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Introduction 

 In the previous assignment, we used the Kalman filter for an obviously non-linear 

problem. Kalman Filter also known as linear Kalman Filter, works only in linear state transition 

situations. The trajectory of the previous assignment clearly wasn’t one of them since it was 

moving in circles. Although, with low velocities and high sampling rate, one can approximate 

heuristically the trajectory of the robot as small linear consecutive movements.  

 In this assignment we want to implement the EKF for a (correctly modelled) non-linear 

problem. Knowing its closed form/analytical solution, we will be able to verify the EKF's superior 

performance. While the EKF in general does not guarantee optimality anymore (in comparison, 

the standard Kalman filter guarantees to obtain the minimum possible MSE for linear problems), 

the mere fact that it more accurately models non-linear dynamics results in much better 

performance. 

 You will implement the Extended Kalman Filter (EKF) for the Turtlebot in order to 

estimate its state at each time step. As in the previous assignment the robot is always moving 

with a constant linear and angular velocity and thus moving on the circumference of a circle. This 

time the linear velocity is 𝜐 = 0.5
𝑚

𝑠
 and the angular is 𝜔 = 0.3

𝑟𝑎𝑑

𝑠𝑒𝑐
 

EKF Algorithm  

Prediction 

𝐱̂𝑡
− = 𝑔(𝐱̂𝑡−1, 𝑢𝑡) Predicted state estimate (mean) 

𝑃̂𝑡
− = 𝐺𝑡𝑃𝑡−1𝐺𝑡

𝑇 + 𝑄𝑡 Predicted covariance estimate 

Correction 

𝐾𝑡 = 𝑃̂𝑡
−𝐻𝑡

𝑇(𝐻𝑡𝑃̂𝑡
−𝐻𝑡

𝑇 + 𝑅𝑡)
−1

 Kalman gain 

𝐱̂𝑡 = 𝐱̂𝑡
− + 𝐾𝑡(𝑧𝑡 − ℎ(𝐱̂𝑡

−)) Updated state estimate (mean) 

𝑃̂𝑡 = (𝐼 − 𝐾𝑡𝐻𝑡)𝑃𝑡
− Updated covariance estimate 

 

𝑥𝑡
−is the prior estimate, the rough estimate before the measurement update correction. 𝑔 is a 

non-linear function that represents the dynamic and non-linear evolution of the system. 𝑃  is the 

covariance matrix. 𝑅 is called measurement noise matrix and contains the error of our inaccurate 

sensors. 𝑄 is called process noise and represents the error in the prediction due to various factors 

such as the robot slips or wind etc.. The state of our robot is 𝐱 = [𝑥, 𝑦, 𝜃, 𝜐, 𝜔]𝛵. Where 𝜃 is the 

direction of the robot (yaw) with respect to the x-axis of the global reference frame {𝑊}, 𝜐 is the 

linear velocity and 𝜔 is the angular velocity.  

 Matrices 𝐺 and 𝐻 which contain the (partial) Taylor expansions of 𝑔 and ℎ with respect 

to each of their parameters. Most literature only uses first order Taylor expansion (i.e. it aborts 

the Taylor expansion after the first term) which effectively turns 𝐺 and 𝐻 into Jacobians (a matrix 
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of partial derivatives of a vector-valued function with respect to all its parameters).  So, 𝐺 is the 

Jacobian of 𝑔 with respect to 𝐱. 

 This time, linear and angular velocities have noise and can be considered as both 

measurements and control inputs. Maybe this will get clearer with the following example. Let’s 

say that you monitor the pressure on the gas pedal of a car. The fact that the driver might has 

pushed it all the way down doesn’t mean that the car is accelerating with full thrust since it 

depends on the gear, the slope of the ground and other parameters. So, if you also have a GPS 

or other measurements that indicate that the car is not moving you can estimate its actual 

velocity more precisely. 

Differential-steered vehicle kinematics 

Turtlebot has two driven wheels and a front and back castor to provide stability. The 

robot steers by independently controlling the speed of the wheels on each side of the vehicle – 

if the speeds are not equal the vehicle will turn. The vehicle’s velocity 𝜐 is in the vehicle’s x-

direction, and zero in the y-direction since the wheels cannot slip sideways. The pose of the 

vehicle is represented by the body coordinate frame (local) shown in drawing, with its x-axis in 

the vehicle’s forward direction and its origin at the centroid of the two driven wheels. The vehicle 

follows a curved path centered on the Instantaneous Center of Rotation (ICR) and the distance 

from the ICR to the origin of the robot’s coordinate frame is 𝑟 =
𝜐

𝜔
 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

The position of P in the global reference frame is specified by coordinates x and y, and 

the angular difference between the global and local reference frames is given by 𝜃. We can 

describe the pose of the robot as vector with three elements 𝑃 = [𝑥, 𝑦, 𝜃]𝛵. The equations that 

specify the position 𝑃′ of the robot on the plane with respect to the global reference frame, 

while it is moving on the circumference of a circle in time step 𝛥𝑡, are:  

𝑃′ 

𝑟 

𝐼𝐶𝑅𝑦 
{𝐼𝐶𝑅} 

𝛥𝜃 = 𝜔𝛥𝑡 

𝜃 

𝑟 

𝑦′ 

𝑃 

𝑦 

{𝑊} 

𝜃 

𝐼𝐶𝑅𝑥 𝑥  𝑥′  

𝑥𝑅  𝑦𝑅  

𝑡 − 1  

𝑡  



𝑥′ = 𝑥 +
𝜐

𝜔
(𝑠𝑖𝑛(𝜃 + 𝜔𝛥𝑡) − 𝑠𝑖𝑛𝜃)  

𝑦′ = 𝑦 −
𝜐

𝜔
(𝑐𝑜𝑠(𝜃 + 𝜔𝛥𝑡) − 𝑐𝑜𝑠𝜃)  

With the time interval 𝛥𝑡 to be small enough. 

The yaw angle using Taylor approximation within the same time step is: 

𝜃′ = 𝜃 + 𝜃̇𝛥𝑡 = 𝜃 + 𝜔𝛥𝑡 

While it is considered that 𝜐′ = 𝜐 and 𝜔′ = 𝜔. 

The full motion model is given by the following equation: 

[
 
 
 
 
𝑥𝑡

𝑦𝑡

𝜃𝑡

𝑢𝑡

𝜔𝑡]
 
 
 
 

=

[
 
 
 
 
 
 𝑥𝑡−1 +

𝜐

𝜔
(sin(𝜃𝑡−1 + 𝜔𝛥𝑡) − 𝑠𝑖𝑛𝜃𝑡−1)

𝑦𝑡−1 −
𝜐

𝜔
(cos(𝜃𝑡−1 + 𝜔𝛥𝑡) − 𝑐𝑜𝑠𝜃𝑡−1)

𝜃𝑡−1 + 𝜔𝛥𝑡
𝑢𝑡−1

𝜔𝑡−1 ]
 
 
 
 
 
 

 

The state prediction matrix 𝑔 is constructed using the previous equation. 

Implementation 

 In order to complete this assignment, you’ll need to fill the gaps marked as ??? and then 

visualize and evaluate your results. The noisy inputs that you are getting are: gps_x, gps_y, 

linear_velocity, angular_velocity. The implementation is almost the same as in the previous 

assignment, but now you have a different state and you’ll have to compute the Jacobians by 

hand. If you remove the noise from all measurements and publishing the predictions the result 

should be a perfect tracking of the robot’s position. If your implementation is correct, your 

output should look like this: 

 

Figure 1 Screenshot captured from RViz. The green arrows represent the EKF estimates, the purple dots the noisy GPS 
measurements. The orange arrows represent the mostly accurate position and orientation of the robot. 

  



Setup 

 In the zip file that you’ve downloaded, there is a cs475_asgmt2 folder, copy this to the 

workspace (/home/<user_name>/asgmt1_ws/src) that we have created in the previous 

assignment and compile using catkin_make command. Open the file run.sh and change the 

package name cs475_asgmt1 into cs475_asgmt2 in the roslaunch command if you want to load 

everything executing this shell script. Also you can start the simulator running the command 

roslaunch cs475_asgmt2 burger.launch since you firstly have exporting the variable 

TURTLEBOT3_MODEL (export TURTLEBOT3_MODEL=burger). When your implementation is 

completed, use rosrun cs475_asgmt2 ekf.py to run your node. You might also need to make it 

executable by chmod u+x ekf.py 

Tips 

1. Comment the blocks of the source code and add additional lines (e.g. return) in order to 

make sure that the steps you are making are correct. 

2. The Jacobians are very lengthy, I suggest to compute each element separately and then to 

combine them into one matrix. 

3. Feel free to change the given template code as you wish. 

4. You should revisit your assignment 1 source code since some parts are almost the same. 

Submission 

Send your node (ekf.py) attached via email at: csdp1210@csd.uoc.gr Don’t forget to add 

at the top of the file your name and your registration number as a comment. The subject of the 

email should be the following: [CS475]: Assignment 2 submission. The deadline is due to 

Wednesday 22/03/2023 23:59. 
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