CS 490.40 Introduction to Type Theory and Static Analysis

Lecture 4

Untyped Arithmetic

Abstract Syntax

Abstract: a description of the AST, hides parsing details

```
t ::=
   true
   false
   if t then t else t
   0
   succ t
   pred t
   iszero t
```

- Constant terms true, false, 0 are values
- A language is the set of all possible terms

Language Definitions

• Inductive definition:

The language is the set \mathcal{T} of terms such that

- ullet {true, false, 0} are in ${\mathcal T}$
- if t1 is in \mathcal{T} , then {succ t1, pred t1, iszero t1} are also in \mathcal{T}
- if t1, t2 and t3 are in \mathcal{T} , then {if t1 then t2 else t3} is also in \mathcal{T}
- Nothing else is in ${\mathcal T}$

Language Definitions (cont'd)

Definition by inference rules

Axiom: rule with no premises

$$true \in \mathcal{T} \qquad false \in \mathcal{T} \qquad 0 \in \mathcal{T}$$

$$Above the line: premises$$

$$t1 \in \mathcal{T} \qquad t1 \in \mathcal{T}$$

$$succ t1 \in \mathcal{T} \qquad pred t1 \in \mathcal{T} \qquad iszero t1 \in \mathcal{T}$$

$$Below the line: conclusion$$

$$t1 \in \mathcal{T} \quad t2 \in \mathcal{T} \quad t3 \in \mathcal{T}$$

$$if t1 then t2 else t3 \in \mathcal{T}$$

Language Definitions (cont'd)

- Definition by construction
 Define set S(i)
 - $S(0) = \emptyset$
 - $S(i+1) = \{true, false, 0\}$
 - \cup {succ t1, pred t1, iszero t1 | t1 \in S(i)}
 - \cup {if t1 then t2 else t3 | t1, t2, t3 \in S(i)}
 - $S = \bigcup S(i)$, for all i

OCaml data types are nice for AST description
 type term =

TmTrue

| TmFalse

| TmIf of term * term * term

TmZero

| TmSucc of term

| TmPred of term

TmIsZero of term

Quite close to the abstract grammar

Defining Inductive Properties

The set of constants in a program

- Inductive definition
 - base cases for values
 - inductive cases based on smaller terms

Data types are inductive, just pattern match!

```
let rec consts = function
    TmTrue -> [TmTrue]
   TmFalse -> [TmFalse]
   TmIf(t1,t2,t3) ->
      (consts t1) @ (consts t2) @ (consts t3)
   TmZero -> [TmZero]
   TmSucc(t1)
   TmPred(t1)
   TmIsZero(t1) -> consts t1
```

Will calculate a list of all the constants in the term

Another Inductive Definition

The size of a term

```
size(true) = 1
size(false) = 1
size(0) = 1
size(succ t1) = size(t1) + 1
size(pred t1) = size(t1) + 1
size(iszero t1) = size(t1) + 1
size(if t1 then t2 else t3) = size(t1) + size(t2) + size(t3) + 1
```

Counts the nodes in the AST

 Again, straightforward with pattern matching let rec size = function **TmTrue** TmFalse TmZero -> 1 TmIf(t1,t2,t3) -> (size t1) + (size t2) + (size t3) + 1TmSucc(t1) TmPred(t1) $TmIsZero(t1) \rightarrow (size t1) + 1$

Looks familiar?

Yet Another Inductive Definition

A term t is a numerical value

- Implement in OCaml?
- The property isvalue(t) is similar

Inductive Proofs

- Given an inductive definition of terms t, prove property P(t) for all possible terms t
 - Basically, case analysis on the grammar of t
- Ordinary induction
 - Show P(t) holds for base cases
 - Assuming P(t') for n terms t1..tn, show P(t) for every inductive case constructing a term t from t1..tn
- Structural induction
 - Assuming P(t') for all immediate subterms t' of t, show P(t)
- Complete induction
 - Assuming P(t) holds for all terms t' that are smaller than t (not just immediate subterms), prove P(t)

Semantics

- Enough about syntax
- What does a program mean?
 - What does a programming language mean?
- Formal semantics of a programming language:

A mathematical description of all possible computations of all possible programs

- Three main approaches to semantics
 - Denotational
 - Operational
 - Axiomatic

Denotational Semantics

- Define the meaning by translation to another language with known meaning
 - Equivalent to compilation
 - Defined as an interpretation function from terms to elements in a mathmatical domain (numbers, functions, etc)
 - Abstract away details of computation
- Example: [t] is the meaning of term t
 - [0] = 0
 - [succ t] = [t] + 1
 - [pred t] = [t] 1
 - [if t1 then t2 else t3] = [t2], when [t1] is true, [t3] otherwise
 - etc.

Axiomatic Semantics

- Define the meaning of syntax using axioms
 - Invariants, properties/predicates that hold at each program point
 - Preconditions: properties that hold before execution of a term
 - Postconditions: properties that hold after evaluation of a term (if it terminates)
- Based on predicate logic
- Used to prove the correctness of programs
- Examples:
 - $\{true\}\ x := 5\ \{!x = 5\}$
 - {x <> 0} z = y/x {z = y/x, x <> 0}
 {P and x=5} t2 {Q} {P and x<>5} t3 {Q}
 {P} if x=5 then t2 else t3 {Q}

Operational Semantics

- Define an abstract machine that evaluates the program
 - Equivalent to an interpreter
 - Usually by term rewriting
- Machine states are just terms of the language
 - Can include other terms outside the program language e.g. terms in a language that describes memory contents
- Small-step operational semantics
 - Computation is a transition function that takes a machine state and returns the next state (executes one step of computation)
 - t → t' means term t takes a step and becomes term t'
- Big-step operational semantics
 - Computation is a transition from a machine state that includes a term, to a machine state where the term is evaluated to a resulting value
 - t → v means term t evaluates to v
 - Describes terminating executions

Operational Semantics (cont'd)

A small-step semantics for our terms

	<u>t1</u> →	-	v is a numerical value
iszero 0 → true	iszero t1 →	iszero t1'	iszero(succ v) \rightarrow false
pred 0 → 0	$\frac{t1 \rightarrow t1'}{\text{pred t1} \rightarrow \text{pred t1'}}$		v is a numerical value pred(succ(v)) → v
		t	<u>t1 → t1'</u>
if false then t1 else t2 \rightarrow t2		if t1 then t2 else t3 \rightarrow	
		if t1' then t2 else t3	
			+1 . +1!
if true than the along the		$\frac{t1 \rightarrow t1'}{c_{11}c_{12}c_{13}c_{14}c_{1$	
if true then t1 else t2 \rightarrow t1		succ $t1 \rightarrow succ t1'$	

• Each rule defines a pattern in the AST, and how to evaluate it

```
let rec step = function
  TmlsZero(TmZero) -> TmTrue
 | TmIsZero(TmSucc v) when (isnumerical v) -> TmFalse
 | TmlsZero(t1) -> let t1' = step t1 in TmlsZero(t1')
 | TmPred(TmZero) -> TmZero
 | TmPred(TmSucc(v)) when (isnumerical v) -> v
 | TmPred(t1) -> TmPred(step t1)
 | TmIf(TmTrue, t1, t2) -> t1
 | Tmlf(TmFalse, t1, t2) -> t2
 | Tmlf(t1, t2, t3) -> Tmlf(step t1, t2, t3)
 | TmSucc(t1) -> TmSucc(step t1)
 |_ -> failwith "runtime error"
```

That's the interpreter!

Next time

- The lambda calculus: a very simple language
 t ::= x | λx.t | t t
- One kind of value, functions λx.t with one argument x
- One instruction, function application t t