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Lecture 18: Alias analysis
Unification

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Static Analysis

Based on slides by Jeff Foster
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Introduction

Aliasing occurs when different names refer to the same thing
▶ Typically, we only care for imperative programs
▶ The usual culprit: pointers

A core building block for other analyses
▶ For example in *p = 3; what does p point to?

Useful for many languages
▶ C – lots of pointers all over the place
▶ Java – “objects” point to updatable memory
▶ ML – ML has updatable references
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Alias analysis

Alias analysis answers the question
Do pointers p and q alias the same address?
Unfortunately, undecidable

▶ Remember Rice’s theorem: No program can precisely decide anything
interesting about arbitrary source code

Usual solution: allow imprecision
▶ Decision problem: yes/no – undecidable
▶ Approximation: yes/no/maybe – decidable

Pratikakis (CSD) Alias analysis CS490.40, 2015-2016 3 / 33



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

May alias analysis

p and q may alias if it is possible that p and q might point to the
same address
Negative answer is precise

▶ “yes” – imprecise, means p and q might alias
▶ “no” – precise, means p and q never alias

If p may not alias q, then a write through p does not affect memory
pointed to by q

▶ *p = 3; x = *q; means write through p does not affect x

What is the most conservative may-alias analysis?
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Must alias analysis

p and q must alias if they do point to the same address
Positive answer is precise

▶ “yes” – precise, means p and q definitely alias
▶ “no” – imprecise, means p and q might not alias

If p must alias q, then a write through p always affects memory
pointed to by q

▶ *p = 3; x = *q; means x is 3

What is the most conservative must-alias analysis?
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Early alias analysis

By Landi and Ryder
Expressed as computing alias pairs

▶ E.g., (*p, *q) means p and q may point to the same memory
Issues?

▶ There could be many alias pairs
⋆ (*p, *q), (p->a, q->a), (p->b, q->b), …

▶ What about cyclic data structures?
⋆ (*p, p->next), (*p, p->next->next), …
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Points-to analysis

Determine the set of locations that p may point to
▶ E.g., (p, {&x}) means p may point to the location of x
▶ To decide if p and q alias, see if their points-to sets overlap

More compact representation
▶ The same aliasing information takes less memory
▶ Analysis scales better

We must name all locations in the program
▶ Pick a finite set of location names

⋆ No problem with cyclic data structures
▶ x = malloc(...); – where does x point to?

⋆ (x, {malloc@42}) – “the malloc() at line 42”
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Flow-sensitivity

An analysis is flow-sensitive if it computes the answer at every
program point

▶ We saw that dataflow analysis is flow-sensitive
An analysis is flow-insensitive if it does not depend on the order of
statements

▶ We saw that type systems are flow-insensitive

Flow-sensitive alias/points-to analysis is much more precise
…but also much more expensive
Flow-insensitive alias analysis is much faster
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Example

Assume the program
p = &x;

p = &y;

*p = &z;

Flow-sensitive analysis – solution per program point
p = &x; // (p, {&x})
p = &y; // (p, {&y})
*p = &z; // (p, {&y}), (y, {&z})

Flow-insensitive analysis – one solution
(p, {&x,&y})
(x, {&z})
(y, {&z})
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A simple calculus

T ::= T → T | Nat | Bool | Unit | Ref T
e ::= x variables

| n integers
| true | false booleans
| () unit
| e; e sequence
| λx : T.e functions
| e e application
| let x = e in e binding
| if e then e else e conditional
| ref e allocation
| !e dereference
| e := e assignment
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Type system

[T-Var] x : T ∈ Γ
Γ ⊢ x : T [T-Nat]

Γ ⊢ n : Nat

[T-True]
Γ ⊢ true : Bool [T-False]

Γ ⊢ false : Bool

[T-Unit]
Γ ⊢ () : Unit

[T-Seq]

Γ ⊢ e1 : Unit
Γ ⊢ e2 : T

Γ ⊢ (e1; e2) : T

[T-Lam]
Γ, x : T ⊢ e : T′

Γ ⊢ λx : T.e : T → T′ [T-App]

Γ ⊢ e1 : T → T′

Γ ⊢ e2 : T
Γ ⊢ (e1 e2) : T′
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Type system (cont’d)

[T-Let]
Γ ⊢ e1 : T1 Γ, x : T1 ⊢ e2 : T2

Γ ⊢ let x = e1 in e2 : T2

[T-If]
Γ ⊢ e : Bool Γ ⊢ e1 : T Γ ⊢ e2 : T

Γ ⊢ if e then e1 else e2 : T

[T-Ref] Γ ⊢ e : T
Γ ⊢ ref e : Ref T [T-Deref]

Γ ⊢ e : Ref T
Γ ⊢!e : T

[T-Assign]
Γ ⊢ e1 : Ref T Γ ⊢ e2 : T

Γ ⊢ e1 := e2 : Unit

Pratikakis (CSD) Alias analysis CS490.40, 2015-2016 12 / 33



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Label flow analysis

A way to compute points-to information
We extend references with labels

▶ e ::= . . . | refr e | . . .
▶ A label r identifies this particular allocation instruction

⋆ Like malloc@42 identifies a point in the program
⋆ Drawn from a finite set of labels

▶ For now, the programmers add these labels
Goal of points-to analysis: find the set of labels a pointer may refer to

▶ For example:
let x = refRx 0 in
let y = x in

y := 3 (* y may point to {Rx} *)
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Type-based alias analysis

We will build an alias analysis using the type system
▶ Similar to OCaml’s type inference

We use labeled types in the analysis
▶ Extend reference types with labels: T ::= . . . | Refr T | . . .
▶ To find the location at a pointer dereference !e or assignment e := . . .

⋆ Find the type T of e (which must be a reference)
⋆ We look at the reference type to decide which location might be

accessed
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Type system (with labels)

[T-Ref] Γ ⊢ e : T
Γ ⊢ refr e : Refr T

[T-Deref]
Γ ⊢ e : Refr T

Γ ⊢!e : T

[T-Assign]

Γ ⊢ e1 : Refr T
Γ ⊢ e2 : T

Γ ⊢ e1 := e2 : Unit
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Example

In the previous program
let x = refRx 0 in
let y = x in

y := 3

x has type RefRx Nat
y has the same type as x
Therefore, at the assignment expression, we know which location y
points to
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Another example

Consider the program
let x = refR 1 in
let y = refR 2 in
let w = refRw 0 in
let z = if true then x else y in

z := 3

Here, x and y both have type RefR Nat
▶ They must have the same type because of the if

At assignment, we write to location R
▶ We do not know which location this is exactly, x or y
▶ But we know it cannot affect w
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And another example

Another program
let x = refR 0 in
let y = refRy x in
let z = refR 2 in

y := z

▶ Both x and z have the same label
⋆ They must have the same type because of the pointed type of y

▶ We do not know whether y points to x or y
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Things to notice

We have a finite set of labels
▶ At most one label for each occurence of a ref in the program
▶ A label may represent more than one run-time locations

Whenever two labels “meet” in the type system, they must be the
same

▶ Can you see where this happens in the type-rules?
The system is flow-insensitive

▶ Types don’t change after assignment
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Type inference

In practice, the programmer does not write the labels
▶ We need to infer them

Given an unlabeled program that satisfies the standard type system, is
there a labeling that satisfies the labeled type system?

▶ That labeling is the analysis result

Pratikakis (CSD) Alias analysis CS490.40, 2015-2016 20 / 33



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Checking vs. inference

Type checking
▶ The programmer annotates the program with types
▶ Typing checks that the annotations are correct
▶ It is “obvious” how to check

Type inference
▶ The programmer does not annotate the program
▶ Typing tries to discover correct types
▶ It is not “obvious”, requires more work to check

Consider the type-system of C
▶ C requires type annotations only at function types and local variable

declarations
⋆ 3 + 4 does not need a type annotation

▶ Trade-off: programmer annotations vs. computed types
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A type inference algorithm

A standard approach in type inference
▶ Type the program by introducing variables at any point when an

annotation is missing
⋆ We will use label variables ρ here
⋆ Now r may be either a constant R or a variable ρ

Typing the unlabeled program does two things
▶ Introduces label variables in all Ref types
▶ Creates constraints among labels

Solve the constraints to find a labeling
▶ No solution means no valid labeling: type error
▶ Alias analysis solution always exists: everything aliases
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Step 1: Introduce labels

Problem 1: What label to assign to the reference at [T-Ref]?
Solution: Introduce a fresh, unknown variable

[T-Ref]
Γ ⊢ e : T ρ− fresh
Γ ⊢ ref e : Refρ T

Why a variable and not a constant?
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Step 1: Introduce labels (cont’d)

Problem 2: What type to give to function arguments?
▶ Type language T uses labeled reference types Refρ T
▶ But the programmer uses unlabeled types Ref T

Solution:
▶ Use two type languages

⋆ Standard S ::= S → S | Nat | Bool | Unit | Ref S
⋆ Labeled T ::= T → T | Nat | Bool | Unit | Refρ T

▶ Annotate type S with fresh labels to get a T
⋆ We write this as T = fresh(S)

[T-Lam]

Γ, x : T ⊢ e : T′

T = fresh(S)
Γ ⊢ λx : S.e : T → T′
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Step 2: Generate constraints

Problem 3: Some rules implicitly require types to be equal
Solution: Make this explicit using equality constraints

▶ We write equality constraints as premises T1 = T2

▶ Each such premise is not checked, instead produces a constraint
▶ We solve all generated constraints together after typing

Rule [T-If] requires both branches to have the same type

[T-If]

Γ ⊢ e : Bool
Γ ⊢ e1 : T1

Γ ⊢ e2 : T2

T1 = T2

Γ ⊢ if e then e1 else e2 : T1
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Step 2: Generate constraints (cont’d)

Rule [T-Assign] requires that the assigned value has the same type as
the pointer

[T-Assign]

Γ ⊢ e1 : Ref T1

Γ ⊢ e2 : T2

T1 = T2

Γ ⊢ e1 := e2 : Unit
We assume that e1 always has a pointer type

▶ That is always true
▶ We assume the program typechecks with standard types
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Step 2: Generate constraints (cont’d)

Rule [T-App] requires the formal and actual arguments to have the
same type

[T-App]

Γ ⊢ e1 : T1 → T′

Γ ⊢ e2 : T2

T1 = T2

Γ ⊢ (e1 e2) : T′

Again, we assume e1 has a function type
▶ As before, this is always true
▶ Because the program typechecks with standard types
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Step 3: Solve the constraints

After applying the type rules, we are left with a set of equality
constraints

▶ T1 = T2

We solve these constraints using rewriting
Each rewriting step simplifies a constraint into simpler constraints
C => C′ rewrites the set C of all constraints to constraints C′
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Step 3: Solve the constraints (cont’d)

C ∪ {Nat = Nat} => C
C ∪ {Bool = Bool} => C
C ∪ {Unit = Unit} => C
C ∪ {T1 → T2 = T′

1 → T′
2} => C ∪ {T1 = T′

1} ∪ {T2 = T′
2}

C ∪ {Refρ1 T1 = Refρ2 T2} => C ∪ {T1 = T2} ∪ {ρ1 = ρ2}
C ∪ {mismatched constructors} => error

▶ Cannot happen if we start with a program that typechecks with
standard types

This algorithm always terminates
When no further reduction applies, we have only label equalities
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Last step: Use solution to add constants

Compute the sets of labels that are equal
▶ Using union-find

Create a constant label R for each equivalence class of label variables
Two pointers alias if their types refer to the same constant label
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Example

Program
let x = ref 1 in
let y = ref 2 in
let z = ref 3 in
let w = if true then x else y in

w := 42

Variable types:
x : Refa Nat
y : Refb Nat
z : Refc Nat
w : Refa Nat

Typing annotates each ref expression with a variable a, b, c
Typing the if creates equality constraint Refa Nat = Refb Nat
Solving the constraint gives a = b
Two equivalence classes: {a, b} and {c}

▶ Create two constants R1 and R2 for the equivalence classes
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Example (cont’d)

Annotated program
let x = refR1 1 in
let y = refR1 2 in
let z = refR2 3 in
let w = if true then x else y in

w := 42

Variable types:
x : RefR1 Nat
y : RefR1 Nat
z : RefR2 Nat
w : RefR1 Nat

The assignment writes to one of the locations labeled by R1

Result: x, y and w may alias either of the first two allocated locations,
but z cannot

▶ May alias: their types have the same location label
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Steensgaard’s Analysis

Flow-insensitive
Inter-procedural

▶ Can analyze multiple functions together
Context-insensitive

▶ Does not discriminate between different calls to the same function
Unification-based

▶ Analysis named after Bjarne Steensgaard (1996)
▶ In practice: implementation for C handles type casts, etc.

Properties
▶ Very scalable

⋆ What is its complexity?
▶ Imprecise
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