
CS-473 Pattern Recognition CSD, University of Crete

Assignment 3

Prof. Panos Trahanias trahania@csd.uoc.gr

T.A. Emmanouil Sylligardos sylligardos@csd.uoc.gr

T.A. Despina - Ekaterini Argiropoulos despargy@csd.uoc.gr

Deadline Wednesday 23:59, 26th of April 2023

Note: This is a personal assignment and should be pursued individually and without use of any computerized AI

facilities. Note that this will be automatically checked for every delivered assignment. The assignment should be

implemented entirely in Google Colaboratory, following the delivered instructions below.

Part A: (20/100)

Maximum Likelihood Estimation for Parameter Estimation

The scope of this exercise is to get familiar with the Maximum Likelihood Estimation (MLE) technique in order to

calculate the parameters of some given distributions. You are given 3 different normal distributions representing 3

different classes. Each distribution is about a different class of 2-dimensional instances. You are asked to find the

parameters describing the distribution of each class.

Data – Part A: For this exercise, you will use the dataset included in dataA MLE.csv file. The dataset consists

of 300 samples by row, 100 for each different class (ex. first 100 rows are about class 0, next 100 rows are about

class 1 and the last 100 rows are about class 2). Notice that there are 3 columns. The first 2 columns represent

the features of the data and the last column represents the class label 0, 1, 2.

Equation – Part A: For Part A, you should use the equation 1 of Gaussian distribution formula, where µ is the

mean of the data distribution, σ is the standard deviation of the data distribution.

f (x |µ, σ) =
1

σ
√
2π
e−

1
2
(x−µ
σ
)2 (1)

!Notice: You are not allowed to use library functions, everything should be developed from scratch.

Question:

1. Implement a function which takes as input an array of samples and returns the mean of those samples.

2. Implement a function which takes as input an array of samples and returns the covariance matrix of those

samples.

3. Print the mean and the covariance matrix for each one of the 3 classes, using functions from Questions 1

and 2.

4. Considering the functions of Questions 1 and 2 and equation 1, plot each class distribution in one single 3D

plot.

Part B: (40/100)

Parzen Windows

The scope of this exercise is to get familiar with the Parzen Windows in order to estimate the probability density

function of the distribution of some given data.

Data – Part B: For this exercise, you will use the dataset included in dataB Parzen.csv file. The dataset consists

of 200 samples by row, each sample is 1-dimensional (1 column). We do not have any knowledge or assumption

about their distribution.

Released date: Friday, 31st of March 2023

Deadline: Wednesday 23:59, 26th of April 2023

!Notice: You are not allowed to use library functions, everything should be developed from scratch.

Question:

1. Implement the window function φ(u), when window is a hypercube.

2. Implement the window function φ(u), when window is a Gaussian kernel.

3. Implement a function which takes as input a single point xi , the center of the window as a single point c ,

the width h of the window and the kernel type (’hypercube’ or ’Gaussian’) of the window. The function

calls one of the above implemented functions (hypercube window or Gaussian window), with the appropriate

input, and returns the result.

4. In this question, you are asked to develop the Density Function of Parzen Window. Implement a function

which takes as input an array of 1-d points data, a single point x which represents the center, the width h

of the window and the kernel type of the window. The function should return the likelihood of the center x ,

given the other inputs.

5. What’s the best value for the width of the window h? To find this, assume that the dataset you have comes

from the normal distribution N(1, 4) (this is a univariate normal distribution). Find the most suitable value

for h based on that knowledge.

(a) Create a histogram of the data to convince yourselves that they come from the aforementioned distri-

bution.

(b) For every h in the range [0.2, 10] with step = 0.1 calculate 1) the predicted likelihood for every point

in the data, 2) their true likelihood (you can use the function norm.pdf(data, loc=1, scale=4)), and 3)

the Mean Square Error of the two likelihoods (predicted and true). Repeat this process for both kernels

(hypercube and Gaussian). What’s the most suitable value for h for each kernel? Print your answer and

create a plot which shows the values of h on the x-axis and their MSE on the y-axis (for both kernels).

Part C: (40/100)

K-Nearest Neighbors (KNN) Classification

The scope of this exercise is to get familiar with the K-Nearest Neighbors (KNN) Classifier.

Data – Part C: For this exercise, you will use the dataset included in dataC KNNtrain.csv and dataC KNNtest.csv

files. The dataset consists of 50 samples by row. You notice that each sample has 3 columns. The first 2 columns

represent the 2-dimensional data and the last column represents their label (0,1).

Question:

1. Implement a function which has as input a 2D point x and a NumPy array train data of 2D points, and it

computes the Euclidean distances of that point x to all points in the given array. The function should return

that NumPy array of the Euclidean distances.

2. Implement a function which has as input a 2D point x, a NumPy array train data of 2D points and a number

k. The function returns the k closer neighbors of x. As neighbors, we call all the points in train data. Hint:

Use the function from Question 1.

3. In this step, you are asked to develop the k-NN algorithm. Implement a function which has as input the train

data, the test data and a number k of neighbors that will be considered during k-NN. The function should

return two probabilities for each sample xi of the test data, the probability of xi sample belong to class 0 and

the probability of xi sample belong to class 1, respectively. These probabilities should add to 1.

4. In this question, you are asked to search for the best k number, meaning to select a number k that maximizes

the accuracy of the k-NN classifier. Compute the accuracy of the classifier from question 3, for each k in

the set of 1,3,5,7,9,11,13,15 (e.g. acc = ? when k = 3, ..., acc = ? when k = 11, ...). Plot with point

markers the above results, print and explain which k you would choose.

5. Bonus 10% Show the decision boundaries of your classifier in a 2D plot, using the value for k from the

previous task.

2

Deliverable

This assignment should be implemented entirely in Google Colaboratory. Google’s notebook allows you to combine

executable Python scripts with rich text in a single document. Your deliverable should be a single ’.ipynb’ file along

with its corresponding .py file (both can be easily exported from Google Colaboratory). Every single question should

be implemented in a single code block. Code blocks should be clearly and shortly explained (you may use the text

boxes for that goal). Use only library functions for matrix operations and plots.

Submission instructions

• To ask questions, email hy473-list@csd.uoc.gr with the subject “[CS473]: Assignment 3 question”.

• To submit your implementation, email sylligardos@csd.uoc.gr and despargy@csd.uoc.gr with the subject
“[CS473]: Assignment 3 submission”.

• You should submit only the files ’.ipynb’ and ’.py’ in a zipped folder (.zip) with the name ”hw3 ¡am¿” where am
is your university identification number. The folder should contain nothing else than the two aforementioned

files.

• The names of the submitted ’.ipynb’ and ’.py’ files should be ”hw3 ¡am¿.ipynb” and ”hw3 ¡am¿.py” re-
spectively.

• The whole ’.ipynb’ file should run when selecting ‘Runtime → Run all’ without any problem. Meaning that

any unnecessary code blocks should be removed prior to submitting. Code blocks that can not run will not

be graded. If they prevent the smooth execution of the file, they will have a negative impact on the grade of

the assignment.

3

