Lecture 5: The Untyped λ -Calculus Syntax and basic examples

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Static Analysis

CS490.40, 2015-2016

Motivation

- Common programming languages are complex
 - ► ANSI C99: 538 pages► ANSI C++: 714 pages
 - ▶ Java 2.0: 505 pages
- Not ideal for teaching and understanding principles of languages and program analysis
- Ideal: a "core language" with

Pratikakis (CSD)

- Essential features enough to express all computation
- No redundancy: encode extra features as "syntactic sugar"

2 / 36

Lambda Calculus

- Core language for sequential programming
- Can express all computation
 - Still extremely simple and minimal
 - Can encode many extensions as syntactic sugar
- Easy to extend with additional features
- Simple to understand
 - Whole definition in one slide
- ...and fits in a can!
 - http://alum.wpi.edu/~tfraser/Software/Arduino/lambdacan.html

History

- Invented in the 1930s by Alonzo Church (1903-1995)
- Princeton Mathematician
- Lectures on λ -calculus published in 1941
- Also known for
 - Church's Thesis:
 - "Every effectively calculable (decidable) function can be expressed by recursive functions"
 - \star i.e. can be computed by λ -calculus
 - Church's Theorem:
 - ★ The first order logic is undecidable

Syntax

Simple syntax:

```
e ::= x Variables

| \lambda x.e  Function definition

| e e  Function application
```

- Functions are the only language construct
 - ▶ The argument is a function
 - ► The result is a function
 - Functions of functions are higher-order

Semantics

- To evaluate the term $(\lambda x.e_1)$ e_2
 - Replace every x in e₁ with e₂
 - ***** Written as $e_1[e_2/x]$, pronounced " e_1 with e_2 for x"
 - ★ Also written $e_1[x \mapsto e_2]$
 - Evaluate the resulting term
 - Return the result
- Formally called "β-reduction"
 - $(\lambda x.e_1) e_2 \rightarrow_{\beta} e_1[e_2/x]$
 - A term that can be β -reduced is a "redex"
 - We omit β when obvious

Convenient assumptions

- Syntactic sugar for declarations
 - ▶ let $x = e_1$ in e_2 really means $(\lambda x.e_2)$ e_1
- Scope of λ extends as far to the right as possible
 - $ightharpoonup \lambda x.\lambda y.x\ y\ is\ \lambda x.(\lambda y.(x\ y))$
- Function application is left-associative
 - x y z means (x y) z

7 / 36

Scoping and parameter passing

- β -reduction is not yet well-defined:
 - $(\lambda x.e_1) e_2 \rightarrow e_1[e_2/x]$
 - ▶ There might be many *x* defined in *e*₁
- Example
 - Consider the program

let
$$x = a$$
 in

let
$$y = \lambda z.x$$
 in

$$let x = b in$$

▶ Which *x* is bound to *a*, and which to *b*?

CS490.40, 2015-2016

Static (Lexical) Scope

- Variable refers to closest definition
- We can rename variables to avoid confusion:

```
let x = a in
let y = \lambda z.x in
let w = b in
y w
```

 \bullet Renaming variables without changing the program meaning is called " $\alpha\text{-conversion}$ "

Free/bound variables

• The set of free variables of a term is

$$\begin{array}{rcl} FV(x) & = & x \\ FV(\lambda x.e) & = & FV(e) \setminus \{x\} \\ FV(e_1 \ e_2) & = & FV(e_1) \cup FV(e_2) \end{array}$$

- A term *e* is *closed* if $FV(e) = \emptyset$
- A variable that is not free is bound

α -conversion

- Terms are equivalent up to renaming of bound variables
 - ▶ $\lambda x.e = \lambda y.e[y/x]$ if $y \notin FV(e)$
 - ▶ Used to avoid having duplicate variables, capturing during substitution
 - ▶ This is called α -conversion, used implicitly

Substitution

Formal definition

$$\begin{array}{rcl} x[e/x] & = & e \\ y[e/x] & = & y & \text{when } x \neq y \\ (e_1 \ e_2)[e/x] & = & (e_1[e/x] \ e_2[e/x]) \\ (\lambda y.e_1)[e/x] & = & \lambda y.(e_1[e/x]) & \text{when } y \neq x \text{ and } y \notin FV(e) \end{array}$$

- Example
 - $(\lambda x.y x) x =_{\alpha} (\lambda w.y w) x \rightarrow_{\beta} y x$
 - We omit writing α -conversion

Functions with many arguments

- We can't yet write functions with many arguments
 - ▶ For example, two arguments: $\lambda(x, y).e$
- Solution: take the arguments, one at a time (like we do in OCaml)
 - λx.λy.e
 - ► A function that takes *x* and returns another function that takes *y* and returns *e*
 - $(\lambda x. \lambda y. e)$ a $b \rightarrow (\lambda y. e[a/x])$ $b \rightarrow e[a/x][b/y]$
 - ► This is called *Currying*
 - ▶ Can represent any number of arguments

Representing booleans

- true = $\lambda x. \lambda y. x$
- false = $\lambda x. \lambda y. y$
- if a then b else c = a b c
- For example:
 - ▶ if true then b else $c \to (\lambda x. \lambda y. x)$ b $c \to (\lambda y. b)$ $c \to b$
 - ▶ if false then b else $c \to (\lambda x. \lambda y. y)$ b $c \to (\lambda y. y)$ $c \to c$

Combinators

- Any closed term is also called a combinator
 - true and false are combinators
- Other popular combinators:
 - $I = \lambda x.x$
 - $K = \lambda x. \lambda y. x$

 - We can define calculi in terms of combinators
 - ★ The SKI-calculus
 - ★ SKI-calculus is also Turing-complete

Encoding pairs

- $(a, b) = \lambda x$.if x then a else b
- fst = $\lambda p.p$ true
- snd = $\lambda p.p$ false
- Then
 - fst $(a, b) \rightarrow ... \rightarrow a$
 - ▶ snd $(a, b) \rightarrow ... \rightarrow b$

CS490.40, 2015-2016

Natural numbers (Church)

- $0 = \lambda s. \lambda z. z$
- $1 = \lambda s. \lambda z. s. z$
- $2 = \lambda s. \lambda z. s (s z)$
- i.e. $n = \lambda s. \lambda z. \langle \text{apply } s \text{ } n \text{ times to } z \rangle$
- succ = $\lambda n. \lambda s. \lambda z. s (n s z)$
- iszero = $\lambda n.n$ ($\lambda s.$ false) true

Natural numbers (Scott)

- $0 = \lambda x. \lambda y. x$
- $1 = \lambda x. \lambda y. y. 0$
- $2 = \lambda x. \lambda y. y. 1$
- i.e. $n = \lambda x. \lambda y. y (n-1)$
- succ = $\lambda z. \lambda x. \lambda y. y. z$
- pred = $\lambda z.z 0 (\lambda x.x)$
- iszero = $\lambda z.z$ true ($\lambda x.$ false)

Nondeterministic semantics

$$\begin{array}{c} & \qquad \qquad e \rightarrow e' \\ \hline (\lambda x.e_1) \ e_2 \rightarrow e_1[e_2/x] & \qquad (\lambda x.e) \rightarrow (\lambda x.e') \\ \hline e_1 \rightarrow e'_1 & \qquad e_2 \rightarrow e'_2 \\ \hline e_1 \ e_2 \rightarrow e'_1 \ e_2 & \qquad e_1 \ e_2 \rightarrow e_1 \ e'_2 \\ \hline \end{array}$$

Question: why are these rules non-deterministic?

Example

- We can apply reduction anywhere in the term
 - $(\lambda x.(\lambda y.y) \times ((\lambda z.w) \times) \to \lambda x.(x ((\lambda z.w) \times) \to \lambda x.x w)$
 - $(\lambda x.(\lambda y.y) \times ((\lambda z.w) \times) \to \lambda x.(\lambda y.y) \times w \to \lambda x.x w$
- Does the order of evaluation matter?

The Church-Rosser Theorem

- Lemma (The Diamond Property):
 - ▶ If $a \to b$ and $a \to c$, then there exists d such that $b \to^* d$ and $c \to^* d$
- Church-Rosser theorem:
 - ▶ If $a \rightarrow^* b$ and $a \rightarrow^* c$, then there exists d such that $b \rightarrow^* d$ and $c \rightarrow^* d$
 - Proof by diamond property
- Church-Rosser also called confluence

CS490.40, 2015-2016

Normal form

- A term is in normal form if it cannot be reduced
 - ▶ Examples: $\lambda x.x$, $\lambda x.\lambda y.z$
- By the Church-Rosser theorem, every term reduces to at most one normal form
 - ▶ Only for pure lambda calculus with non-deterministic evaluation
- Notice that for function application, the argument need not be in normal form

β -equivalence

- Let $=_{\beta}$ be the reflexive, symmetric, transitive closure of \rightarrow • E.g., $(\lambda x.x)$ $y \rightarrow y \leftarrow (\lambda z.\lambda w.z)$ y y so all three are β -equivalent
- If $a =_{\beta} b$, then there exists c such that $a \to^* c$ and $b \to^* c$
 - ► Follows from Church-Rosser theorem
- ullet In particular, if $a=_{eta}b$ and both are normal forms, then they are equal

Not every term has a normal form

- Consider
 - $\Delta = \lambda x.x x$
 - ▶ Then $\Delta \Delta \rightarrow \Delta \Delta \rightarrow \cdots$
- In general, self application leads to loops
- ...which is good if we want recursion

CS490.40, 2015-2016

Fixpoint combinator

- Also called a paradoxical combinator
 - $Y = \lambda f.(\lambda x. f(x x)) (\lambda x. f(x x))$
 - ▶ There are many versions of this combinator
- Then, $YF =_{\beta} F(YF)$
 - $YF = (\lambda f.(\lambda x.f(x x)) (\lambda x.f(x x))) F$
 - $\rightarrow (\lambda x.F(xx))(\lambda x.F(xx))$
 - ightharpoonup igh
 - $\blacktriangleright \leftarrow F(YF)$

Example

- fact(n) = if(n = 0) then 1 else n * fact(n 1)
- Let $G = \lambda f \cdot \lambda n$ if (n = 0) then 1 else n * f(n 1)
- $Y G 1 =_{\beta} G (Y G) 1$
 - \blacktriangleright =_{\beta} (\lambda f.\lambda n.if (n = 0) then 1 else n * f(n-1)) (Y G) 1
 - \blacktriangleright =_{β} if (1 = 0) then 1 else 1 * ((Y G) 0)
 - $\triangleright =_{\beta} 1 * ((Y G) 0)$
 - $\triangleright =_{\beta} 1 * (G(YG) 0)$
 - \blacktriangleright =_{β} 1 * ($\lambda f. \lambda n. \text{if } (n = 0) \text{ then } 1 \text{ else } n * f(n 1) (YG) 0)$
 - $\bullet =_{\beta} 1 * (if (0 = 0) then 1 else 0 * ((Y G) 0))$
 - $-\beta 1 * 1 = 1$

In other words

- The Y combinator "unrolls" or "unfolds" its argument an infinite number of times
 - YG = G(YG) = G(G(YG)) = G(G(G(YG))) = ...
 - G needs to have a "base case" to ensure termination
- But, only works because we follow call-by-name
 - ▶ Different combinator(s) for call-by-value

 - ▶ Why is this a fixed-point combinator? How does its difference from *Y* work for call-by-value?

Why encodings

- It's fun!
- Shows that the language is expressive
- In practice, we add constructs as language primitives
 - More efficient
 - Much easier to analyze the program, avoid mistakes
 - ► Our encodings of 0 and true are the same, we may want to avoid mixing them, for clarity

Lazy and eager evaluation

- Our non-deterministic reduction rule is fine for theory, but awkward to implement
- Two deterministic strategies:
 - ▶ Lazy: Given $(\lambda x.e_1)$ e_2 , do not evaluate e_2 if e_1 does not need x anywhere
 - Also called left-most, call-by-name, call-by-need, applicative, normal-order evaluation (with slightly different meanings)
 - ► Eager: Given $(\lambda x.e_1)$ e_2 , always evaluate e_2 to a normal form, before applying the function
 - * Also called call-by-value

Lazy operational semantics

$$\frac{(\lambda x.e_1) \to^{l} (\lambda x.e_1)}{e_1 \to^{l} \lambda x.e \qquad e[e_2/x] \to^{l} e'}$$

$$\frac{e_1 \to^{l} \lambda x.e \qquad e[e_2/x] \to^{l} e'}{e_1 e_2 \to^{l} e'}$$

- The rules are deterministic, big-step
 - ► The right-hand side is reduced "all the way"
- The rules do not reduce under λ
- The rules are normalizing:
 - ▶ If a is closed and there is a normal form b such that $a \to^* b$, then $a \to^l d$ for some d

Eager (big-step) semantics

$$\begin{array}{cccc}
\hline
(\lambda x.e_1) \to^e (\lambda x.e_1) \\
\hline
e_1 \to^e \lambda x.e & e_2 \to^e e' & e[e'/x] \to^e e'' \\
\hline
e_1 & e_2 \to^e e''
\end{array}$$

- \bullet This big-step semantics is also deterministic and does not reduce under λ
- But is not normalizing!
 - Example: let $x = \Delta \Delta$ in $(\lambda y.y)$

Eager Fixpoint

- The Y combinator works for lazy semantics
 - $Y = \lambda f(\lambda x. f(x x))(\lambda x. f(x x))$
- The Z combinator does the same for eager (call-by-value) semantics

 - ▶ Why doesn't the Y combinator work for call-by-value?
 - ▶ Why does Z do the same thing for call-by-value?

Lazy vs eager in practice

- Lazy evaluation (call by name, call by need)
 - ▶ Has some nice theoretical properties
 - ▶ Terminates more often
 - Lets you play some tricks with "infinite" objects
 - Main example: Haskell
- Eager evaluation (call by value)
 - Is generally easier to implement efficiently
 - Blends more easily with side-effects
 - Main examples: Most languages (C, Java, ML, ...)

Functional programming

- ullet The λ calculus is a prototypical functional programming language
 - Higher-order functions (lots!)
 - No side-effects
- In practice, many functional programming languages are not "pure": they permit side-effects
 - But you're supposed to avoid them...

Functional programming today

- Two main camps
 - ► Haskell Pure, lazy functional language; no side-effects
 - ▶ ML (SML, OCaml) Call-by-value, with side-effects
- Old, still around: Lisp, Scheme
 - Disadvantage/feature: no static typing

Influence of functional programming

- Functional ideas move to other langauges
 - Garbage collection was designed for Lisp; now most new languages use GC
 - Generics in C++/Java come from ML polymorphism, or Haskell type classes
 - ► Higher-order functions and closures (used in Ruby, exist in C#, proposed to be in Java soon) are everywhere in functional languages
 - Many object-oriented abstraction principles come from ML's module system
 - •

