Lecture 19: Alias analysis Subtyping

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Static Analysis

Based on slides by Jeff Foster

1 / 21

Last time

- Label-flow analysis
 - Assign a label at every "interesting" program point (pointers)
 - ▶ Aliasing question: does label R_1 "flow" to label R_2 at runtime?
- Type-based label-flow (for pointers)
 - Annotate types with labels
 - Type-checking is flow checking
- An inference system
 - Type system creates "fresh" label variables
 - Typing creates constraints among variables
 - Constraint solution gives aliasing information
 - ★ We used unification to solve constraints

Limitation of unification

- Unification creates "backwards flow" of labels
- When x and y both alias z, they alias each other too
- For example

```
let x = ref 1 in
let y = ref 2 in
let z = if true then x else y in
    x := 42;
    y := 0;
```

Unification gives

```
x : Ref^R Nat

y : Ref^R Nat

z : Ref^R Nat
```


Subtyping

- We can solve this problem using subtyping
 - ► Each label variable represents a *set* of labels
 - * In unification, a variable could only stand for one label
 - $\,\blacktriangleright\,$ We write $[\alpha]$ for the set of labels represented by α
 - ★ Trivially, $[R] = \{R\}$ for any constant R
- For example, assume
 - ightharpoonup x has type $Ref^{\alpha} Nat$
 - $[\alpha] = \{R_1, R_2\}$
 - ▶ Then x may point to either location R_1 or location R_2
 - ★ Again, labels R₁ and R₂ are static approximations, they may refer to many runtime locations

Labels on references

- Labeling is slightly different
 - We assume each allocation has a unique constant label
 - ★ Generate a fresh one for each syntactic occurrence
 - Add a fresh variable on each reference type and generate a subtyping constraint between constant and variable
 - $\star \ \alpha_1 \leq \alpha_2 \ \text{means} \ [\alpha_1] \subseteq [\alpha_2]$

$$\Gamma \vdash e : T$$

$$R \le \alpha$$

$$[T-Ref] \frac{R - fresh \quad \alpha - fresh}{\Gamma \vdash ref^R e : Ref^{\alpha} T}$$

Subtype inference

- The same approach as before
 - Visit the AST, generate constraints
 - Constraints allow subsets, instead of equalities
- We could change all rules that generate constraints to allow inequalities
 - For example

$$\begin{array}{ccc} \Gamma \vdash e : Bool \\ \Gamma \vdash e_1 : Ref^{\rho_1} \ T & \Gamma \vdash e_2 : Ref^{\rho_1} \ T \\ \hline \rho_1 \leq \rho & \rho_2 \leq \rho \\ \hline \Gamma \vdash \text{if e then e_1 else e_2 : Ref^{ρ} T} \end{array}$$

Subtyping constraints

- We need to generalize to arbitrary types
 - Think of types as representing sets of values
 - \star For example Nat represents the set of natural numbers
 - \star So, Ref^p Nat represents the sets of pointers to integers labeled with [
 ho]
 - ▶ Extend \leq to a relation $T \leq T$ on types

7 / 21

Subsumption

 Instead of modifying all rules with constraints, add one more typing rule (remember subtyping from λ -calculus)

$$\frac{\Gamma \vdash e : T \quad T \leq T'}{\Gamma \vdash e : T'}$$

• Like normal subtyping: we can use a supertype anywhere a subtype is expected

Example

```
\begin{array}{lll} \textbf{let} \ \times = \text{ref 0 in} & // \ \times : \ \textit{Ref}^{\alpha} \ \textit{Nat} \\ \textbf{let} \ \ y = \text{ref 1 in} & // \ \ y : \ \textit{Ref}^{\beta} \ \textit{Nat} \\ \textbf{let} \ \ z = \textbf{if} \ \ \text{true then} \ \times \ \textbf{else} \ \ y \ \textbf{in} \\ \times := 42 & // \ \ \textbf{z} : \ \textit{Ref}^{\gamma} \ \textit{Nat} \\ \end{array}
```

Types of x and y must match as conditional

$$\frac{\alpha \leq \gamma}{\Gamma \vdash x : Ref^{\alpha} \ Nat} \frac{Ref^{\alpha} \ Nat \leq Ref^{\gamma} \ Nat}{\Gamma \vdash x : Ref^{\gamma} \ Nat}$$

- So, we have $z : Ref^{\gamma} Nat$ with $\alpha \leq \gamma$ and $\beta \leq \gamma$
 - ▶ And we can pick $[\alpha] = \{R_x\}, [\beta] = \{R_y\}, [\gamma] = \{R_x, R_y\}$

CS490.40, 2015-2016

Subtyping references

Let's try to generalize to arbitrary types

$$\frac{\begin{array}{c}
\rho_1 \le \rho_2 \\
T_1 \le T_2 \\
Ref^{\rho_1} \ T_1 \le Ref^{\rho_2} \ T_2
\end{array}}$$

This is broken

```
\begin{array}{lll} \textbf{let} \ \times = \operatorname{ref}^{R_{\times}} \left( \operatorname{ref}^{R_0} \ 0 \right) \ \textbf{in} & // \ \times : \ \mathit{Ref}^{\alpha} \ \mathit{Ref}^{\beta} \ \mathit{Nat}, \ R_0 \leq \beta \\ \\ \textbf{let} \ \ y = \times \ \textbf{in} & // \ y : \ \mathit{Ref}^{\gamma} \ \mathit{Ref}^{\delta} \ \mathit{Nat}, \ \beta \leq \delta \\ \\ \ \ y := \ \operatorname{ref}^{R_1} \ 1; & // \ \mathit{R}_1 \leq \leq \delta \\ \\ \ \ \  \  \, !! \ \times := \ 3 & // \ \operatorname{deref} \ \text{of} \ \beta \end{array}
```

- We can pick $[\beta] = \{R_0\}$, $[\delta] = \{R_0, R_1\}$
 - ▶ Then writing through β doesn't write R_1

Aliasing

- Through subtyping, we have multiple names for the same memory location
 - ► They have different types
 - We can write different types on the same memory location
- Solution: require equality under a ref
 - ▶ We saw this before: subtyping and references
 - ▶ We can write $T_1 = T_2$ as $T_1 \le T_2$ and $T_2 \le T_1$

$$\frac{\rho_1 \le \rho_2 \quad T_1 \le T_2 \quad T_2 \le T_1}{Ref^{\rho_1} \quad T_1 \le Ref^{\rho_2} \quad T_2}$$

11 / 21

Subtyping on function types

- When is a function type $T_1 \to T_2$ subtype of another function type $T_1' \to T_2'$?
- Similar to standard subtyping
 - Contravariant on the argument type
 - Covariant on the result type

$$T_1' \leq T_1 \qquad T_2 \leq T_2'$$

$$T_1 \to T_2 \leq T_1' \to T_2'$$

- Example: we can always use a function that returns a pointer to $\{R_1\}$ as if it could return $\{R_1, R_2\}$
- Example: if a function expects a pointer to $\{R_1,R_2\}$ we can always give it a pointer to $\{R_1\}$

CS490.40, 2015-2016

Type system

Typing is similar, generates < instead of = constraints

$$[T-VAR] \xrightarrow{x: T \in \Gamma} [T-NAT] \xrightarrow{\Gamma \vdash n: Nat}$$

$$[T-TRUE] \xrightarrow{\Gamma \vdash true: Bool} [T-FALSE] \xrightarrow{\Gamma \vdash e_1: Unit} [T-SEQ] \xrightarrow{\Gamma \vdash e_2: T} [T-SEQ] \xrightarrow{\Gamma \vdash e_1: T \to T}$$

$$[T-VAR] \xrightarrow{\Gamma \vdash e_1: T \to T} [T-SEQ] \xrightarrow{\Gamma \vdash e_1: T \to T} [T-T-T] \xrightarrow{\Gamma \vdash e_1: T \to T$$

$$\begin{array}{c} \Gamma, x: S \vdash e: T' & \Gamma \vdash e_1: T \to T' \\ \hline T = \operatorname{fresh}(S) & \Gamma \vdash e_2: T \\ \hline \Gamma \vdash \lambda x: S.e: T \to T' & \Gamma \vdash (e_1 e_2): T' \end{array}$$

CS490.40, 2015-2016

Type system (cont'd)

$$\Gamma \vdash e : Bool \qquad \qquad \Gamma \vdash e_1 : T_1 \\ \Gamma \vdash e_1 : T \quad \Gamma \vdash e_2 : T \\ \Gamma \vdash \text{if e then e_1 else e_2 : T} \qquad [T-Let] \qquad \Gamma, x : T_1 \vdash e_2 : T_2 \\ \hline \Gamma \vdash e : T \qquad R \leq \alpha \\ \hline \Gamma \vdash e : T \qquad R \leq \alpha \\ \hline \Gamma \vdash \text{ref}^R e : Ref^{\alpha} T \qquad [T-Deref] \qquad \Gamma \vdash e : Ref^{\alpha} T \\ \hline \Gamma \vdash e_1 : Ref^{\alpha} T \qquad \Gamma \vdash e : T_1$$

$$\Gamma dash e_1: \mathcal{T}_1 \ \Gamma, x: \mathcal{T}_1 dash e_2: \mathcal{T}_2 \ \overline{\Gamma dash \text{let } x = e_1 \text{ in } e_2: \mathcal{T}_2}$$

$$[\text{T-Deref}] \frac{\Gamma \vdash e : \textit{Ref}^{\alpha} \ \textit{T}}{\Gamma \vdash !e : \textit{T}}$$

$$\begin{array}{c|c} \Gamma \vdash e_1 : Ref^{\alpha} \ T & \Gamma \vdash e : T_1 \\ \hline \Gamma \vdash e_2 : T & T_1 \leq T_2 \\ \hline \Gamma \vdash e_1 := e_2 : Unit & [\text{T-SuB}] \hline \end{array}$$

Subtyping relation

- In unification, we simplify $T_1=T_2$ constraints to get $\rho_1=\rho_2$ constraints
- ullet We can use the subtyping relation $T_1 \leq T_2$ to do the same

$$[\text{S-NAT}] \frac{T_1' \leq T_1 \quad T_2 \leq T_2'}{T_1 \rightarrow T_2 \leq T_1' \rightarrow T_2'}$$

$$[S-NAT]$$
 $Nat \le Nat$ $[S-BOOL]$ $Bool \le Bool$

[S-Unit]
$$T_1 \le T_2$$
 $T_2 \le T_1$ Ref^{p_1} $T_1 \le Ref^{p_2}$ T_2

15 / 21

The problem: subsumption

- We can apply subsumption at any time
 - ▶ Makes it hard to develop a deterministic algorithm
 - ▶ Type checking is not *syntax-driven*
- Fortunately, not many choices
 - ▶ For each expression *e* we need to decide
 - ★ Do we apply the "regular" syntax-driven rule for e?
 - ★ or do we apply subsumption (and how many times)?

Getting rid of subsumtion

- Lemma: Multiple sequential uses of subsumption can be collapsed into a single use
 - ▶ Proof: transitivity of ≤
- We need at most one application of subsumption after typing an expression
- We can get rid of that one application
 - ▶ Integrate it into the rest of the rules
 - ► Each rule is the syntax-driven typing, plus a subsumption

Getting rid of subsumption (cont'd)

• All rules that introduced $T_1=T_2$ constraints in unification, now introduce subtyping $T_1 \leq T_2$

$$\Gamma dash e_1: T_1 o T'$$
 $\Gamma dash e_2: T_2$
 $T_2 \leq T_1$
 $\Gamma dash (e_1 \ e_2): T'$
 $\Gamma dash e: Bool$

- Etc, for the other rules
- We are left with an algorithmic, syntax-directed type system

Solving the constraints

- Solving computes transitive closure of $\rho \le \rho'$
- As in unification, use a rewriting system to simplify constraints
- Except we have already solved the structural part and only have $r \leq \rho_1$ constraints left
 - ▶ If $\{\rho_1 \leq \rho_2\}$ and $\{\rho_2 \leq \rho_3\}$ then add $\{\rho_1 \leq \rho_3\}$
- Repeat until no new edges can be added
- At most $O(N^2)$
- \bullet Points-to set $[\rho]$ is then $[\rho] = \{ R \mid R \leq \rho \}$

Graph reachability

CS490.40, 2015-2016

Andersen's analysis

- Flow-insensitive
- Context-insensitive
- Subtyping-based
- Properties
 - Still very scalable in practice
 - Much less coarse than Steensgaard's analysis
 - Precision can still be improved

