the other processor
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Race conditions

I Data race
I two parallel strands access the same data
I at least one access is a write
I no locks held in common

I General determinacy race
I two parallel strands access the same data
I at least one access is a write
I a common lock protects both accesses
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Cilkscreen

// code with a data race
int sum = 0;
cilk_for (int i = 0; i < n; i++) {

sum += a[i];
}

I Detects and reports data races when program terminates
I finds all data races even those by third-party or system

libraries
I Does not report determinacy races

I e.g. two concurrent strands use a lock to access a queue
I enqueue & dequeue operations could occur in different order
I potentially leads to different results
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Race Detection Strategies in Cilkscreen

I Lock covers
I two conflicting accesses to a variable don’t race if some

lock L is held while each of the accesses is performed by a
strand

I Happens-before
I two conflicting accesses do not race if one must happen

before the other
I access A is by a strand X, which precedes the spawn of

strand Y which performs access B
I access is performed by strand X, which precedes a sync that

is an ancestor of strand Y
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