
Introduction
Cilk

Cilk++

CS529 Lecture 04:
Cilk

Dimitrios S. Nikolopoulos

University of Crete and FORTH-ICS

March 7, 2011

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 1 / 67

Introduction
Cilk

Cilk++
Introduction to Cilk

Outline

Introduction
Introduction to Cilk

Cilk
Examples
Race Conditions
Advanced features
Scheduling

Cilk++
New features
cilk for
Hyperobjects

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 2 / 67

Introduction
Cilk

Cilk++
Introduction to Cilk

Sources of material

I Cilk 5.4.6 reference manual and the Cilk project
documentation, http://supertech.csail.mit.edu/cilk/

I Charles Leiserson, Bradley Kuzmaul, Michael Bender, and
Hua-wen Jing. MIT 6.895 lecture notes - Theory of Parallel
Systems.
http://theory.lcs.mit.edu/classes/6.895/fall03/scribe/master.ps

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 3 / 67

http://supertech.csail.mit.edu/cilk/
http://theory.lcs.mit.edu/classes/6.895/fall03/scribe/master.ps

Introduction
Cilk

Cilk++
Introduction to Cilk

Shared-memory architectures

I Hardware model
I Shared global memory
I processors virtually

equidistant from
memory

I Software model
I threads
I shared variables
I communication

I read shared data
(loads)

I write shared data
(stores)

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 4 / 67

Introduction
Cilk

Cilk++
Introduction to Cilk

Introducing Cilk
cilk int fib (int n) {

int n1, n2;

if (n < 2) return n;
else {
n1 = spawn fib(n-1);
n2 = spawn fib(n-2);
sync;
return (n1 + n2);

}
}

I Cilk constructs
I cilk: Cilk function. Without it, functions are standard C
I spawn: call can execute asynchronously in a concurrent

thread
I sync: current thread waits for all locally-spawned functions

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 5 / 67

Introduction
Cilk

Cilk++
Introduction to Cilk

Introducing Cilk

cilk int fib (int n) {

int n1, n2;

if (n < 2) return n;
else {
n1 = spawn fib(n-1);
n2 = spawn fib(n-2);
sync;
return (n1 + n2);

}
}

I Cilk constructs specify logical parallelism in the program
I what computations can be performed in parallel
I not mapping of tasks to processes

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 6 / 67

Introduction
Cilk

Cilk++
Introduction to Cilk

The Cilk Language

I Cilk is a faithful extension of C
I if Cilk keywords are elided the program maintains C

program semantics
I Idiosyncrasies

I spawn keyword can only be applied to a cilk function
I spawn keyword cannot be used in a C function
I cilk function cannot be called with normal C call

conventions
I must be called with a spawn & waited for by a sync

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 7 / 67

Introduction
Cilk

Cilk++
Introduction to Cilk

Cilk Terminology
I Parallel control = spawn, sync, return from spawned

function
I Thread = maximal sequence of instructions not containing

parallel control (task in earlier terminology)

cilk int fib (int n) {

int n1, n2;

if (n < 2) return n;
else {

n1 = spawn fib(n-1);
n2 = spawn fib(n-2);
sync;
return (n1 + n2);

}
}

Thread A:if statement up to first
spawn
Thread B:computation of n-2
before second spawn
Thread C:n1+n2 before return

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 8 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Outline

Introduction
Introduction to Cilk

Cilk
Examples
Race Conditions
Advanced features
Scheduling

Cilk++
New features
cilk for
Hyperobjects

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 9 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Sum of first N integers

#include <stdlib.h>
#include <stdio.h>
#include <cilk.h>
cilk double sum(int L, int U)
{
if (L == U) return L;
else {

double lower, upper;
int mid = (U+L)/2;
lower = spawn sum(L, mid);
upper = spawn sum(mid+ 1, U);
sync;
return (lower + upper);

}
}

cilk int main(int argc, char *argv[])
{

int n;
double result;
n = atoi(argv[1]);
if (n <= 0) {

printf("’n = %d:’"
"n must be positive\n",n);

} else {
result = spawn sum(1, n);
sync;
printf("Result: %lf\n", result);

}
return 0;

}

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 10 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Initialize and sum a vector

#include <stdlib.h>
#include <stdio.h>
#include <cilk.h>
int * v = 0;
cilk double sum(int L, int U)
{
if (L == U) return v[L];
else {

double lower, upper;
int mid = (U + L)/2;
lower = spawn sum(L, mid);
upper = spawn sum(mid+ 1, U);
sync;
return (lower + upper);

}
}

cilk void
init(int L, int U)
{

if (L == U) v[L] = L + 1;
else {

int mid = (U + L)/2;
spawn init(L, mid);
spawn init(mid + 1, U);
sync;

}
}
cilk int main(int argc, char *argv[])
{

int n; double result; n = atoi(argv[1]);
v = malloc(sizeof(int) * n);
spawn init(0, n-1); sync;
result = spawn sum(0, n-1); sync;
free(v);
printf("Result: %lf\n", result);
return 0;

}

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 11 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Example: N Queens

I Problem
I Place N queens on a N × N chess board
I no 2 queens in same row, column, or diagonal

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 12 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

N Queens has many possible solutions
I Example: 8 queens

I 92 distinct solutions
I 12 unique solutions, if solutions derived from rotation and

reflection count as equivalent

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 13 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

N Queens solutions sketch

Sequential recursive enumeration of all solutions

int nqueens(n, j, placement) {
// precondition: placed j queens so far
if (j == n) { print placement; return; }
for (k = 0; k < n; k++)

if putting j+1 queen in kth position in row j+1 is legal
add queen j+1 to placement
nqueens(n, j+1, placement)
remove queen j+1 from placement

}

I Potential for parallelism?
I Other issues to consider?

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 14 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

N Queens solutions sketch

Sequential recursive enumeration of all solutions

int nqueens(n, j, placement) {
// precondition: placed j queens so far
if (j == n) { print placement; return; }
for (k = 0; k < n; k++)

if putting j+1 queen in kth position in row j+1 is legal
add queen j+1 to placement
nqueens(n, j+1, placement)
remove queen j+1 from placement

}

I Parallelism exists across correct placements
I Adding queens to placements needs synchronization

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 15 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

N Queens solutions sketch

cilk void nqueens(n, j, placement) {
// precondition: placed j queens so far
if (j == n) { /* found a placement */ process placement; return; }
for (k = 1; k <= n; k++)

if putting j+1 queen in kth position in row j+1 is legal
copy placement into newplacement and add extra queen
spawn nqueens(n,j+1,newplacement)
discard newplacement

sync
}

I Issues regarding placements
I how can we report placements without conflicts?
I what if we only need one valid placement?

I no need to compute all legal placements
I need a way to terminate children that explore alternate

placements

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 16 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Approaches to reporting valid placements

I Count valid placements
I Need a protected counter

I Print valid placements
I Need thread-safe library for output

I Collect then print
I Need protected data structure for collection (e.g. array)

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 17 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Race Conditions (Data Races)
I Two or more concurrent accesses to the same address
I At least one is a write

cilk int f() {
int x = 0;
spawn g(&x);
spawn g(&x);
sync;
return x;

}

cilk void g (int *p)
{
*p += 1;

}

serial semantics:
f returns 2

parallel semantics:
may return 1 or 2

parallel execution of two instances of g: g,g,
many interleavings possible

one interleaving:
read x
read x
add 1
add 1
write x; x =1
write x; x=1!

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 18 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

N Queens solution with races

cilk void nqueens(n, j, placement) {
// precondition: placed j queens so far
if (j == n) { /* found a placement */ process placement; return; }
for (k = 1; k <= n; k++)

if putting j+1 queen in kth position in row j+1 is legal
place j+1 queen in kth position in row j+1 in placement
spawn nqueens(n, j+1,placement)
remove queen in kth position in row j+1 in placement

sync
}

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 19 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Problems with races

I Different interleavings produce different results
I Hard to debug programs with races

I Non-deterministic execution, different outputs
I Bugs often appear during production runs
I Races can be benign or malicious!

I Busy-wait on a flag versus updating a shared counter

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 20 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Programming with race conditions

I First approach: avoid races completely
I No read-write sharing between tasks
I only share between parent and child tasks in Cilk

I Second approach: use caution and protection
I guard against data corruption

I word read-write operations are atomic in all modern
microprocessors

I definition of word is processor-specific, usually 32-bit or
64-bit

I locks can enforce atomic access to shared addresses

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 21 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

inlets

I Normal spawn: x = spawn f(...);
I Result of f is copied to caller’s frame

I Problem:
I May need to handle receipt of result immediately after

spawned child returns
I Do not wait until sync point to collect result

I Nqueens: update legal placement upon return of child
I Solution: inlet

I block of code within a function used to process result of
function upon completion

I executes atomically with respect to enclosing function
I Syntax: inlets must appear in declarations

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 22 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

inlets example

cilk int f(...) {
inlet void my_inlet (ResultType* result, iarg2, ..., iargn) {
// atomically incorporate result into f’s variables
return;

}
my_inlet(spawn g(...), iarg2, ..., iargn);

}

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 23 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

inlet example

cilk int fib(int n) {
if (n < 2) return n;
else {

int n1, n2;
n1 = spawn fib(n-1);
n2 = spawn fib(n-2);
sync;
return (n1 + n2);

}
}

cilk int fib(int n) {
int result = 0;
inlet void add(int r) {

result += r;
return;

}
if (n < 2) return n;
else {

int n1, n2;
add(spawn fib(n-1));
add(spawn fib(n-2));
sync;
return result;

}
}

I Cilk guarantees that inlet instances are atomic with respect
to each other

I inlet has access to variables of enclosing context

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 24 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

abort
I Syntax: abort;
I Where: within a cilk procedure p
I Purpose: terminate execution of all of p’s spawned children
I Does this help with an nqueens example for a single

solution?
cilk void nqueens(n,j, placement) {

// precondition: placed j queens so far
if (j == n) return placement
for (k = 0; k < n; k++)

if putting j+1 queen in kth position in row j+1 is legal
copy placement into newplacement and add extra queen
spawn nqueens(n,j+1,newplacement)
discard newplacement

sync;
if some child found a legal result return one, else return null

}

I Need a way to invoke abort when a child yields a solution

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 25 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Nqueens revisited

Solution that finishes after first legal result is found
cilk void nqueens(n,j,placement) {

int *result = null
// precondition: placed j queens so far
inlet void doresult(childplacement) {

if (childplacement == null) return; else { result = copy(childplacement); abort; }
}
if (j == n) return placement
for (k = 0; k < n; k++)

if putting j+1 queen in kth position in row j+1 is legal
copy placement into newplacement and add extra queen
doresult(spawn nqueens(n,j+1,...))
discard newplacement

sync
return result

}

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 26 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Implicit inlets

I General spawn syntax
I statement: [lhs op] spawn proc(arg1,...,argn);
I lhs op may be omitted

I spawn update(&data)
I if lhs is present

I it must be a variable matching the return type of the function
I op may be:

=, ∗ =, / =,% =,+ =,− =, <<=, >>=,& =,= , | =

I Implicit inlets execute atomically with respect to caller

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 27 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Using an implicit inlet

cilk int fib(int n) {
if (n < 2) return n;
else {

int n1, n2;
n1 = spawn fib(n-1);
n2 = spawn fib(n-2);
sync;
return (n1 + n2);

}
}

cilk int fib(int n) {
int result = 0;
if (n < 2) return n;
else {

int n1, n2;
result += spawn fib(n-1));
result += spawn fib(n-2));
sync;
return result;

}
}

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 28 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

SYNCHED

I Determine if a procedure has any currently outstanding
children without executing sync

I if children have not completed
I SYNCHED=0

I if children have completed
I SYNCHED=1

I Why SYNCHED? Save storage and enhance locality

state *state1, state2;
state1 = (state *) Cilk_alloca(state_size);
spawn foo(state1); /* fill in state1 with data */
if (SYNCHED) state2 = state1;
else state2 = (state *) Cilk_alloca(state_size);
spawn bar(state2);
sync;

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 29 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Locks

I Why locks? Guarantee mutual exclusion while accessing
shared state

I Locks are the only way to guarantee atomicity when
concurrent procedure instances operate on shared data

I Library primitives for locking
Cilk_lock_init(Cilk_lockvar k)
Cilk_lock(Cilk_lockvar k)
Cilk_unlock(Cilk_lockvar k)

I Usage examples
I can use a lock to protect I/O from parallel writes in nqueens
I parallel solution could enumerate all solutions in the order

that they are found

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 30 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Cilk concurrency implications

I Cilk atomicity guarantees
I all threads of a single procedure operate atomically
I threads of a procedure include

I all code in the procedure body proper, including inlet code
I Guarantee implications

I can coordinate caller and callees using inlets without locks
I Only limited guarantees between descendants or

ancestors
I DAG precedence order maintained and nothing more
I atomicity can not be assumed across different procedures

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 31 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Cilk program execution as a DAG

B C A B C

fib(2)

A B C

fib(2)

A

fib(1)

AA

fib(1)

A

fib(1)

A

spawn return

fib(4)

fib(3)

fib(0)

fib(0)

spawn
return

A

A B C

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 32 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Thread scheduling in Cilk
I work-sharing: thread scheduled to run in parallel at every

spawn
I benefit: maximizes parallelism
I drawback: cost of setting up new threads to run remotely

(on another processor) is high
I work-stealing: processor looks for work when it becomes

idle
I lazy parallelism: put off extra work for parallel execution

until necessary
I benefits

I executes with precisely as much parallelism as needed
I minimizes the number of (Cilk) threads that must be set up
I runs with the same efficiency as serial program on

uniprocessor
I drawback: work stealing is an expensive operation

requiring synchronization and transfer of state

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 33 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Cilk performance metrics

I T1: sequential work; minimum running time on 1 processor
I Tp: minimum running time on p processors
I T∞: minimum running time on infinite number of

processors
I longest path in DAG

I length reflects the cost of computation at nodes along the
path

I known as critical path length

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 34 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Work and critical path example

C

fib(2)

A

fib(1)

AA

fib(1)

spawn return

fib(4)

fib(3)

fib(0)

fib(0)

spawn
return

A

A

fib(2)

A

fib(1)

A A

B C

C

CB

B A B

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 35 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Lower bounds on execution time

I Tp ≥ T1/P
I P processors can do at most P work in one step
I suppose Tp < T1/P1 then PTP < T1 (a contradiction)

I Tp ≥ T∞
I suppose not: Tp < T∞
I could use P of unlimited processors to reduce T∞

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 36 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Greedy scheduling
I Types of schedule steps

I complete step
I at least P threads ready to run
I select any P and run them

I incomplete step
I strictly < P threads ready to run
I greedy scheduler runs them all

I Theorem: On P processors, a greedy scheduler executes
any computation G with work T1 and critical path of length
T∞ in time Tp ≤ T1/P + T∞

I Proof sketch
I only two types of scheduler steps: complete, incomplete
I cannot be more than T1/P complete steps, else work > T1
I every incomplete step reduces remaining critical path

length by 1
I No more than T∞ incomplete steps

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 37 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Speedup

I Ts/Tp = speedup
I with P processors, maximum speedup is P (for simplified

model)
I Possibilities

I linear speedup: Ts/Tp = Θ(P)
I sublinear speedup: Ts/Tp = o(P)
I superlinear speedup: Ts/Tp = Ω(P)

I P̄ = T1/T∞, maximum speedup on∞ processors

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 38 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Parallel slackness
I critical path overhead = smallest constant c∞ such that:

Tp ≤
T1

P
+ c∞T∞ (1)

Tp ≤
(

T1

T∞P
+ c∞

)
T∞ =

(
P̄
P

+ c∞

)
T∞ (2)

I Parallel slackness assumption

P̄
P

>> c∞ thus
T1

P
>> c∞T∞ (3)

Tp ≈
T1

P
(4)

I critical path overhead has little effect on performance when
sufficient parallel slackness exists

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 39 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Work overheads

c1 =
T1

Ts
work overhead (5)

Tp ≤ c1
Ts

P
+ c∞T∞ (6)

Tp ≈ c1
Ts

P
(7)

I Minimizing work overhead c1 at the expense of a larger
critical path overhead c∞ because work overhead has a
more direct impact on performance

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 40 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Compilation

Cilk compiler generates two copies of each procedure
I Fast clone: optimized execution on a single processor

I spawning threads is fast

I Slow clone: triggered by work stealing, support for parallel
execution

I handles execution of stolen procedure frames
I supports Cilk’s work stealing scheduler
I steals will be few if there is enough parallel slackness

I speed of slow copy is considered not critical for performance

I Work-first principle: minimize cost in fast clones

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 41 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

I Nanoscheduler: compiled into cilk program
I executes cilk function and spawns in exactly the same

order as C
I on one core: when no microscheduling needed, same order

as C
I efficient coordination with microscheduler

I Microscheduler:
I schedules procedures across a fixed set of processors
I randomized work-stealing scheduler

I when a processor runs out of work it becomes a thief
I steals from a victim chosen uniformly at random

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 42 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Fast clone and nanoscheduler

I Fast clone is never stolen
I converted to slow when

steal occurs
I enables optimizations

I No sync is needed in fast
clone

I No children spawned
I Frame saves state

I PC (entry number)
I live, dirty variables

I push, pop must be fast

int fib (int n) {
fib_frame *f; //frame pointer
f = alloc(sizeof(*f)); //allocate frame
f->sig = fib_sig;

//initialize frame
if (n<2) {

free(f,sizeof(*f)); //free frame
return n;

}
else {

int x, y;
f->entry=1; //save PC
f->n=n;

//save live variables
*T=f;

//store frame pointer
push(); //push frame
x = fib(n-1); //do C call
if (pop(x) == FAILURE)

return 0; //pop frame
free(f,sizeof(*f));
return(x+y);

}
}

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 43 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Nanoscheduler overheads

Basis for comparison: serial C
I Allocation and initialization of frame, push onto ’stack’

I a few assembly instructions
I Procedure’s state needs to be saved before each spawn

I entry number, live variables
I Check whether frame is stolen after each spawn

I two reads, compare, branch
I On return, free frame - a few instructions
I One extra variable to hold frame pointer

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 44 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Runtime support for scheduling

I Each processor has a ready deque (double ended queue)
I Tail: worker adds or removes procedures (like C call stack)
I Head: thief steals from head of a victim’s deque

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 45 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Scheduling using deques

I Deque grows forward
I Stack frame contains local variables for a procedure invocation
I Procedure call→ new frame is pushed onto the bottom of the

deque
I Procedure return→ bottom frame is popped from the deque
I Deque maintains order (synchronizes) between caller and callee

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 46 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Cilk cactus stacks

A cactus stack enables sharing of a C function’s local variables
F

A A

B

A

C

A

B

D

A

B

E

A

C

F

void C() { F(); }

void B() { D(); E;}

void A() { B(); C;}

void D() {}

void E() {}

void F() {}

A B C D E

I Pointers can be passed down call chain
I Can pass pointers up only if they point to the heap
I Functions can not return pointers to local variables

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 47 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Microscheduler
schedules procedures across a fixed set of processors

I When a processor runs out of work, it becomes a thief
I steals from victim processor chosen uniformly at random

I When it finds victim with frames in its deque
I takes the topmost frame (least recently pushed)
I places frame into its own deque
I gives the corresponding procedure to its own

nanoscheduler
I Microscheduler executes slow clone

I Receives only pointer to frame as argument
I Real args and local state are inside frame

I Restores program counter to proper place using switch
statement

I At a sync must wait for children
I before procedure returns, places return value into frame

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 48 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Coordinating thief and worker

I Runtime system uses a lock to manipulate each worker’s
deque

I Can use a lock-free deque data structure instead (Hakan
Sundell, Ph.D. Thesis, Chalmers University)

I Use a software mutex protocol
I Dijkstra’s algorithm

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 49 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Simplified scheduling protocol (without
exceptions)

I Shared memory deque
I T: first unused
I H: head
I E: exception

I Work-first
I move costs from worker

to thief
I One worker per deque
I One thief at a time

I enforced by lock

//Worker/Victim
push() {

T++
}

pop() {
T--;
if (H>T) {

T++;
lock(L);
T--;
if (H>T) {
T++;
unlock(L);
return FAILURE;

}
unlock(L);

}
return SUCCESS;

//Thief
steal() {

lock(L);
H++;
if (H>T) {
H--;
unlock(L);
return FAILURE;

}
unlock(L);
return SUCCESS;

}

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 50 / 67

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Deque pop

I (a) no conflict
I (b) At least one thief or

victim finds (H > T) and
backs up; other succeeds

I (c) Deque is empty, both
threads return

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 51 / 67

Introduction
Cilk

Cilk++

New features
cilk for
Hyperobjects

Outline

Introduction
Introduction to Cilk

Cilk
Examples
Race Conditions
Advanced features
Scheduling

Cilk++
New features
cilk for
Hyperobjects

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 52 / 67

Introduction
Cilk

Cilk++

New features
cilk for
Hyperobjects

Cilk++: Differences from Cilk
I cilk main instead of main
I cilk spawn instead of spawn
I No need to mark procedures with the cilk keyword

primitive
I can call procedures directly or use cilk spawn

I clik sync instead of sync
I cilk::mutex instead of Cilk lock variables

I methods: void lock(), void unlock(),
bool try lock()

I No support for abort
I cilk for

I cilk::hyperobject and reducers rather than inlets
I Race detection with cilkscreen

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 53 / 67

Introduction
Cilk

Cilk++

New features
cilk for
Hyperobjects

Cilk++ parallel for: cilk for

cilk_for (T v = begin; v < end; v++) {
statement_1;
statement_2;
...

}

I Loop index v
I type T can be an integer, pointer, or a C++ random access

iterator
I Some restrictions

I must compare v with end value using <,<=, ! =, >=, >
I loop increment must use

++,−−,+ =, v = v + incr , v = v − incr
I if v not a signed integer, loop must count up

I runtime must be able to compute total number of iterations

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 54 / 67

Introduction
Cilk

Cilk++

New features
cilk for
Hyperobjects

Cilk++ parallel for: more restrictions
I No early exit

I no break or return statement inside loop
I no goto in loop unless target is in loop body

I Illegal examples
I cilk for (unsigned int i,j=42; j<1; i++,j++)
{...}

I only one loop variable allowed
I cilk for (unsigned int i=1; i<16; ++i)
i=f();

I can’t modify variable inside loop
I cilk for (unsigned int i=1;i<x;++i) x=f();

I can’t modify loop bounds inside loop
I int i; cilk for(i=0;i<100;i++) {...}

I loop variable must be declared in loop header

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 55 / 67

Introduction
Cilk

Cilk++

New features
cilk for
Hyperobjects

Cilk++ cilk for implementation

I Iterations divided into chunks to be executed serially
I chunk is sequential collection of one or more iterations

I Invisible cilk spawn for each chunk
I Maximum size of chunk is called “grain size”

I grain size too small: spawn overhead reduces performance
I grain size too large: reduces parallelism and hurts load

balancing
I Can override default grain size

I #pragma cilk grainsize = expr
I expression is any C++ expression that yields an integral type

(e.g. int, long) e.g. n/(4*workers)
I pragma should immediately precede cilk for to which it

applies

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 56 / 67

Introduction
Cilk

Cilk++

New features
cilk for
Hyperobjects

Clik++ hyperobjects
I Nonlocal variables are a common programming construct

I nonlocal = declared in a scope outside that where it is used
I global variables = nonlocal variables in outermost scope

I Rewriting parallel applications to avoid them is painful
I Cilk++ hyperobjects support deterministic sharing of

non-local variables
I e.g. output stream, global sum, list, ...
I can be used without significant code restructuring

I Retain serial semantics
I result using reducers is same as serial version
I independent of # processors or scheduling

I Implemented efficiently
I Cilk Arts claim: runtime performance using reducers can be

better than passing variables as arguments

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 57 / 67

Introduction
Cilk

Cilk++

New features
cilk for
Hyperobjects

Motivating example for hyperobjects

Computing cutaway view
Node *target;
std::list<Node *> output_list;
...
void walk(Node *x) {

switch (x->kind) {
case Node::LEAF:

if (target->collides_with(x))
output_list.push_back(x);

break;
case Node::INTERNAL:

for (Node::const_iterator
child = x->begin();
child != x->end();
++child)

walk(child);
break;

}
}

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 58 / 67

Introduction
Cilk

Cilk++

New features
cilk for
Hyperobjects

Cilk++ parallelization of cutaway view

Computing cutaway view in
parallel

Node *target;
std::list<Node *> output_list;
...
void walk(Node *x) {
switch (x->kind) {
case Node::LEAF:

if (target->collides_with(x))
output_list.push_back(x);

break;
case Node::INTERNAL:

cilk_for (Node::const_iterator
child = x->begin();
child != x->end();
++child)

walk(child);
break;

}

Global list access creates races

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 59 / 67

Introduction
Cilk

Cilk++

New features
cilk for
Hyperobjects

First solution: locking

Computing cutaway view in parallel
Node *target;
std::list<Node *> output_list;
cilk::cilk_mutex m;
...
void walk(Node *x) {
switch (x->kind) {
case Node::LEAF:

if (target->collides_with(x))
{ m.lock(); output_list.push_back(x); m.unlock(); }
break;

case Node::INTERNAL:
cilk_for (Node::const_iterator

child = x->begin();
child != x->end();
++child)

walk(child);
break;

}
}

I Add a mutex to
coordinate
accesses to
output list

I Drawback: lock
contention can
hurt parallelism

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 60 / 67

Introduction
Cilk

Cilk++

New features
cilk for
Hyperobjects

Second solution: refactoring the code
Computing cutaway view in parallel

Node *target;
std::list<Node *> output_list;
...
void walk(Node *x, std::list<Node *> o_list) {
switch (x->kind) {
case Node::LEAF:

if (target->collides_with(x))
o_list.push_back(x);

break;
case Node::INTERNAL:

std::vector<std::list<Node *> >
children_list(x.num_children);

cilk_for (Node::const_iterator
child = x->begin();
child != x->end();
++child)

walk(child, children_list[child]);
for (int i=0; i < x.num_children; ++i)

o_list.splice(o_list.end(), children_list[i]);
break;

}

I Have each child
accumulate
results in a
separate list

I Splice them all
together

I Drawback:
development
time, debugging

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 61 / 67

Introduction
Cilk

Cilk++

New features
cilk for
Hyperobjects

Third solution: using Cilk++ hyperobjects

Computing cutaway view in parallel
Node *target;
cilk::hyperobject< cilk::reducer_list_append<Node *>
> output_list;
...
void walk(Node *x) {
switch (x->kind) {
case Node::LEAF:

if (target->collides_with(x))
output_list().push_back(x);

break;
case Node::INTERNAL:

cilk_for (Node::const_iterator
child = x->begin();
child != x->end();
++child)q

walk(child);
break;

}
}

I Resolve data
races without
locking or
refactoring

I Parallel strands
may see different
views of
hyperobject, but
these views are
combined into a
single consistent
view

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 62 / 67

Introduction
Cilk

Cilk++

New features
cilk for
Hyperobjects

Memory management

I Memory management issues
I C/C++ memory management routines are thread safe, but

I optimized for use in single-threaded environment
I uses global lock to provide exclusive access to allocator

state
I false sharing: different workers have different data in the

same cache line
I fragmentation

I Miser memory management
I separate pool per strand
I avoids fragmentation by rounding up to powers of 2 for <

256 bytes
I allocations for > 256 bytes use system allocator

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 63 / 67

Introduction
Cilk

Cilk++

New features
cilk for
Hyperobjects

False sharing
Computing cutaway view in parallel

int* a = new int[n];
cilk_for(int i = 0; i < n; i++) {

// Populate A
a[i] = func(i);

}

I Elements in a are 4 bytes wide
I Cache lines in x86 architectures are typically 64 bytes
I Example contains on races

I result will be correct when loop terminates
I If two processors store in different element locations in the

same cache line, each store on one processor will
invalidate the cache line on the other processor

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 64 / 67

Introduction
Cilk

Cilk++

New features
cilk for
Hyperobjects

Race conditions

I Data race
I two parallel strands access the same data
I at least one access is a write
I no locks held in common

I General determinacy race
I two parallel strands access the same data
I at least one access is a write
I a common lock protects both accesses

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 65 / 67

Introduction
Cilk

Cilk++

New features
cilk for
Hyperobjects

Cilkscreen

// code with a data race
int sum = 0;
cilk_for (int i = 0; i < n; i++) {

sum += a[i];
}

I Detects and reports data races when program terminates
I finds all data races even those by third-party or system

libraries
I Does not report determinacy races

I e.g. two concurrent strands use a lock to access a queue
I enqueue & dequeue operations could occur in different order
I potentially leads to different results

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 66 / 67

Introduction
Cilk

Cilk++

New features
cilk for
Hyperobjects

Race Detection Strategies in Cilkscreen

I Lock covers
I two conflicting accesses to a variable don’t race if some

lock L is held while each of the accesses is performed by a
strand

I Happens-before
I two conflicting accesses do not race if one must happen

before the other
I access A is by a strand X, which precedes the spawn of

strand Y which performs access B
I access is performed by strand X, which precedes a sync that

is an ancestor of strand Y

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 67 / 67

	Introduction
	Introduction to Cilk

	Cilk
	Examples
	Race Conditions
	Advanced features
	Scheduling

	Cilk++
	New features
	cilk_for
	Hyperobjects

