Lecture 19: Alias analysis
Subtyping

Polyvios Pratikakis
Computer Science Department, University of Crete

Type Systems and Static Analysis

Based on slides by Jeff F

Pratikakis (CSD) Alias analysis (CS490.40, 2015-2016 1/21

Last time

o Label-flow analysis
> Assign a label at every “interesting” program point (pointers)
» Aliasing question: does label R; “flow” to label Ry at runtime?
o Type-based label-flow (for pointers)
» Annotate types with labels
» Type-checking is flow checking
@ An inference system

» Type system creates “fresh” label variables

» Typing creates constraints among variables

» Constraint solution gives aliasing information
* We used unification to solve constraints

Pratikakis (CSD) Alias analysis (CS490.40, 2015-2016 2/21

Limitation of unification

@ Unification creates “backwards flow” of labels
@ When x and y both alias z, they alias each other too

@ For example

let x =ref 1in

let y = ref 2 in

let z = if true then x else y in
X 1= 42:
y =0

@ Unification gives

X RQ}‘R Nat
y RefR Nat
z RefR Nat

Pratikakis (CSD) Alias analysis (CS490.40, 2015-2016 3/21

Subtyping

@ We can solve this problem using subtyping
» Each label variable represents a set of labels
* In unification, a variable could only stand for one label
» We write [a] for the set of labels represented by «
* Trivially, [R] = {R} for any constant R

@ For example, assume
» x has type Ref” Nat
> [a] ={Ri, Re}
» Then x may point to either location Ry or location Ry

* Again, labels Ry and R; are static approximations, they may refer to
many runtime locations

Pratikakis (CSD) Alias analysis (CS490.40, 2015-2016 4 /21

Labels on references

o Labeling is slightly different
» We assume each allocation has a unique constant label
* Generate a fresh one for each syntactic occurence

> Add a fresh variable on each reference type and generate a subtyping
constraint between constant and variable

* a1 < ag means [a1] C [az]

I'te: T
R<«
R —fresh o« — fresh

IHreffe: Ref* T

[T-ReF]

Pratikakis (CSD) Alias analysis (CS490.40, 2015-2016 5/21

Subtype inference

@ The same approach as before
» Visit the AST, generate constraints
» Constraints allow subsets, instead of equalities
@ We could change all rules that generate constraints to allow
inequalities
» For example

I'e: Bool
ke :Ref'f T The:Ref* T
pPL=p p2 < p
I'~if ethen ey else ey : Ref’ T

Pratikakis (CSD) Alias analysis (CS490.40, 2015-2016 6 /21

Subtyping constraints

@ We need to generalize to arbitrary types
» Think of types as representing sets of values

* For example Nat represents the set of natural numbers
* So, Ref’ Nat represents the sets of pointers to integers labeled with [p]

» Extend < to a relation T < T on types

p1 < p2 Nat < Nat
Nat < Nat Ref’* Nat < Ref’* Nat

Pratikakis (CSD) Alias analysis (CS490.40, 2015-2016 7/21

Subsumption

@ Instead of modifying all rules with constraints, add one more typing
rule (remember subtyping from A-calculus)

T'Fe: T T<LT
'ke: T

@ Like normal subtyping: we can use a supertype anywhere a subtype is
expected

Pratikakis (CSD) Alias analysis (CS490.40, 2015-2016 8/21

Example

let x =ref 0 in // x: Ref* Nat

let y =ref 1in /]y : Ref’ Nat

let z = if true then x else y in /] z: Ref" Nat
X 1= 42

@ Types of x and y must match as conditional

a <7y
' x: Ref* Nat Ref* Nat < Ref' Nat
'+ x: Ref' Nat

@ So, we have z: Ref’ Nat with o <y and § <7
» And we can pick [o] = {R}, 8] ={R/}. "] = {Re R/}

Pratikakis (CSD) Alias analysis (CS490.40, 2015-2016 9/21

Subtyping references

@ Let’s try to generalize to arbitrary types

p1 < p2
T1< T

Reff* Ty < Ref?* Ty

@ This is broken

let x = ref (reffo 0) in // x: Ref* Ref’ Nat, Ry < j3
let y =xin /]y : Ref' Ref Nat, 3<6
y = reff 1; /] R << 4
Hx =3 // deref of 3

e We can pick [f] = {Ro}, [6] = {Ro, R}
» Then writing through 3 doesn’t write R;

Pratikakis (CSD) Alias analysis CS490.40, 2015-2016 10 / 21

Aliasing

@ Through subtyping, we have multiple names for the same memory
location

» They have different types
» We can write different types on the same memory location
@ Solution: require equality under a ref

» We saw this before: subtyping and references
» Wecanwrite Ty =Toas Ty < Taand T < T;

pr<p2 T1<Ty To<T
Reff* Ty < Ref? Ty

Pratikakis (CSD) Alias analysis CS490.40, 2015-2016 11 /21

Subtyping on function types

@ When is a function type T1 — T2 subtype of another function type
= Ty?
@ Similar to standard subtyping
» Contravariant on the argument type
» Covariant on the result type
TW<T1 Ty<T,
T1 — T2 < Tll — T’Q
@ Example: we can always use a function that returns a pointer to {R;}
as if it could return {Ry, R2}

e Example: if a function expects a pointer to {R;, Re} we can always
give it a pointer to {R;}

Pratikakis (CSD) Alias analysis CS490.40, 2015-2016 12 /21

Type system

@ Typing is similar, generates < instead of = constraints
x: Tel

(Ve === Nl
e e Bool. ™ T alse - Bool
I't e : Unit
[T-UniT] [T-Skq] il
-UNIT B
TF(): Unit P () T
Ix:Ske: T 'te:T—>T
T = fresh(S :
[T-Lawu] rosh(3) [T-App] Lred
TFAx:Se:T— T [F(ere): T

Pratikakis (CSD) Alias analysis CS490.40, 2015-2016 13 /21

Type system (cont'd)

I'F e: Bool I'kFe : T4
(r-17] I'be: T T'he:T (T-Ler] I'x: TiFe:T,
o I'Hifethene elseey: T - I'Fletx=¢e1ine: Ty
I'kFe: T R<«
R — fresh « — fresh I'He:Ref*T
[T-ReF]) [T-DEREF] '
I'Freffe: Ref* T I'Hle: T
I'ke :Ref*T I'te: Ty
Pl—eth T1§T2
[T-Assia] I'F e :=e: Unit [1-5ue] I'te: Ty

Pratikakis (CSD) Alias analysis CS490.40, 2015-2016 14 /21

Subtyping relation

@ In unification, we simplify T; = T» constraints to get p1 = p2
constraints

@ We can use the subtyping relation T; < T5 to do the same
TW<T7 T,<T,

S-N
[AT] T1—>T2§T’1—>T'2
[5-Nar] Nat < Nat [5-Boor] Bool < Bool
p1 < p2
Ti<Ty T2<T
- = Tt SRer] P T < Ref T,

Pratikakis (CSD) Alias analysis CS490.40, 2015-2016 15 / 21

The problem: subsumption

@ We can apply subsumption at any time

» Makes it hard to develop a deterministic algorithm
» Type checking is not syntax-driven

@ Fortunately, not many choices
» For each expression e we need to decide

* Do we apply the “regular” syntax-driven rule for e?
* or do we apply subsumption (and how many times)?

Pratikakis (CSD) Alias analysis CS490.40, 2015-2016 16 / 21

Getting rid of subsumtion

@ Lemma: Multiple sequential uses of subsumption can be collapsed
into a single use

» Proof: transitivity of <

@ We need at most one application of subsumption after typing an
expression
@ We can get rid of that one application

> Integrate it into the rest of the rules
» Each rule is the syntax-driven typing, plus a subsumption

Pratikakis (CSD) Alias analysis CS490.40, 2015-2016 17 /21

Getting rid of subsumption (cont'd)

@ All rules that introduced T; = T5 constraints in unification, now
introduce subtyping T < Ty

F|_612T1—>T'
I'Fey: Ts
To< T

[T-arr] F'H(e1e): T

I'e: Bool
F|—61:T1 F|_62:T2
Tn<T To < T

[r-11] I'Hifethene elseey: T

o Etc, for the other rules

@ We are left with an algorithmic, syntax-directed type system

Pratikakis (CSD) Alias analysis CS490.40, 2015-2016 18 / 21

Solving the constraints

Solving computes transitive closure of p < p/

As in unification, use a rewriting system to simplify constraints

Except we have already solved the structural part and only have
r < p1 constraints left

» If {p1 < p2} and {p2 < p3} then add {p; < ps}
Repeat until no new edges can be added
At most O(N?)
Points-to set [p] is then [p] = {R| R < p}

Pratikakis (CSD) Alias analysis CS490.40, 2015-2016 19 /21

Graph reachability

Ee
A
[\§)

)
IA
o

o
IN
L

Pratikakis (CSD) Alias analysis CS490.40, 2015-2016 20 /21

Andersen’s analysis

Flow-insensitive
Context-insensitive
Subtyping-based

Properties

» Still very scalable in practice
» Much less coarse than Steensgaard’s analysis
» Precision can still be improved

Pratikakis (CSD) Alias analysis CS490.40, 2015-2016 21 /21

