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Lectures 20, 21: Axiomatic Semantics

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Static Analysis

Based on slides by George Necula
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Remember Operational Semantics

We have a functional language with references
We have defined the semantics of the language
Operational semantics

▶ Relatively simple (related to state machines)
▶ Not compositional (due to loops and recursive calls)
▶ Adequate guide for implementing an interpreter

Pratikakis (CSD) Axiomatic Semantics CS490.40, 2015-2016 2 / 39



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

More kinds of semantics

There is also denotational semantics
▶ Each program has a meaning in the form of a mathematical object
▶ Compositional
▶ More complex formalism (depending on the mathematics used)
▶ Closer to a compiler from source to math

Neither is good for showing program correctness
▶ Operational semantics requires running the code
▶ Denotational semantics requires complex calculations
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Axiomatic semantics

An axiomatic semantics consists of
▶ A language for making assertions about programs
▶ Rules for establishing when assertions hold

Typical assertions
▶ This program terminates
▶ If this program terminates, the variables x and y have the same value

throughout the execution of the program
▶ The array accesses are within the array bounds

Some typical languages of assertions
▶ First-order logic
▶ Other logics (temporal, linear)
▶ Special-purpose specification languages (Z, Larch, JML)
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History

Program verification is almost as old as programming (e.g., “Checking
a Large Routine”, Turing 1949)
In the late ’60s, Floyd had rules for flow-charts and Hoare had rules
for structured languages
Since then, there have been axiomatic semantics for substantial
languages, and many applications

▶ Program verifiers (70s and 80s)
▶ PREfix: Symbolic execution for bug hunting (WinXP)
▶ Software validation tools
▶ Malware detection
▶ Automatic test generation
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Hoare said

“Thus the practice of proving programs would seem to lead to
solution of three of the most pressing problems in software and
programming, namely, reliability, documentation, and
compatibility. However, program proving, certainly at present,
will be difficult even for programmers of high caliber; and may be
applicable only to quite simple program designs.”

–C.A.R Hoare,
“An Axiomatic Basis for Computer Programming”, 1969
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Dijkstra said

“Program testing can be used to show the presence of bugs, but
never to show their absence!”
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Hoare also said

“It has been found a serious problem to define these languages
[ALGOL, FORTRAN, COBOL] with sufficient rigor to ensure
compatibility among all implementations. …one way to achieve
this would be to insist that all implementations of the language
shall satisfy the axioms and rules of inference which underlie
proofs of properties of programs expressed in the language. In
effect, this is equivalent to accepting the axioms and rules of
inference as the ultimately definitive specification of the meaning
of the language.”
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Other Applications of Axiomatic Semantics

The project of defining and proving everything formally has not
succeeded (at least not yet)
Proving has not replaced testing and debugging (and praying)
Applications of axiomatic semantics

▶ Proving the correctness of algorithms (or finding bugs)
▶ Proving the correctness of hardware descriptions (or finding bugs)
▶ “extended static checking” (e.g., checking array bounds)
▶ Documentation of programs and interfaces
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Safety and liveness

Partial vs. total correectness assertions
▶ Safety vs. liveness properties

⋆ Safety: nothing “bad” happens
⋆ Liveness: something “good” happens eventually

▶ Usually focus on safety (partial correctness)
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Assertions

The assertions we make about programs are of the form

{A} c {B}

▶ If A holds in a state σ and ⟨σ, c⟩ ↓ σ′

▶ Then B holds in σ′

A is the precondition and B is the postcondition
For example

{x ≤ y} z := x; z := z + 1 {x < y}

This is called a Hoare triple or Hoare assertions
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Assertions (cont’d)

{A} c {B} is a partial correctness assertion
▶ Does not imply termination

[A] c [B] is a total correctness assertion
▶ If A holds at state σ
▶ Then there exists σ′ such that ⟨σ, c⟩ ↓ σ′

▶ And B holds in state σ′
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State-based assertions

Assertions that characterize the state of the execution
▶ Recall: state = state of locals + state of memory

Our assertions will need to be able to refer to
▶ Variables
▶ Contents of memory

These are not state-based assertions
▶ Variable x is live, lock L will be released
▶ There is no correlation between the values of x and y
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The assertion language

We use a fragment of first-order predicate logic

Formulas A ::= O | ⊤ | ⊥
| A ∧ A | A ∨ A | A => A | ∀x.A | ∃x.A

Atoms O ::= f(O, . . . ,O)|e ≤ e|e = e| . . .
Expressions e ::= n | true | false | . . .

We can also have an arbitrary assortment of function symbols
▶ ptr(e,T) – expression e denotes a pointer to a T
▶ e : ptr(T) – same in a different notation
▶ reachable(e1, e2) – list cell e2 is reachable from e1
▶ these can be built-in or defined
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Semantics of assertions

We introduced a language of assertions, we need to assign meanings
to assertions

▶ We ignore references to memory for now
Notation σ |= A means that an assertion holds in a given state

▶ This is well defined when σ is defined on all variables well-defined
occurring in A

The |= judgment is defined inductively on the structure of assertions
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Semantics of assertions (cont’d)

Formal definition

σ |= true always
σ |= e1 = e2 iff ⟨σ, e1⟩ ↓ n1 and ⟨σ, e2⟩ ↓ n2 and n1 = n2
σ |= e1 ≤ e2 iff ⟨σ, e1⟩ ↓ n1 and ⟨σ, e2⟩ ↓ n2 and n1 ≤ n2
σ |= A1 ∧ A2 iff σ |= A1 and σ |= A2

σ |= A1 ∨ A2 iff σ |= A1 or σ |= A2

σ |= A1 => A2 iff σ |= A1 implies σ |= A2

σ |= ∀x.A iff ∀n ∈ Z . σ[x := n] |= A
σ |= ∃x.A iff ∃n ∈ Z . σ[x := n] |= A
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Semantics of assertions (cont’d)

Now we can define formally the meaning of a partial correctness
assertion

|= {A} c {B} : ∀σ . ∃σ′ . (σ |= A ∧ ⟨σ, c⟩ ↓ σ′) ⇒ σ′ |= B

and the meaning of a total correctness assertion

|= [A] c [B]

▶ ∀σ . ∃σ′ . (σ |= A ∧ ⟨σ, c⟩ ↓ σ′) ⇒ σ′ |= B
▶ ∀σ . σ |= A ⇒ ∃σ′ . ⟨σ, c⟩ ↓ σ′
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Is this enough?

Now we have the formal mechanism to decide when {A} c {B}
▶ Start the program in all states that satisfies A
▶ Run the program
▶ Check that each final state satisfies B

This is exhaustive testing
Not enough

▶ Cannot try the program in all states satisfying the precondition
▶ Cannot find all final states for non-deterministic programs
▶ It is impossible to effectively verify the truth of a ∀x.A postcondition

(by using the definition of validity)
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Derivations as validity witnesses

We define a symbolic technique for deriving valid assertions from
others that are known to be valid

▶ We start with validity of first-order formulas
We write ⊢ A when we can derive (prove) assertion A

▶ We want (∀σ . σ |= A) iff σ ⊢ A
We write ⊢ {A} c {B} when we can derive (prove) the partial
correctness assertion

▶ We want |= {A} c {B} iff ⊢ {A} c {B}
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Derivation rules for assertions

The derivation rules for ⊢ A are the usual from first-order logic
Axioms in natural deduction style (inference rules):

⊢ A ⊢ B
⊢ A ∧ B

⊢ A[α/x] αfresh
⊢ ∀x.A

⊢ ∀x.A
⊢ A[e/x]

⊢ A implies ⊢ B
⊢ A ⇒ B

⊢ A ⇒ B ⊢ A
⊢ B

⊢ A[e/x]
⊢ ∃x.A

⊢ ∃x.A
⊢ A[α/x] implies ⊢ B

⊢ B
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Derivation rules for triples

Similarly, we define ⊢ {A} c {B} when we can derive the triple using
derivation rules
There is a derivation rule for each instruction in the language
Plus the rule of consequence

⊢ A′ ⇒ A ⊢ {A} c {B} ⊢ B ⇒ B′

⊢ {A′} c {B′}
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Derivation rules for Hoare logic

One rule for each syntactic construct

{A} skip {A}

⊢ {A} c1 {B} ⊢ {B} c2 {C}
⊢ {A} c1; c2 {C}

{A ∧ b} c1 {B} {A ∧ ¬b} c2 {B}
{A} if b then c1 else c2 {B}
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Hoare rules: loop

The rule for while is not syntax directed
▶ It needs a loop invariant

⊢ {A ∧ b} c {A}
⊢ {A} while bdo c {A ∧ ¬b}

Try and see what is wrong if you make changes (e.g. drop ¬b, relax
invariant, …)
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Hoare rules: assignment

Example: {A} x := x + 2 {x ≥ 5}. What is A?
▶ A has to imply {x ≥ 3}

General rule

{A[e/x]} x := e {A}
It was simple after all…
Example

▶ Assume that x does not appear in e
▶ Show that {true} x := e {x = e}
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The assignment axiom

Hoare said:
“Assignment is undoubtedly the most characteristic feature
of programming a digital computer, and one that most
clearly distinguishes it from other branches of mathematics.
It is surprising therefore that the axiom governing our
reasoning about assignment is quite as simple as any to be
found in elementary logic.”

One catch: aliasing
For languages with aliasing we might need extra machinery

▶ If x and y are aliased then {true} x := 5 {x + y = 10} is true
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Multiple Hoare rules

For some language constructs there are more than one possible rules
▶ Assignment

{A} x := e {∃x0 .A[x0/x] ∧ x = e[x0/x]}

▶ Loop
⊢ A ∧ b ⇒ C {C} c {A} ⊢ A ∧ ¬b ⇒ B

⊢ {A} while bdo c {B}
▶ Loop (again)

{A} c {(b ∧ A) ∨ (¬b ∧ B)}
⊢ {b ∧ A ∨ ¬b ∧ B} while bdo c {B}
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Example: conditional

Verify that ⊢ {true} if y ≤ 0 then x := 1 else x := y {x > 0}

D1 :: ⊢ {true ∧ y ≤ 0} x := 1 {x > 0}
D2 :: ⊢ {true ∧ ¬(y ≤ 0)} x := y {x > 0}

⊢ {true} if y ≤ 0 then x := 1 else x := y {x > 0}

We prove D1 using consequence and assignment

D1 ::
⊢ {1 > 0} x := 1 {x > 0} ⊢ true ∧ y ≤ 0 ⇒ 1 > 0

⊢ {true ∧ y ≤ 0} x := 1 {x > 0}

We prove D2 using consequence and assignment, too

D2 ::
⊢ {y > 0} x := y {x > 0} ⊢ true ∧ ¬(y ≤ 0) ⇒ y > 0

⊢ {true ∧ ¬(y ≤ 0)} x := y {x > 0}
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Example: loop

Verify that ⊢ {x ≤ 0} while x ≤ 5do x := x + 1 {x = 6}
First, we must “guess” the invariant: x ≤ 6

▶ Use the loop rule to verify the while

⊢ (x ≤ 6) ∧ (x ≤ 5) ⇒ (x + 1 ≤ 6)
⊢ {x + 1 ≤ 6} x := x + 1 {x ≤ 6}

⊢ {x ≤ 6 ∧ x ≤ 5} x := x + 1 {x ≤ 6}
⊢ {x ≤ 6} while x ≤ 5do x := x + 1 {(x ≤ 6) ∧ ¬(x ≤ 5)}

▶ Then use consequence to get the wanted property

⊢ x ≤ 0 ⇒ x ≤ 6
⊢ {x ≤ 6} while . . . {(x ≤ 6) ∧ ¬(x ≤ 5)}

⊢ (x ≤ 6) ∧ ¬(x ≤ 5) ⇒ x = 6

⊢ {x ≤ 0} while x ≤ 5do x := x + 1 {x = 6}

Pratikakis (CSD) Axiomatic Semantics CS490.40, 2015-2016 28 / 39



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example: loop forever

Verify that ⊢ {A} while truedo c {B} holds for any A, B and c
Again, we “guess” the invariant true and apply the consequence and
loop rules

⊢ {true ∧ true} c {true}
⊢ {true} while truedo c {true ∧ ¬true}
⊢ A ⇒ true true ∧ ¬true => false

⊢ {A} while truedo c {B}

We need an additional lemma

∀c . ⊢ {true} c {true}

How do we prove it?
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Example: GCD

Let c be the program
while (x ̸= y) do

if (x ≤ y)
then y := y − x
else x := x − y

Verify that

⊢ {x = m ∧ y = n} c {x = gcd(m, n)}
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Example: GCD (cont’d)
The precondition Pre is x = m ∧ y = n
The postcondition Post is x = gcd(m, n)
It is crucial to select the proper loop invariant I

I def
= gcd(x, y) = gcd(m, n)

Before applying the rule for loop, we apply the rule of consequence to
reduce the problem to

{I} c {I ∧ ¬(x ̸= y)}
To do that we also need

⊢ Pre ⇒ I
⊢ I ∧ ¬(x ̸= y) ⇒ Post

The first is
x = m ∧ y = n => gcd(x, y) = gcd(m, n)

The second is
gcd(x, y) = gcd(m, n) ∧ x = y => x = gcd(m, n)Pratikakis (CSD) Axiomatic Semantics CS490.40, 2015-2016 31 / 39
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Example: GCD (cont’d)

We still need to verify

⊢ {I} c {I ∧ ¬(x ̸= y)}

Now we can apply the rule for loop to get

⊢ {I ∧ x ̸= y} d {I}

…where d is the body of the loop
if (x ≤ y)
then y := y − x
else x := x − y
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Example: GCD (cont’d)

We use the rule for conditionals to reduce the last goal to the two
subgoals

⊢ {I ∧ x ̸= y ∧ x ≤ y} y := y − x {I}
⊢ {I ∧ x ̸= y ∧ ¬(x ≤ y)} x := x − y {I}

We use consequence and assignment to reduce them to

⊢ I ∧ x ̸= y ∧ x ≤ y ⇒ I[(y − x)/y]
⊢ I ∧ x ̸= y ∧ ¬(x ≤ y) ⇒ I[(x − y)/x]

or
⊢ I ∧ x ̸= y ∧ x ≤ y ⇒ gcd(m, n) = gcd(x, y − x)

⊢ I ∧ x ̸= y ∧ ¬(x ≤ y) ⇒ gcd(m, n) = gcd(x − y, y)
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Example: GCD (cont’d)

But we can prove that gcd(x, y) = gcd(x − y, y)
Q.E.D. –verification is done
Things to notice

▶ We used a lot of arithmetic to prove implications
▶ We have to invent, or “guess” the loop invariants

What about total correctness?

Pratikakis (CSD) Axiomatic Semantics CS490.40, 2015-2016 34 / 39



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Hoare rule for function call

If the function is not recursive, we can inline it

f(x1, . . . , xn) = cf ⊢ {A} cf {B[f/x]}
⊢ {A[e1/x1, . . . , en/xn]} x := f(e1, . . . , en) {B}

In general
▶ Each function has a precondition Pref and a postcondition Postf

⊢ {Pref[e1/x1, . . . , en/xn]} x := f(e1, . . . , en) {Postf[x/f]}

▶ We verify the function body for the function pre- and postcondition

⊢ {Pref} cf {Postf}
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Using Hoare rules

Hoare rules are mostly syntax directed
There are three issues

▶ When do we apply the rule of consequence?
▶ How do we prove the implications used in consequence?
▶ What invariant do we use for each while loop?

The implications of consequence are theorem proving
▶ This turns out to be doable!
▶ The hardest problem is the loop invariants

Should we ask the programmer for invariants?
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So far

We have a language for asserting properties of programs
We know when such an assertion is true
We have a symbolic method for deriving assertions

A σ |= A
{A} c {B} |= {A} c {B}

⊢ A
⊢ {A} c {B}

meaning

derivation
sou

ndn
ess

com
ple

ten
ess
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Soundness of axiomatic semantics

Formal statement
▶ If ⊢ {A} c {B} then |= {A} c {B}

Equivalently
▶ For all σ, if

⋆ σ |= A
⋆ and ⟨σ, c⟩ ↓ σ′

⋆ and {A} c {B}
▶ Then σ′ |= B
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Completeness of axiomatic semantics

If |= {A} c {B} holds, can we always derive ⊢ {A} c {B}?
If not, then there are valid properties that we cannot verify with Hoare
rules
The good news: For our language so far, Hoare triples are complete
The bad news: only if the underlying logic is complete

▶ I.e., |= A implies ⊢ A
▶ This is called relative completeness
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