CS-475 Assignment 1
Kalman Filter

Kalykakis Emmanouil
csdp1210@csd.uoc.gr

Release date: Sunday 05/03/2023
Deadline: Monday 13/03/2023, 23:59

1 Introduction

In this assignment, we are going to help our turtlebot to localize itself by using
the Kalman Filter (KF). The Kalman filter allows us to combine a variety of
potentially erroneous/inaccurate sources and obtain an estimate about the state
of our robot that is more accurate than any individual source. Our robot has 2
sources of positional data:

1. It is equipped with a GPS sensor which returns the position of the robot
(x.5)-

2. It tracks the rotation of each of its wheels and returns how much the robot
has turned.

In a perfect world, we would just need one of the aforementioned sensors in
order to perform successful localization. In practice the wheels are subject to
slip which may cause the robot to believe it’s turned a different amount than it
actually has; this error accumulates over time (aka ”drift”). While GPS simply
is not accurate enough (its resolution isn’t high enough) on its own for the tasks
we want our robot to do. For the purpose of this assignment we’ll assume that
all sensing uncertainties can be modeled in terms of Gaussian white noise and
therefore the KF can be utilized to filter data streams and obtain more reliable
estimates about the robot’s position.

2 Setup

Open a terminal (keyboard shortcut: Ctrl4+Alt+T) to navigate to your home
directory and then type:

mkrir -p “/asgmtl_ws/src

cd “/asgmtl_ws/src

If you ever want to open a new tab in an existing terminal session, use the key-
board shortcut Ctrl+Shift+T. Type the following commands in order to clone
the Turtlebot3 packages from the repository to your workspace

git clone https://github.com/ROBOTIS-GIT/turtlebot3_simulations.git
git clone https://github.com/ROBOTIS-GIT/turtlebot3.git

Also, if you haven’t already installed the following package, type the follow-
ing command:

sudo apt-get install -y ros-rosdistro-turtlebot3-msgs

Replace rosdistro with the name of the installed ROS distribution in your PC.
You can find this, by typing the command: echo $ROS_DISTRO
Copy the directory cs475_asgmtl with its contents into the directory:

/home/<user_name>/asgmtl_ws/src

In order your system to see the new ROS workspace and the necessary files
for the Turtlebot3 robot, you have to source the devel/setup.bash file every
time by using the command:

source /home/$(whoami)/asgmtl_ws/devel/setup.bash
and exporting the variable TURTLEBOT3_MODEL with the command:
export TURTLEBOT3_MODEL=burger

T suggest to copy the given file run. sh into the folder of the workspace (asgmt1_ws)
in order to avoid every time you open a new terminal session to execute the pre-
vious two steps. The only thing needed is to set execute permissions to it using
the command: (chmod u+x run.sh). Type the following commands in order to
compile the packages:

cd “/asgmtl_ws/
catkin_make

You can start and load everything when you type the command . /run.sh (don’t
forget to type the dot character at the beginning of the command).

Everything is ready for you regarding the package ”setup”, you don’t need to
change anything in the CMakeLists.txt or package.xml. Inside this package you
will find the launch/ folder, which contains the launch file (burger.launch). This
file provides a convenient way to start up multiple nodes and a master(roscore),
as well as other initialization requirements such as setting parameters. The
ONLY thing that you will need to modify is the src/kalman.py file. (Although

playing around and tweaking stuff is highly recommended, always keep backup
and test your code on the given template package.) Finally, don’t change the
name of your node from ”kalman.py”.

3 Implementation

For this assignment you will implement the KF by filling up the 7?77 inside the
src/kalman.py. Practically you will need to code the mathematics from slide 17
of Bayes Filter Implementations presentation (2.kalman.ppt).

As mentioned before you will have to fuse two sensors: GPS and motion sen-
sor in order to get a better estimation about the robot’s position (x,y) and orien-
tation (dir). Your noisy inputs come from the ” /odom” topic and they named:
gps_x,gps_y,deltaDir. deltaDir can be considered as your control input i.e.
how much the robot is commanded to turn at each timestep. I suggest to com-
ment blocks of your code and take it step by step, checking every time if the
dimensions of your matrices are correct and if they contain the expected values.

Simulation

This time, instead of Gazebo (running on the background) you are going to use
the Rviz. Rviz is a powerful tool, built-in for ROS and helps with the visualiza-
tion of data. You can start the simulation by opening a terminal window and

type:
roslaunch cs475_asgmtl burger.launch

Then, an Rviz window (displayed at Figure 1) should appear and the robot will
start moving forever with constant linear speed=0.7 and anglular velocity
=0.7. When you have completed your implementation, Rviz will subscribe to
the ” /kalman” topic and visualize the state of your robot. Start up the kalman
node with the command:

rosrun cs475_asgmtl kalamn.py

If you want this node to start automatically along with all the rest, you can
uncomment the second to last line of the burger.launch file.

Figure 1: Screenshot taken from Rviz

In the above image, the green arrows represent the last 15 Kalman filter
estimates, the purple dots the noisy GPS measurements and the red arrows the
noisy odometry. The orange arrows represent the mostly accurate position and
orientation of the vehicle.

4 Submission

Send your node (kalman.py) attached via email at: csdpl1210@csd.uoc.gr
Don’t forget to add at the top of the file your name and your registration number
as a comment. The subject of the email should be the following: [CS475]: As-
signment 1 submission. The deadline is due to Monday 13/03 /2023 23:59

	Introduction
	Setup
	Implementation
	Submission

