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The roots of Google’s PageRank can be traced 
back to several early, and equally remarkable, 
ranking techniques.

by Massimo Franceschet

PageRank: 
Standing on 
the Shoulders 
of Giants

Wholly new forms of encyclope-
dias will appear, ready made with 
a mesh of associative trails run-
ning through them, ready to be 
dropped into the Memex and there 
amplified.

Bush’s prediction came true in 1989, 
when Tim Berners-Lee proposed the 
Hypertext Markup Language (HTML) to 
keep track of experimental data at the 
European Organization for Nuclear 
Research (CERN). In the original far-
sighted proposal in which Berners-Lee 
attempts to persuade CERN manage-
ment to adopt the new global hyper-
text system we can read the following 
paragraphb:

We should work toward a univer-
sal linked information system, in 
which generality and portability 
are more important than fancy 
graphics techniques and complex 
extra facilities. The aim would be 
to allow a place to be found for any 
information or reference which 
one felt was important, and a way 
of finding it afterwards. The result 
should be sufficiently attractive 
to use that the information con-
tained would grow past a  critical 
threshold.

b	 http://www.w3.org/History/1989/proposal.html

PageRank 3 is a  Web page ranking technique that has 
been a fundamental ingredient in the development 
and success of the Google search engine. The 
method is still one of the many signals Google uses to 
determine which pages are most important.a The main 
idea behind PageRank is to determine the importance 
of a Web page in terms of the importance assigned to 
the pages hyperlinking to it. In fact, this thesis is not 
new, and has been previously successfully exploited 
in different contexts. We review the PageRank method 
and link it to some renowned previous techniques 
that we have found in the fields of Web information 
retrieval, bibliometrics, sociometry, and econometrics.

In 1945 Vannevar Bush wrote a celebrated article 
in The Atlantic Monthly entitled “As We May Think” 
describing a futuristic device he called Memex.5 
Bush wrote:

a	 http://www.google.com/corporate/tech.html

 key insights
 � �Great, pioneering research paved the 

way for PageRank, the well-known 
algorithm of Brin and Page that became 
the basis for the Google search engine 
and that is still one of the many signals  
Google uses to determine which pages 
are most important.

 � �This article examines the mathematical 
predecessors to PageRank in ostensibly 
disparate disciplines such as Web 
information retrieval, bibliometrics, 
sociometry, and econometrics.

 � �In tracing these early efforts we find the 
fundamental idea behind PageRank—
its circular thesis that a Web page is 
important if it is pointed to by other 
important pages—was not entirely  
new, and had basis in work going  
back decades.
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on a page, the higher the PageRank 
importance of the page.

A little more formally, the method 
can be described as follows. Let us 
denote by qi the number of distinct out-
going (hyper)links of page i. Let H = (hi, j) 
be a square matrix of size equal to the 
number n of Web pages such that hi, j = 
1/qi if there exists a link from page i to 
page j and hi, j = 0 otherwise. The value 
hi, j can be interpreted as the probabil-
ity that the random surfer moves from 
page i to page j by clicking on one of the 
distinct links of page i. The PageRank 
πj of page j is recursively defined as

or, in matrix notation, π = π  H. Hence, 
the PageRank of page j is the sum of the 
PageRank scores of pages i linking to j, 
weighted by the probability of going 
from i to j. In words, the PageRank 
thesis reads as follows:

A Web page is important if it is 
pointed to by other important 
pages.

There are in fact three distinct factors 
that determine the PageRank of a page: 
the number of links it receives;  the link 
propensity, that is, the number of out-
going links, of the linking pages; and  
the PageRank of the linking pages. The 
first factor is not surprising: the more 
links a page receives, the more impor-
tant it is perceived. Reasonably, the 
link value depreciates proportionally to 
the number of links given out by a page: 
endorsements coming from parsimo-
nious pages are worthier than those 
emanated by spendthrift ones. Finally, 
not all pages are created equal: links 
from important pages are more valu-
able than those from obscure ones.

Unfortunately, this ideal model has 
two problems that prevent the solution 
of the system. The first one is due to 
the presence of dangling nodes, that 
are pages with no forward links.c These 
pages capture the random surfer 
indefinitely. Notice that a dangling 
node corresponds to a row in matrix 
H with all entries equal to 0. To tackle 

c	 The term dangling refers to the fact that many 
dangling nodes are in fact pendent Web pages 
found by the crawling spiders but whose links 
have not been yet explored.

As we all know, the proposal was ac-
cepted and later implemented in a 
mesh—this was the only name that Ber-
ners-Lee originally used to describe the 
Web—of interconnected documents 
that rapidly grew beyond the CERN 
threshold, as Berners-Lee anticipated, 
and became the World Wide Web.

Today, the Web is a huge, dynamic, 
self-organized, and hyperlinked data 
source, very different from tradi-
tional document collections that are 
nonlinked, mostly static, centrally 
collected and organized by special-
ists. These features make Web infor-
mation retrieval quite different from 
traditional information retrieval and 
call for new search abilities, like auto-
matic crawling and indexing of the 
Web. Moreover, early search engines 
ranked responses using only a content 
score, which measures the similar-
ity between the page and the query. 
One simple example is just a count 
of the number of times the query 
words occur on the page, or perhaps 
a weighted count with more weight on 
title words. These traditional query-
dependent techniques suffered under 
the gigantic size of the Web and the 
death grip of spammers.

In 1998, Sergey Brin and Larry Page 
revolutionized the field of Web infor-
mation retrieval by introducing the 

notion of an importance score, which 
gauges the status of a page, indepen-
dently from the user query, by analyz-
ing the topology of the Web graph. 
The method was implemented in the 
famous PageRank algorithm and both 
the traditional content score and the 
new importance score were efficiently 
combined in a new search engine 
named Google.

Ranking Web Pages using  
PageRank
We briefly recall how the PageRank 
method works keeping the math-
ematical machinery to the minimum. 
Interested readers can more thoroughly 
investigate the topic in a recent book 
by Langville and Meyer that elegantly 
describes the science of search engine 
rankings in a rigorous yet playful style.16

We start by providing an intuitive 
interpretation of PageRank in terms of 
random walks on graphs.22 The Web is 
viewed as a directed graph of pages con-
nected by hyperlinks. A random surfer 
starts from an arbitrary page and sim-
ply keeps clicking on successive links at 
random, bouncing from page to page. 
The PageRank value of a page corre-
sponds to the relative frequency the ran-
dom surfer visits that page, assuming 
that the surfer goes on infinitely. The 
more time spent by the random surfer 

 

Figure 1. A PageRank instance with solution. Each node is labeled with its PageRank score. 
Scores have been normalized to sum to 100. We assumed α = 0.85.
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the problem of dangling nodes, the 
corresponding rows in H are replaced 
by the uniform probability vector 
u = 1/ne, where e is a vector of length 
n with all components equal to 1. 
Alternatively, one may use any fixed 
probability vector in place of u. This 
means the random surfer escapes 
from the dangling page by jumping to 
a randomly chosen page. We call S the 
resulting matrix.

The second problem with the ideal 
model is that the surfer can get trapped 
into a bucket of the Web graph, which is 
a reachable strongly connected compo-
nent without outgoing edges toward the 
rest of the graph. The solution proposed 
by Brin and Page is to replace matrix S 
by the Google matrix

G = aS + (1 − a) E

where E is the teleportation matrix 
with identical rows each equal to the 
uniform probability vector u, and a 
is a free parameter of the algorithm 
often called the damping factor. 
Alternatively, a fixed personalization 
probability vector v can be used in 
place on u. In particular, the person-
alization vector can be exploited to 
bias the result of the method toward 
certain topics. The interpretation of 
the new system is that, with prob-
ability a the random surfer moves 
forward by following links, and, with 
the complementary probability 1 − a 
the surfer gets bored of following 
links and enters a new destination in 
the browser’s URL line, possibly unre-
lated to the current page. The surfer 
is hence teleported, like a Star Trek 
character, to that page, even if there 
exists no link connecting the current 
and the destination pages in the Web 
universe. The inventors of PageRank 
propose to set the damping factor 
a = 0.85, meaning that after about five 
link clicks the random surfer chooses 
a random page.

The PageRank vector is then defined 
as the solution of equation:

π = πG� (1)

An example is provided in Figure 
1. Node A is a dangling node, while 
nodes B and C form a bucket. Notice 
the dynamics of the method: page C 
receives just one link but from the most 

important page B; its importance is 
much higher than that of page E, which 
receives many more links, but from 
anonymous pages. Pages G, H, I, L, and 
M do not receive endorsements; their 
scores correspond to the minimum 
amount of status of each page.

Typically, the normalization condi-
tion  is also added. In this case, 
Equation 1 becomes π = aπS + (1 − a)u. 
The latter distinguishes two factors 
contributing to the PageRank vector: 
an endogenous factor equal to πS, which 
takes into consideration the real topol-
ogy of the Web graph, and an exogenous 
factor equal to the uniform probability 
vector u, which can be interpreted as a 
minimal amount of status assigned to 
each page independently of the hyper-
link graph. The parameter a balances 
between these two factors.

Computing the PageRank Vector
Does Equation 1 have a solution? 
Is the solution unique? Can we effi-
ciently compute it? The success of the 
PageRank method rests on the answers 
to these queries. Luckily, all these 
questions have nice answers.

Thanks to the dangling nodes 
patch, matrix S is a stochastic matrix,d 
and clearly the teleportation matrix E 
is also stochastic. It follows that G is 
stochastic as well, since it is defined 
as a convex combination of stochas-
tic matrices S and E. It is easy to show 
that, if G is stochastic, Equation 1 has 
always at least one solution. Hence, we 
have got at least one PageRank vector. 
Having two independent PageRank 
vectors, however, would be already 
too much: which one should we use to 
rank Web pages? Here, a fundamental 
result of algebra comes to the rescue: 
Perron–Frobenius theorem.7, 24 It states 
that, if A is an irreduciblee nonnega-
tive square matrix, then there exists a 
unique vector x, called the Perron vec-
tor, such that xA = rx, x > 0, and , 
where r is the maximum eigenvalue 
of A in absolute value, that algebraists 
call the spectral radius of A. The Perron 
vector is the left dominant eigenvector 
of A, that is, the left eigenvector asso-

d	 This simply means that all rows sum up to 1.
e	 A matrix is irreducible if and only if the directed 

graph associated with it is strongly connected, 
that is, for every pair i and j of graph nodes there 
are paths leading from i to j and from j to i.

ciated with the largest eigenvalue in 
magnitude.

The matrix S is most likely reducible, 
since experiments have shown that the 
Web has a bow-tie structure fragmented 
into four main continents that are not 
mutually reachable, as first observed by 
Broder et al.4 Thanks to the teleporta-
tion trick, however, the graph of matrix 
G is strongly connected. Hence G is irre-
ducible and Perron–Frobenius theorem 
applies.f Therefore, a positive PageRank 
vector exists and is furthermore unique.

Interestingly, we can arrive at the 
same  result using Markov theory.20 The 
above described random walk on the Web 
graph, modified with the teleportation 
jumps, naturally induces a finite-state 
Markov chain, whose transition matrix 
is the stochastic matrix  G. Since G is 
irreducible, the chain has a unique sta-
tionary distribution corresponding to 
the PageRank vector.

A last crucial question remains: can 
we efficiently compute the PageRank 
vector? The success of PageRank is 
largely due to the existence of a fast 
method to compute its values: the 
power method, a simple iteration 
method to find the dominant eigenpair 

f	 Since G is stochastic, its spectral radius is 1.

Table 1. PageRank history

Year Author Contribution

1906 Markov Markov theory20

1907 Perron Perron theorem24

1912 Frobenius Perron–Frobenius  
theorem7

1929 von Mises and  
Pollaczek- 
Geiringer

Power method31

1941 Leontief Econometric 
model18

1949 Seeley Sociometric 
model29

1952 Wei Sport ranking 
model32

1953 Katz Sociometric 
model11

1965 Hubbell Sociometric 
model10

1976 Pinski  
and Narin

Bibliometric 
model26

1998 Kleinberg HITS14

1998 Brin and Page PageRank3
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and the code is freely available at the 
author’s Web page.

Hubs and Authorities on the Web
Hypertext Induced Topic Search 
(HITS) is a Web page ranking 
method proposed by Kleinberg.14, 15 
The connections between HITS and 
PageRank are striking. Despite the 
close conceptual, temporal, and 
even geographical proximity of the 
two approaches, it appears that HITS 
and PageRank have been developed 
independently. In fact, both papers 
presenting PageRank3 and HITS15 are 
today citational blockbusters: the 
PageRank article collected 6,167 cita-
tions, while the HITS paper has been 
cited 4,617 times.h

HITS thinks of Web pages as author-
ities and hubs. HITS circular thesis 
reads as follows:

Good authorities are pages that 
are pointed to by good hubs and 
good hubs are pages that point to 
good authorities.

Let L = (li, j) be the adjacency matrix 
of the Web graph, i.e., li, j = 1 if page i 
links to page j and li, j = 0 otherwise. We 
denote with LT the transpose of L. HITS 
defines a pair of recursive equations as 
follows, where x is the authority vector 
containing the authority scores and  
y is the hub vector containing the hub 
scores:

x(k) = LTy(k−1) �
(2)

y(k) = Lx(k) 

where k ≥ 1 and y(0) = e, the vector of all 
ones. The first equation tells us that 
authoritative pages are those pointed 
to by good hub pages, while the second 
equation claims that good hubs are 
pages that point to authoritative pages. 
Notice that Equation 2 is equivalent to

x(k) = LTLx(k−1)�
(3)

y(k) = LLTy(k−1)

It follows that the authority vector x is 
the dominant right eigenvector of the 
authority matrix A = LTL, and the hub 
vector y is the dominant right eigenvec-
tor of the hub matrix H = LLT. This is very 
similar to the PageRank method, except 

h	 Source: Google Scholar on February 5, 2010.

of a matrix developed by von Mises and 
Pollaczek-Geiringer.31 It works as fol-
lows on the Google matrix G. Let π (0) = 
u = 1/ne. Repeatedly compute π (k+1)  = 
π(k) G until ||π (k+1) − π(k)|| < , where || · || 
measures the distance between the 
two successive PageRank vectors and  
 is the desired precision.

The convergence rate of the power 
method is approximately the rate at 
which ak approaches to 0: the closer a to 
unity, the lower the convergence speed 
of the power method. If, for instance, a = 
0.85, as many as 43 iterations are suf-
ficient to gain 3 digits of accuracy, and 
142 iterations are enough for 10 dig-
its of accuracy. Notice that the power 
method applied to matrix G can be 
easily expressed in terms of matrix 
H, which, unlike G, is a very sparse 
matrix that can be stored using a linear 
amount of memory with respect to the 
size of the Web.

Standing on the  
Shoulders of Giants
Dwarfs standing on the shoulders of 
giants is a Western metaphor mean-
ing “One who develops future intel-
lectual pursuits by understanding the 
research and works created by notable 

thinkers of the past.”g The metaphor 
was famously uttered by Isaac Newton: 
“If I have seen a little further it is by 
standing on the shoulders of Giants.” 
Moreover, “Stand on the shoulders of 
giants” is Google Scholar’s motto: “the 
phrase is our acknowledgement that 
much of scholarly research involves 
building on what others have already 
discovered.”

There are many giants upon whose 
shoulders PageRank firmly stands: 
Markov,20 Perron,24 Frobenius,7 von 
Mises and Pollaczek-Geiringer31 pro-
vided at the beginning of the 1900s the 
necessary mathematical machinery to 
investigate and effectively solve the 
PageRank problem. Moreover, the cir-
cular PageRank thesis has been previ-
ously exploited in different contexts, 
including Web information retrieval, 
bibliometrics, sociometry, and econo-
metrics. In the following, we review 
these contributions and link them to 
the PageRank method. Table 1 shows a 
brief summary of PageRank history. All 
the ranking techniques surveyed in this 
paper have been implemented in R27 

g	 From the Wikipedia page for Standing on the 
shoulders of giants.

Figure 2. A HITS instance with solution (compare with PageRank scores in Figure 1). Each 
node is labeled with its authority (top) and hub (bottom) scores. Scores have been normalized 
to sum to 100. The dominant eigenvalue for both authority and hub matrices is 10.7.
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The connections 
between HITS 
and PageRank are 
striking. Despite the 
close conceptual, 
temporal, and 
even geographical 
proximity of  
the two approaches,  
it appears that HITS 
and PageRank have 
been developed 
independently.

the use of the authority and hub matri-
ces instead of the Google matrix.

To compute the dominant eigen-
pair (eigenvector and eigenvalue) of the 
authority matrix we can again exploit 
the power method as follows: let x (0) = e. 
Repeatedly compute x(k) = Ax(k−1) and 
normalize x(k) = x(k)/m(x(k)), where m(x(k)) 
is the signed component of maximal 
magnitude, until the desired precision 
is achieved. It follows that x(k) converges 
to the dominant eigenvector x (the 
authority vector) and m(x(k)) converges 
to the dominant eigenvalue (the spec-
tral radius, which is not necessarily 1). 
The hub vector y is then given by y = Lx. 
While the convergence of the power 
method is guaranteed, the computed 
solution is not necessarily unique, since 
the authority and hub matrices are not 
necessarily irreducible. A modifica-
tion similar to the teleportation trick 
used for the PageRank method can be 
applied to HITS to recover the unique-
ness of the solution.35

An example of HITS is given in 
Figure 2. We stress the difference 
among importance, as computed by 
PageRank, and authority and hubness, 
as computed by HITS. Page B is both 
important and authoritative, but it is 
not a good hub. Page C is important 
but by no means authoritative. Pages 
G, H, and I are neither important nor 
authoritative, but they are the best 
hubs of the network, since they point to 
good authorities only. Notice that the 
hub score of B is 0 although B has one 
outgoing edge; unfortunately for B, the 
only page C linked by B has no authority. 
Similarly, C has no authority because 
it is pointed to only by B, whose hub 
score is zero. This shows the difference 
between indegree and authority, as well 
as between outdegree and hubness. 
Finally, we observe that nodes with null 
authority scores (respectively, null hub 
scores) correspond to isolated nodes in 
the graph whose adjacency matrix is the 
authority matrix A (respectively, the hub 
matrix H).

An advantage of HITS with respect to 
PageRank is that it provides two scores 
at the price of one. The user is hence 
provided with two rankings: the most 
authoritative pages about the research 
topic, which can be exploited to investi-
gate in depth a research subject, and the 
most hubby pages, which correspond 
to portal pages linking to the research 

topic from which a broad search can be 
started. A disadvantage of HITS is the 
higher susceptibility of the method to 
spamming: while it is difficult to add 
incoming links to our favorite page, the 
addition of outgoing links is much eas-
ier. This leads to the possibility of pur-
posely inflating the hub score of a page, 
indirectly influencing also the authority 
scores of the pointed pages.

HITS is related to a matrix factor-
ization technique known as singular 
value decomposition.6 According to 
this technique, the adjacency matrix 
L can be written as the matrix product 
USVT, where the columns of U, called 
left-singular vectors, are the orthonor-
mal eigenvectors of the hub matrix LLT, 
the columns of V, called right-singular 
vectors, are the orthonormal eigenvec-
tors of the authority matrix LTL, and S 
is a diagonal matrix whose diagonal 
elements, called singular values, cor-
respond to the square roots of the 
eigenvalues of the hub matrix (or, 
equivalently, of the authority matrix). 
It follows that the HITS authority and 
hub vectors correspond, respectively, 
to the right- and left-singular vectors 
associated with the highest singular 
value of L.

HITS also has a connection to bib-
liometrics.6 Two typical bibliometric 
methods to identify similar publica-
tions are co-citation, in which publica-
tions are related when they are cited by 
the same papers, and co-reference, in 
which papers are related when they cite 
the same papers. The authority matrix is 
a co-citation matrix and the hub matrix 
is a co-reference matrix. Indeed, since 
A = LTL, the element ai, j of the authority 
matrix contains the number of times 
pages i and j are both linked by a third 
page (ai,  j is the number of inlinks of i). 
Moreover, since H = LLT, the element hi,  j 
of the hub matrix contains the number 
of times both pages i and j link to a third 
page (hi,i is the number of outlinks of i). 
Hence, good authorities are pages that 
are frequently co-cited with other good 
authorities, and good hubs are pages 
that frequently co-reference with other 
good hubs.

A following algorithm that incorpo-
rates ideas from both PageRank and 
HITS is SALSA17: like HITS, SALSA com-
putes both authority and hub scores, 
and like PageRank, these scores are 
obtained from Markov chains.
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reputed journals are weighted as those 
from obscure journals. In 1976 Gabriel 
Pinski and Francis Narin developed an 
innovative journal ranking method.26 
The method measures the influence 
of a journal in terms of the influence 
of the citing journals. The Pinski and 
Narin thesis is:

A journal is influential if it is cited 
by other influential journals.

This is the same circular thesis of the 
PageRank method. Given a source 
time  window T1 and a previous target 
time window T2, the journal citation 
system can be viewed as a weighted 
directed graph in which nodes are jour-
nals and there is an edge from journal i 
to journal j if there is some article pub-
lished in i during T1 that cites an article 
published in j during T2. The edge is 
weighted with the number ci,  j of such 
citations from i to j. Let  be 
the total number of cited references of 
journal i.

In the method described by Pinski 
and Narin, a citation matrix H = (hi, j) 
is constructed such that hi, j = ci, j/cj. The 
coefficient hi,j is the amount of cita-
tions received by journal j from journal 
i per reference given out by journal j. 
For each journal an influence score is 
determined which measures the rela-
tive journal performance per given 
reference. The influence score πj of 
journal j is defined as

or, in matrix notation:

π = πΗ � (4)

Hence, journals j with a large total 
influence πj cj are those that receive sig-
nificant endorsements from influen-
tial journals. Notice that the influence 
per reference score πj of a journal j is a 
size-independent measure, since the 
formula normalizes by the number of 
cited references cj contained in articles 
of the journal, which is an estimation 
of the size of the journal. Moreover, the 
normalization neutralizes the effect 
of journal self-citations, which are 
citations between articles in the same 
journal. These citations are indeed 
counted both at the numerator and at 

Bibliometrics
Bibliometrics, also known as scien-
tometrics, is the quantitative study of 
the process of scholarly publication 
of research achievements. The most 
mundane aspect of this branch of 
information and library science is the 
design and application of bibliometric 
indicators to determine the influence 
of bibliometric units like scholars and 
academic journals. The Impact Factor 
is, undoubtedly, the most popular 
and controversial journal bibliometric 
indicator available at the moment. It is 

defined, for a given journal and a fixed 
year, as the mean number of citations 
in the year to papers published in the 
two previous years. It has been pro-
posed in 1963 by Eugene Garfield, the 
founder of the Institute for Scientific 
Information (ISI), working together 
with Irv Sher.8 Journal Impact Factors 
are currently published in the popular 
Journal Citation Reports by Thomson-
Reuters, the new owner of the ISI.

The Impact Factor does not take 
into account the importance of the 
citing journals: citations from highly 

Figure 3. An instance with solution of the journal ranking method proposed by Pinski and 
Narin. Nodes are labeled with influence scores and edges with the citation flow between 
journals. Scores have been normalized to sum to 100.
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the denominator of the influence score 
formula. This avoids overinflating 
journals that engage in the practice of 
opportunistic self-citations.

It can be proved that the spectral 
radius of matrix H is 1, hence the influ-
ence score vector corresponds to the 
dominant eigenvector of H.9 In princi-
ple, the uniqueness of the solution and 
the convergence of the power method 
to it are not guaranteed. Nevertheless, 
both properties are not difficult to 
obtain in real cases. If the citation 
graph is strongly connected, then the 
solution is unique. When journals 
belong to the same research field, 
this condition is typically satisfied. 
Moreover, if there exists a self-loop in 
the graph, that is an article that cites 
an article in the same journal, then the 
power method converges.

Figure 3 provides an example of the 
Pinski and Narin method. Notice that 
the graph is strongly connected and 
has a self-loop, hence the solution is 
unique and can be computed with the 
power method. Both journals A and 
C receive the same number of cita-
tions and give out the same number 
of references. Nevertheless, the influ-
ence of A is bigger, since it is cited by 
a more influential journal (B instead 
of D). Furthermore, A and D receive 
the same number of citations from 
the same journals, but D is larger than 
A, since it contains more references, 
hence the influence of A is higher.

Similar recursive methods have been 
independently proposed by Liebowitz 
and Palmer19 and Palacios-Huerta 
and Volij23 in the context of ranking 
of economics journals. Recently, vari-
ous PageRank-inspired bibliometric 
indicators to evaluate the importance 
of journals using the academic cita-
tion network have been proposed and 

extensively tested: journal PageRank,2 
Eigenfactor,34 and SCImago.28

Sociometry
Sociometry, the quantitative study 
of social relationships, contains 
remarkably old PageRank predeces-
sors. Sociologists were the first to use 
the network approach to investigate the 
properties of groups of people related in 
some way. They devised measures like 
indegree, closeness, betweeness, as well 
as eigenvector centrality, which are still 
used today in modern (not necessarily 
social) network analysis.21 In particular, 
eigenvector centrality uses the same cen-
tral ingredient of PageRank applied to a 
social network:

A person is prestigious if he is 
endorsed by prestigious people.

John R. Seeley in 1949 is probably the 
first in this context to use the circular 
argument of PageRank.29 Seeley rea-
sons in terms of social relationships 
among children: each child chooses 
other children in a social group with 
a non-negative strength. The author 
notices that the total choice strengths 
received by each children is inade-
quate as an index of popularity, since it 
does not consider the popularity of the 
chooser. Hence, he proposes to define 
the popularity of a child as a function 
of the popularity of those children who 
chose the child, and the popularity of 
the choosers as a function of the popu-
larity of those who chose them and so 
in an “indefinitely repeated reflection.” 
Seeley exposes the problem in terms of 
linear equations and uses Cramer’s 
rule to solve the linear system. He does 
not discuss the issue of uniqueness.

Another model is proposed in 
1953 by Leo Katz.11 Katz views a social 

network as a directed graph where 
nodes are people and person i is con-
nected by an edge to person j if i 
chooses, or endorses, j. The status of 
member i is defined as the number of 
weighted paths reaching j in the net-
work, a generalization of the indegree 
measure. Long paths are weighted less 
than short ones, since endorsements 
devalue over long chains. Notice that 
this method indirectly takes account 
of who endorses as well as how many 
endorse an individual: if a node i 
points to a node j and i is reached by 
many paths, then the paths leading to 
i arrive also at j in one additional step.

Katz builds an adjacency matrix 
L = (li, j) such that li, j = 1 if person i chooses 
person j and li,  j = 0 otherwise. He defines 
a matrix , where a is an 
attenuation constant. Notice that the (i,  j ) 
component of Lk is the number of paths 
of length k from i to j, and this number 
is attenuated by ak in the computation 
of W. Hence, the (i, j ) component of the 
limit matrix W is the weighted number 
of arbitrary paths from i to j. Finally, the 
status of member , that is, 
the number of weighted paths reach-
ing j. If the attenuation factor a < 1/r(L), 
with r(L) the spectral radius of L, then 
the above series for W converges.

Figure 4 illustrates the method with 
an example. Notice the important role 
of the attenuation factor: when it is 
large (close to 1/r(L) ), long paths are 
devalued smoothly, and Katz scores 
are strongly correlated with PageRank 
ones. In the shown example, PageRank 
and Katz methods provide the same 
ranking of nodes when the attenuation 
factor is 0.9. On the other hand, if the 
attenuation factor is small (close to 0), 
then the contribution given by paths 
longer than 1 rapidly declines, and thus 
Katz scores converge to indegrees, the 
number of incoming links of nodes. 
In the example, when the attenua-
tion factor drops to 0.1, nodes C and E 
switch their positions in the ranking: 
node E, which receives many short 
paths, significantly increases its score, 
while node C, which is the destination 
of just one short path and many (deval-
ued) long ones, significantly decreases 
its score.

In 1965 Charles H. Hubbell gen-
eralizes the proposal of Katz.10 Given 
a set of members of a social con-
text, Hubbell defines a matrix W = (wi, j) 

Figure 5. An instance of the Hubbell model with solution: each node is labeled with its 
prestige score and each edge is labeled with the endorsement strength between the  
connected members; negative strength is highlighted with dashed edges. The minimal 
amount of status has been fixed to 0.2 for all members.
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economy of a country may be divided 
into any desired number of sectors, 
called industries, each consisting of 
firms producing a similar product. 
Each industry requires certain inputs 
in order to produce a unit of its own 
product, and sells its products to other 
industries to meet their ingredient 
requirements. The aim is to find prices 
for the unit of product produced by 
each industry that guarantee the repro-
ducibility of the economy, which holds 
when each sector balances the costs 
for its inputs with the revenues of its 
outputs. In 1973, Leontief earned the 
Nobel Prize in economics for his work 
on the input–output model. An exam-
ple is provided in Table 2.

Let qi, j denote the quantity produced 
by the ith industry and used by the jth 
industry, and qi be the total quantity 
produced by sector i, that is, . 
Let A = (ai, j) be such that ai, j = qi,  j/qj; each 
coefficient ai, j represents the amount 
of product (produced by industry) i con-
sumed by industry j that is necessary to 
produce a unit of product j. Let πj be the 
price for the unit of product produced 
by each industry j. The reproducibility 
of the economy holds when each sector 
j balances the costs for its inputs with 
the revenues of its outputs, that is:

By dividing each balance equation by qj 
we have

or, in matrix notation,

π = π A� (6)

such that wi, j is the strength at which i 
endorses j. Interestingly, these weights 
can be arbitrary, and in particular, they 
can be negative. The prestige of a mem-
ber is recursively defined in terms of 
the prestige of the endorsers and takes 
account of the endorsement strengths:

π = πW + v� (5)

The term v is an exogenous vector such 
that vi is a minimal amount of status 
assigned to i from outside the system.

The original aspects of the method 
are the presence of an exogenous ini-
tial input and the possibility of giving 
negative endorsements. A consequence 
of negative endorsements is that the 
status of an actor can also be nega-
tive. An actor who receives a positive 
(respectively, negative) judgment from 
a member of positive status increases 
(respectively, decreases) his prestige. 
On the other hand, and interestingly, 
receiving a positive judgment from a 
member of negative status makes a neg-
ative contribution to the prestige of the 
endorsed member (if you are endorsed 
by some person affiliated to the Mafia 
your reputation might drop indeed). 
Moreover, receiving a negative endorse-
ment from a member of negative status 
makes a positive contribution to the 
prestige of the endorsed person (if the 
same Mafioso opposes you, then your 
reputation might raise).

Figure 5 shows an example for the 
Hubbell model. Notice that Charles 
does not receive any endorsement and 
hence has the minimal amount of sta-
tus given by default to each member. 
David receives only negative judgments; 
interestingly, the fact that he has a posi-
tive self-opinion further decreases his 
status. A better strategy for him, know-
ing in advance of his negative status, 
would be to negatively judge himself, 

acknowledging the negative judgment 
given by the other members.

Equation 5 is equivalent to π(I − W) = 
v, where I is the identity matrix, that is 

. The series con-
verge if and only if the spectral radius 
of W is less than 1. It is now clear that 
the Hubbell model is a generalization 
of the Katz model to general matrices 
that adds an initial exogenous input v. 
Indeed, the Katz equation for social sta-
tus is , where e is a vector of 
all ones. In an unpublished note Vigna 
traces the history of the mathematics 
of spectral ranking and shows there is 
a reduction from the path summation 
formulation of Hubbell–Katz to the 
eigenvector formulation with teleporta-
tion of PageRank and vice versa.30 In the 
mapping the attenuation constant is 
the counterpart of the PageRank damp-
ing factor, and the exogenous vector 
corresponds to the PageRank person-
alization vector. The interpretation of 
PageRank as a sum of weighted paths is 
also investigated by Baeza-Yates et al.1

Spectral ranking methods have also 
been exploited to rank sport teams in 
competitions that involve teams play-
ing in pairs.13, 32 The underlying idea is 
that a team is strong if it won against 
other strong teams. Much of the art of 
the sport ranking problem is how to 
define the matrix entries ai,  j expressing 
how much team i is better than team j 
(e.g., we could pick ai,  j to be 1 if j beats 
i, 0.5 if the game ended in a tie, and 0 
otherwise).12

Econometrics
We conclude with a succinct descrip-
tion of the input–output model devel-
oped in 1941 by Nobel Prize winner 
Wassily W. Leontief in the field of 
econometrics—the quantitative study 
of economic principles.18 According to 
the Leontief input–output model, the 

Table 2. An input–output table for an economy with three sectors with the balance solution.

Agriculture Industry Family Total Price Revenue

Agriculture       7.5   6   16.5   30 20 600

Industry   14   6 30   50 15 750

Family   80 180 40 300   3 900

Cost 600 750 900

Each row shows the output of a sector to other sectors of the economy. Each column shows the inputs received by a sector from other sectors. For each sector we also show 
total quantity produced, equilibrium unitary price, total cost, and total revenue. Notice that each sector balances costs and revenues.
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Hence, highly remunerated industries 
(industries j with high total revenue πjqj) 
are those that receive substantial inputs 
from highly remunerated industries, 
a circularity that closely resembles the 
PageRank thesis.25 With the same argu-
ment used by Geller9 for the Pinski and 
Narin bibliometric model we can show 
that the spectral radius of matrix A is 1, 
thus the equilibrium price vector π is 
the dominant eigenvector of matrix A. 
Such a solution always exists, although 
it might not be unique, unless A is irre-
ducible. Notice the striking similarity 
of the Leontief closed model with that 
proposed by Pinski and Narin. An open 
Leontief model adds an exogenous 
demand and creates a surplus of rev-
enue (profit). It is described by the 
equation π = π A + v, where v is the profit 
vector. Hubbell himself observes the 
similarity between his model and the 
Leontief open model.10

It might seem disputable to juxta-
pose PageRank and Leontief methods. 
To be sure, the original motivation 
of Leontief work was to give a formal 
method to find equilibrium prices for 
the reproducibility of the economy 
and to use the method to estimate 
the  impact on the entire economy 
of the  change in demand in any sec-
tors of the economy. Leontief, to the 
best of our limited knowledge, was 
not motivated by an industry ranking 
problem. On the other hand, the moti-
vation underlying the other methods 
described in this paper is the ranking of 
a set of homogeneous entities. Despite 
the original motivations, however, 
there are more than coincidental simi-
larities between the Leontief open and 
closed models and the other ranking 
methods described in this paper. These 
connections motivated the discussion 
of the Leontief contribution, which is 
probably the least known among the 
surveyed methods within the comput-
ing community.

Conclusion
The classic notion of quality of infor-
mation is related to the judgment 
given by few field experts. PageRank 
introduced an original notion of qual-
ity of information found on the Web: 
the collective intelligence of the Web, 
formed by the opinions of the millions 
of people that populate this universe, is 
exploited to determine the importance, 
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and ultimately the quality, of that 
information.

Consider the difference between 
expert evaluation and collective evalua-
tion. The former tends to be intrinsic, 
subjective, deep, slow, and expen-
sive. By contrast, the latter is typically 
extrinsic, democratic, superficial, 
fast, and low cost. Interestingly, the 
dichotomy between these two evalu-
ation methodologies is not peculiar 
to information found on the Web. In 
the context of assessment of academic 
research, peer review—the evalua-
tion of scholarly publications given 
by peer experts working in the same 
field of the publication—plays the 
role of expert evaluation. Collective 
evaluation consists in gauging the 
importance of a contribution though 
the bibliometric practice of counting 
and analyzing citations received by the 
publication from the academic com-
munity. Citations generally witness 
the use of information and acknowl-
edge intellectual debt. Eigenfactor,34 a 
PageRank-inspired bibliometric indi-
cator, is among the most interesting 
recent proposals to  collectively evalu-
ate the status of academic journals. 
The consequences of a shift from peer 
review to bibliometric evaluation are 
currently heartily debated in the aca-
demic community.33
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