
Lecture 01: Introduction

Computer Science Department, University of Crete

Multicore Processor Programming

Pratikakis (CSD) Introduction CS529, 2017 1 / 20



Course Objectives

Train students on parallel programming
▶ Use 7 parallel programming models at various levels of
abstraction

▶ Use 3 parallel multi-core architectures
Train students on reading, discussing, criticizing research
papers

Pratikakis (CSD) Introduction CS529, 2017 2 / 20



Course Logistics
Graduate course with research training component

▶ Discuss research papers in class on a weekly basis (30% of
class grade)

⋆ Read papers, write summary and review, email to instructor
before the class

⋆ Papers for each class on website
⋆ Paper for next time: Stencil Computation Optimization and
Autotuning on State-of-the-Art Multicore Architectures
(https:
//crd.lbl.gov/assets/pubs_presos/sc08-stencil.pdf)

▶ Perform 4 programming assignments using 4 programming
models to implement parallel applications of varying
degrees of complexity (30% of class grade)

⋆ First assignment will be online by next class: Posix and Java
Threads

⋆ 1-2 weeks per assignment
⋆ Homework assignments are personal
⋆ Academic integrity: do not share code or discuss details
⋆ Discussing speedup and performance (and competing on
them) is OK

▶ Paper presentation (10% of class grade)
▶ Final exam (30% of class grade)Pratikakis (CSD) Introduction CS529, 2017 3 / 20

https://crd.lbl.gov/assets/pubs_presos/sc08-stencil.pdf
https://crd.lbl.gov/assets/pubs_presos/sc08-stencil.pdf


Course Logistics

Course web page
▶ http://www.csd.uoc.gr/~hy529
▶ Online soon

Subscribe to the course mailing list by sending an e-mail
to majordomo@csd.uoc.gr with body:

▶ subscribe hy529-list

Coordinate with instructor in first week of class to get
accounts for accessing a multi-core system on which you
will perform your class projects

Pratikakis (CSD) Introduction CS529, 2017 4 / 20

http://www.csd.uoc.gr/~hy529


Moore’s law
1965:
“The complexity for minimum component costs has
increased at a rate of roughly a factor of two per year
…Certainly over the short term this rate can be expected
to continue, if not to increase. Over the longer term, the
rate of increase is a bit more uncertain, although there is
no reason to believe it will not remain nearly constant for
at least 10 years.”
1975: New projection: doubling every 2 years
2013: Doubling every 3 years, expected to slow down
more
In 2003, Intel predicted the end by 2020

▶ Limit estimate: 16 nanometer process, 5 nanometer gates
▶ Quantum tunneling effects at smaller sizes
▶ Predictions are hard: “the end is in 10 years”, 30 years now

Pratikakis (CSD) Introduction CS529, 2017 5 / 20



Moore’s law in a picture

Chart originally from “The Free Lunch is Over” by H. Sutter.

Pratikakis (CSD) Introduction CS529, 2017 6 / 20



Parallel computing for performance
Moore’s law: The number of components in an integrated
circuit doubles every X months. X = 12, . . ., 24, . . .
Until recently, performance through frequency

▶ Higher frequencies gave performance “for free”
▶ Transistor size limited by speed of light given frequency

Power wall: frequency is so high and transistors so small
that they melt

▶ Frequency stopped increasing
▶ Need for computing power keeps increasing
▶ Industry solution: More transistors, same frequency, more
proceessor cores

New interpretation of Moore’s Law
▶ The number of cores doubles with every technology
generation

Shift to parallel computing changes fundamentally the
way we program, debug, and analyze the performance of
computers
Pratikakis (CSD) Introduction CS529, 2017 7 / 20



Parallel computing then and now
Parallel computing is an old idea

▶ Not very widespread in the past
▶ Cost/Performance ratio was better for sequential than
parallel machines

Cost/performance ratio more favorable now:
▶ Can pack multiple cores on the same chip
▶ Graceful technology scaling through replication

Parallel computing may fail again if we do not find a way
to exploit parallelism in software

▶ Challenges of parallelizing software:
⋆ Understanding data dependencies
⋆ Synchronize accesses to shared data
⋆ Minimize communication, balance load
⋆ Difficult for humans to think about all possible executions

▶ Often optimal parallel algorithm not similar to equivalent
sequential

⋆ May need complete redesign

Pratikakis (CSD) Introduction CS529, 2017 8 / 20



New kinds of parallelism

100s of cores per chip already available
▶ Single-board GPU systems with up to 1600 NVIDIA cores
▶ 50+ general purpose cores in Intel Xeon Phi

Vendors integrate up to 8 chips in a single node, 64-core
x86 machines available now
Computing systems that benefit:

▶ Datacenters performing big data analytics
▶ Cloud installations offering virtualized services
▶ Supercomputers running heavy HPC applications on large
data sets

▶ Mobile devices that tend to replace PCs as general purpose
personal computers

▶ Embedded systems that perform real-time intensive data
processing

Pratikakis (CSD) Introduction CS529, 2017 9 / 20



Application-driven parallelism: Then
Parallel computing has been driven by HPC domain in the
past

▶ Scientific applications that could afford high cost/benefit of
old parallel architectures

▶ Dense arithmetic, physics, military, oil industry, stock
market

Dominant programming model: message passing
▶ Processors exchange data and synchronize by explicit
messages

▶ Portable, optimizable by experts
▶ Tedious to write, debug, requires experts
▶ High cost of programmers still less than higher costs of
hardware

Many alternatives proposed
▶ Parallel languages, libraries of patterns, auto-parallelizing
compilers

▶ Easier to program, but less performance compared to
message passing written by experts

▶ Message passing still dominant
Pratikakis (CSD) Introduction CS529, 2017 10 / 20



Application-driven parallelism: Now

Parallel computing hardware costs much less
▶ Parallel computing synonym to computing
▶ Parallel hardware everywhere, mobile parallel computers
▶ Needs of society at large, not just few specific applications

⋆ Irregular algorithms, unstructured data, arbitrary applications
▶ New important factors: power budget, space constraints,
latency, real-time

Programmer cost becomes important
▶ High cost of message-passing experts
▶ Programmer productivity more important that small
sacrifice in performance

Pratikakis (CSD) Introduction CS529, 2017 11 / 20



Technology-driven parallelism

Many cores per chip, per device
High speed I/O links, network links

▶ 10Gbps current, 40Gbps emerging, 100Gbps future
▶ Network speeds make packet processing processor-bound
▶ May need many cores to sustain throughput

Faster storage
▶ Flash replacing or complementing disks, order of
magnitude faster

▶ Phase change RAM as main memory

Pratikakis (CSD) Introduction CS529, 2017 12 / 20



Parallel architectures: CMP
Single chip multi-core processor, up to 8 cores

▶ Typical general-purpose architecture: Desktop, laptop
▶ Private L2, shared L3 cache memories
▶ Hardware cache-coherence

Figure source: Wikipedia.

Pratikakis (CSD) Introduction CS529, 2017 13 / 20



Parallel architectures: CC-NUMA
Cache Coherent, Non-Uniform Memory Access architecture
(CC-NUMA)

▶ Multiple multicore processors per package or per board
▶ Multiple memory controllers, memory banks
▶ Coherence traffic accross motherboard
▶ Not all memory accesses cost the same

Pratikakis (CSD) Introduction CS529, 2017 14 / 20



Parallel architectures: GPU
Massively parallel processors

▶ Simple scalar cores
▶ Software-managed shared memory
▶ Groups/tiles of cores running the same code, often lock-step

Figure source: rutgers.edu

Pratikakis (CSD) Introduction CS529, 2017 15 / 20



Writing Parallel Software is Hard

Finding parallelism is hard
Selecting proper granularity is hard
Locality effects are more important, may vary a lot
between architectures
Load balancing is hard
Coordination and synchronization are hard
Performance modeling is different for each architecture
Testing and debugging are hard

Parallel programming is even harder than sequential
programming

Pratikakis (CSD) Introduction CS529, 2017 16 / 20



Find enough parallelism: Amdahl’s Law
Suppose 90% of the application is parallel, the rest 10% is
sequential
Amdahl’s Law says:

▶ If s is the fraction of total work done sequentially and 1− s
is parallelizable

▶ And P is the number of processors
▶ Then the maximum speedup is

Speedup(P) = Time(1)
Time(P)

≤ 1

(s+ (1−s)
P )

≤ 1

s

Even we execute the parallel part in zero time with infinite
cores, the sequential part will limit performance
Pratikakis (CSD) Introduction CS529, 2017 17 / 20



Overheads and Granularity
Given enough parallel work, overhead is the biggest
problem in getting large speedups
Overhead may be

▶ Cost of starting parallelism: create thread, spawn task, fork
process, etc.

▶ Cost of communication of shared data: send message,
invalidate and transfer cache line, etc.

▶ Cost of synchronization: acquiring a lock costs even when it
succeeds, blocking or spinning costs, etc.

▶ Cost of unnecessary computation: redundant
recomputation of data, computation of parallelism,
computation cost of load rebalancing, etc.

Each can be up to milliseconds
▶ Waiting for a lock in Pthreads may yield to the OS!

Tradeoff in the granularity of work:
▶ Create enough parallel work for all cores, load balancing –
finer granularity

▶ But, fine granularity of work adds overhead, slows down the
program

Pratikakis (CSD) Introduction CS529, 2017 18 / 20



Locality effects magnified by parallelism

Large memories are slow, small memories are faster
The more cores, the larger the memory hierarchy
But, more available fast caches
Not every memory access costs the same
Not only cache misses, but also accesses to “remote” data
are more expensive
Programs should work mostly with data in the local cache
Controlling what is “local” depends on other cores too!

▶ E.g., a write by a remote core invalidates data from the
local cache

Pratikakis (CSD) Introduction CS529, 2017 19 / 20



Load balance

Load imbalance: some cores have nothing to do
▶ Insufficient parallelism
▶ Unequal work

Predicting “equal work” may be difficult
▶ Computations on trees or graphs
▶ Computations that adapt granularity depending on data
(e.g., galaxy simulation)

▶ Unstructured problems
Parallel algorithms need to balance work load among
cores

▶ May require additional computation, restructuring

Pratikakis (CSD) Introduction CS529, 2017 20 / 20


	Logistics
	Introduction
	Hardware
	Parallel Software

