Lecture 8: Types and Type Rules

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Static Analysis

Based on slides by Jeff Foster, UMD

The need for types

- Consider the lambda calculus terms:
 - false = $\lambda x. \lambda y. x$
 - $0 = \lambda x. \lambda y. x$ (Scott encoding)
- Everything is encoded using functions
 - One can easily misuse combinators
 - \star false 0, or if 0 then ..., etc...
 - It's no better than assembly language!

Type system

- A type system is some mechanism for distinguishing good programs from bad
 - Good programs are well typed
 - ▶ Bad programs are ill typed or not typeable
- Examples:
 - ▶ 0+1 is well typed
 - ▶ false + 0 is ill typed: booleans cannot be added to numbers
 - ▶ 1 + (if true then 0 else false) is ill typed: cannot add a boolean to an integer
- This time: types for simple arithmetic (Lecture 4)

A definition

"A type system is a tractable syntactic method for proving the absence of certain program behaviors by classifying phrases according to the kinds of values they compute."

- Benjamin Pierce, Types and Programming Languages

Recall simple arithmetic

Semantics

Types: approximation of result

- Classify terms into types:
 - ▶ A term t has type T: its result will be a boolean/natural
 - ▶ Written t : T (sometimes $t \in T$)
 - Computed statically: without running the program
 - Statical typing is conservative: might reject good programs
- ullet For this language we need two types, $T ::= Bool \mid Nat$
- Examples:
 - if true then 0 else succ 0: Nat, always produces a number
 - ▶ iszero (succ (pred 0)) : *Bool*, always produces a boolean
 - ▶ But: if true then false else succ 0 does not have a static type

The typing relation

- Define a relation ":" to assign types to terms
- Mathematically, ":" is a partial binary relation between the set $\mathcal E$ of all possible programs, and the set $\mathcal T$, (here $\{Bool, Nat\}$) of all possible types
- Can describe this using sets:
 - ► Language: a set \mathcal{E} of all possible terms
 - ► Type language: a set 𝒯 of all possible types
 - ▶ Typing relation: a partial relation ":" $\subseteq \mathcal{E} \times \mathcal{T}$
 - ightharpoonup Well-formed terms: a set $\mathcal{WF}\subseteq\mathcal{E}$ of terms that don't get stuck during evaluation
 - Well-typed terms: a set $\mathcal{WT} \subseteq \mathcal{E}$ of terms that have a type

The typing relation (cont'd)

- \bullet When $\mathcal{WT}\subseteq\mathcal{WF}$, the type system is sound
- When $WF \subseteq WT$, the type system is *complete*
- Usually, we can't have both: undecidable
- Traditionally, type-systems worry about soundness
 - I.e: no accepted program can go wrong
- ...but might reject some correct programs

Back to language definitions

- Inductive: the *smallest* set \mathcal{E} such that
 - $\{\mathsf{true}, \mathsf{false}\} \in \mathcal{E}$
 - ▶ If $t_1 \in \mathcal{E}$ then {succ t_1 , pred t_1 , iszero t_1 } ∈ \mathcal{E}
 - etc.
- By inference rules, e.g:

$$\frac{t \in \mathcal{E}}{\mathsf{iszero}\ t \in \mathcal{E}}$$

- By construction:
 - \triangleright $S_0 = \emptyset$
 - ▶ $S_{i+1} = \{\text{true}, \text{false}, 0\} \cup \text{succ } t, \text{pred } t, \text{iszero } t \mid t \in S_i \cup \dots$
 - $\mathcal{E} = \bigcup_i S_i$

Same thing for typing relation

- Inductive: The smallest relation : such that
 - \triangleright 0 : Nat holds
 - ▶ If t : Nat holds, then succ t : Nat also holds
 - etc.
- By inference rules:

$$\frac{t:Nat}{\mathsf{succ}\; t:Nat}$$

- By construction:
 - $T_0 = \emptyset$
 - ▶ $T_{i+1} = \{0 : Nat\} \cup \{\text{succ } t : Nat \mid (t : Nat) \in T_i\} \cup ...$
 - $\mathfrak{T} = \bigcup_i T_i$

Type system

$$[T-IF]$$
 $t_1:Bool$ $t_2:T$ $t_3:T$ if t_1 then t_2 else $t_3:T$

$$[T-Zero] - \frac{t : Nat}{0 : Nat}$$
 $[T-Succ] - \frac{t : Nat}{succ \ t : Nat}$

$$[\text{T-Pred}] \frac{t: Nat}{\mathsf{pred}\ t: Nat} \qquad [\text{T-IsZero}] \frac{t: Nat}{\mathsf{iszero}\ t: Bool}$$

Inversion lemma

- Typing relation is the smallest relation produced by the rules
- And is syntax-driven (deterministic)
- So we can invert it (inversion lemma):
 - ► The only way to type true is [T-True], with type *Bool*
 - ► The only way to type false is [T-FALSE], with type Bool
 - ▶ If there is a typing if t_1 then t_2 else t_3 : T then the only way to create it is [T-IF], where t_1 : Bool, t_2 : T and t_3 : T
 - etc, for the other syntactic forms
- Proof follows from the definition of typing
- Makes inference rules go backwards:
 - ► Given the conclusion, the premises must have been true (there is no other way to reach that conclusion)
- Practically, it describes the algorithm to construct a typing

In OCaml

• Grammar (Lec. 4):

```
type term =
True
| False
| If of term * term * term
| Zero
| Succ of term
| Pred of term
| IsZero of term
```

Type language:

Type checking

```
let rec typecheck : term -> typ = function
True | False -> TBool
| If (t1, t2, t3) when typecheck t1 = TBool ->
    let typ2 = typecheck t2 in
    let typ3 = typecheck t3 in
    if (typ2 = typ3) then typ2
    else failwith "type error"
| Zero -> TNat
| Succ t | Pred t when (typecheck t) = TNat -> TNat
| IsZero t when (typecheck t) = TNat -> TBool
| _ -> failwith "type error"
```


Progress theorem

- If t: T then either t is a value, or there exists t' such that $t \to t'$
- Proof by induction on t
 - ▶ Base cases (simple values): true, false, 0, trivially true
 - ▶ Inductive cases: assume sub-terms are either values or can step
 - * Case succ t: if t is a value then succ t is a value, otherwise $t \to t'$, therefore succ $t \to \operatorname{succ} t'$ using the fourth semantic rule
 - * Case pred t: from inversion, we know t: Nat. If t is a value it cannot be true or false. So, we can always take a step from pred 0 or pred (succ v). If t is not a value, t takes a step, and pred $t \to pred t'$
 - ...similarly for the other cases

Preservation theorem

- If t: T and $t \rightarrow t'$ then t': T
- ullet Proof by induction on t o t' (each semantic rule)
 - ▶ First rule (base case) iszero $0 \rightarrow$ true: From inversion lemma on iszero 0: T, we get that its type must be Bool, which is also the type of true from [T-True]
 - Second rule (inductive case) iszero $t \to \text{iszero } t'$: From inversion lemma on iszero t: T we get T = Bool and also t: Nat. From induction hypothesis we have $t \to t'$. Apply inductively on t: Nat and $t \to t'$, to get t': Nat. Then iszero t': Bool follows from [T-IsZero]
 - ► Similarly for other base and inductive cases

Soundness

- So far:
 - ▶ Progress: If t: T, then either t is a value, or there exists t' such that $t \rightarrow t'$
 - ▶ Preservation: If t: T and $t \rightarrow t'$ then t': T
- Putting these together, we get soundness
 - ▶ If t: T then either there exists a value v such that $t \rightarrow^* v$ or t doesn't terminate
- What does this mean?
 - "Well-typed programs don't go wrong"
 - Evaluation never gets stuck
- This language will always terminate
 - Proof by induction on term size (defined in Lec. 4)
 - ▶ If $t \rightarrow t'$ then size(t') < size(t)

Next time

- ullet The same, only for λ -calculus
 - ► The function type
 - ▶ What happens with variables?
 - What happens with substitution?

