Lecture 13: Subtyping

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Static Analysis

Pratikakis (CSD) Subtyping (CS490.40, 2015-2016 1/15

Subtyping

@ Usually found in Object Oriented languages
@ One form of polymorphism: a program can have more than one types

@ So far, each language feature we saw is compositional: can be added
without affecting the rest of the language

@ Subtyping is not: we might need to change the type rules for other
features

@ Roughly: if all expressions of type T also have type T’, then Tis a
subtype of T’

@ Alternatively: if we can always substitute an expression of type T’
with an expression of type T in any context and still have a valid
program, T is a subtype of T

Pratikakis (CSD) Subtyping (CS490.40, 2015-2016 2 /15

Background

@ Simply typed lambda calculus with numbers and records:

e == x|Mx:Tel|lee|n|{h=e,....lh=-en}
| case eof {/i(x) => ei]...|In(x) = en}

v i= n|Xx:Te|l{h=vi,....In=vn}

T == T—T|Nat|{h:Ti,....0h: Tp}

@ Type rule for function application:

IT'Fe:T—=T TkFe:T
Fl—(eleg):T’

[T-APP]

o Not allowed: (Ax: {foo: Nat}.(x.foo)) {foo =5, bar = 42}

@ Even though it is always safel!

Pratikakis (CSD) Subtyping (CS490.40, 2015-2016 3/15

Subsumption

It is always safe to pass a struct with more fields

If the function can be typed assuming its argument x has type
{foo : Nat}, then it only accesses the foo field of record x

It won't hurt if x has additional fields
We say {foo : Nat, bar: Nat} is a subtype of {foo : Nat}
> Also written as {foo : Nat, bar: Nat} <: {foo: Nat}

@ To use the subtype relation <: during type-checking, we add one more

type rule:
I'Fe: T7 T <: Ty
T-S
[T-Sve] Tke:T,
@ |t says we can use a subtype instead of a supertype

Pratikakis (CSD) Subtyping (CS490.40, 2015-2016 4 /15

Defining subtype

@ We define a relation <: between types as usual
» Inductively, using inference rules
@ Each rule produces a judgement T <: T'

@ The relation is the smallest set of subtyping judgements produced by
the inference rules

@ The same as all definitions so far

Pratikakis (CSD) Subtyping (CS490.40, 2015-2016 5/15

Subtyping relation

@ The subtyping relation is reflexive:

[S-ReFL] T T

@ The subtyping relation is transitive:

T1 <: T2 T2 <: T3
T1 <: T3

[S-TrANS]

@ Both, from the intuition of safely substituting a subtype for a
supertype

Pratikakis (CSD) Subtyping (CS490.40, 2015-2016 6 /15

Subtyping relation (cont'd)

@ A record type is a subtype of another if it has more fields:

S-WIDE
[] The Tk Togwy <t {h s Tayeoo hn s T}

o or if all its fields are subtypes:

Ti<: T, foreach 0 <i<n

S-DEEP
[] {h Ty Ty <s{h: Ty, ln: T}

@ or if the fields are reordered:

[S-PERM]

{h T, i T e Ty e Ta <
{h:Ty, . T e Ty Tod

Pratikakis (CSD) Subtyping (CS490.40, 2015-2016 7 /15

Subtyping relation (cont'd)

@ A function type is a subtype of another if it can be used instead

» The subtype should accept all arguments the supertype accepts
(contravariant)

» The subtype shouldn't return anything not returned by the supertype
(covariant)

To<Th Ti<T,
Th—>T<Ta—T,

@ One supertype to rule them all (like java.lang.0Object):

[S-Fux]

[T-Torl—F—=—

Pratikakis (CSD) Subtyping (CS490.40, 2015-2016 8 /15

Metatheory

@ Inversion lemma of the subtyping relation
» If T<: Ty — T3 then T has the form T} — T, with T3 <: T} and

T/Q <: T2

» f T<:{h:Ty,...,In: Ty} then T has the form {k; : T},... , k,: T,}
with at least the labels /1,...,/, and for all 0 < i < n, if k; = /; then
T <: T

@ Inversion lemma of the typing relation
» fDH(Ax:Te): Ty = Ty, then Ty <: Tand I',x: THe: Ty
» f0-{ki=e1,....kn=-en} : {h: T1,...,lm: T} then for each
i€0..mthereisaje€ 0..nsuch that =k andI'F¢: T;

Pratikakis (CSD) Subtyping (CS490.40, 2015-2016 9 /15

Metatheory (cont'd)

@ Substitution and preservation remain the same (their proof changes)
@ Substitution lemma

» IfT,x: Tiyhe: Toand T € : Ty then T F €[e/x : To
@ Preservation theorem

» fTHe: Tande— € thenT'He : T

Pratikakis (CSD) Subtyping CS490.40, 2015-2016 10 / 15

Metatheory (cont'd)

@ Canonical forms lemma
» If visavalueand @ - v: T; — T» then v has the form Ax: T.e
» If visavalueand O v: {h: T1,...,l,: T,} then v has the form
{ki =wv1,..., km = vin} where for all /; there is a k; = /;
@ Progress theorem
» If O e: T then either e is a value or there is some € with e — ¢

Pratikakis (CSD) Subtyping CS490.40, 2015-2016 11 /15

Subtyping and casts

@ Ascription: explicitly stating the type of an expression—in ML, written
(e: T)

@ Also called casting in languages like C/C++, Java, C#, etc.—written
(Te

@ Two very different forms of casting

» Up-cast: T is a supertype of the typechecker's type for e
» Down-cast: T is a subtype of the typechecker's type for e

@ Down-cast is unsafe

» What happens if at runtime e does not have type T7

» Down-casts usually compiled into run-time checks that raise a dynamic
exception

» Alternatively, down-casts only allowed as a test (like instanceof),
providing an “else” case

Pratikakis (CSD) Subtyping CS490.40, 2015-2016 12 /15

Subtyping and references

@ References are like implicit function arguments

@ ..and also like implicit function results

@ They have to be both covariant and contravariant!
°

References are invariant under subtyping to preserve type safety:

T <: Ty Ty <: Th
Ref™ <: Ref

This restriction is caused by the two operations supported

» Read causes a covariant constraint
» Write causes a contravariant constraint

Pratikakis (CSD) Subtyping CS490.40, 2015-2016 13 /15

Subtyping and arrays

@ Arrays are like references: can read and write the contents

o Like references, we need invariant subtyping for type-safety

T1 <: T2 T2 <: T1
T[] <t T[]

Pratikakis (CSD) Subtyping CS490.40, 2015-2016 14 / 15

Arrays in Java

@ Interestingly, Java permits covariant subtyping for arrays

7& <: 7}
N[<: T[]

e But, consider:
Integer[] x = new Integer[10];
Object[] y = (Object[]) x;

y[3] = new Object();
x[3].intValue(); // OOPS, no such method!

@ Bad design, big performance hit to keep safe:

» Every array assignment is equivalent to a downcast
» Must check every assignment to every array at runtime!

Pratikakis (CSD) Subtyping CS490.40, 2015-2016 15 / 15

