
A Tutorial on Default Logics
GRIGORIS ANTONIOU

Griffith University

Default Logic is one of the most prominent approaches to nonmonotonic reasoning,
and allows one to make plausible conjectures when faced with incomplete
information about the problem at hand. Default rules prevail in many application
domains such as medical diagnosis and legal reasoning.

Several variants have been developed over the past years, either to overcome some
perceived deficiencies of the original presentation, or to realize somewhat different
intuitions. This paper provides a tutorial-style introduction to some important
approaches of Default Logic. The presentation is based on operational models for
these approaches, thus making them more easily accessible to a broader audience,
and more easily usable in practical applications.

Categories and Subject Descriptors: I.2.3 [Artificial Intelligence]: Deduction and
Theorem Proving—Nonmonotonic reasoning and belief revision; I.2.4 [Artificial
Intelligence]: Knowledge Representation Formalisms and
Methods—Representation languages

General Terms: Languages, Theory

Additional Key Words and Phrases: Default Logic, nonmonotonic reasoning,
operational models

1. INTRODUCTION: DEFAULT REASONING

When an intelligent system (either com-
puter-based or human) tries to solve a
problem, it may be able to rely on com-
plete information about this problem,
and its main task is to draw the correct
conclusions using classical reasoning. In
such cases, classical predicate logic may
be sufficient.

However, in many situations the sys-
tem has only incomplete information at
hand, be it because some pieces of infor-
mation are unavailable, or because it
has to respond quickly and does not
have the time to collect all relevant

data. Classical logic indeed has the ca-
pacity to represent and reason with cer-
tain aspects of incomplete information.
But there are occasions where addi-
tional information needs to be “filled in”
to overcome the incompleteness, be-
cause certain decisions must be made.
In such cases the system has to make
some plausible conjectures, which in the
case of default reasoning are based on
rules of thumb, called defaults. For ex-
ample, an emergency doctor has to
make some conjectures about the most
probable causes of the symptoms ob-
served. Obviously, it would be inappro-
priate to await the results of possibly

Author’s address: School of Computing & Information Technology, Griffith University, Brisbane, QLD
4111, Australia; email: ga@cit.gu.edu.au.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and / or a fee.
© 2000 ACM 0360-0300/99/0900–0337 $5.00

ACM Computing Surveys, Vol. 31, No. 3, September 1999

extensive and time-consuming tests be-
fore beginning with treatment.

When decisions are based on assump-
tions, these may turn out to be wrong in
the face of additional information that
becomes available; i.e., medical tests
may lead to a modified diagnosis. The
phenomenon of having to take back
some previous conclusions is called non-
monotonicity; it says that if a statement
w follows from a set of premises M and
M # M9, w does not necessarily follow
from M9. Default Logic, originally pre-
sented in Reiter [1980], provides formal
methods to support this kind of reason-
ing.

Default Logic is perhaps the most
prominent method for nonmonotonic
reasoning, basically because of the sim-
plicity of the notion of a default, and
because defaults prevail in many appli-
cation areas. However, there exist sev-
eral alternative design decisions which
have led to variations of the initial idea;

actually, we can talk about a family of
default reasoning methods because they
share the same foundations.

In this paper we present the motiva-
tions and basic ideas of some of the
most important default logic variants,
and compare them both with respect to
interconnections and the fulfillment of
some properties. When designing a tuto-
rial, it is good to have some aims
against which the final product can be
tested. The particular aims of this tuto-
rial paper are the following:

—To present the basic ideas of Default
Logic to persons without prior knowl-
edge in the area. Only basic under-
standing of classical logic is required.

—To equip the reader with skills and
methods so that they can apply the
concepts of Default Logic to concrete
situations. This is achieved by the use
of operational models which can be
applied in a straightforward manner
to examples without having to make
any guesses, as is the case with the
usual fixpoint or quasiinductive defi-
nitions.

—To give the reader a sense of the
diversity of the topic.

The paper is organized as follows: Sec-
tion 2 presents the basics of Reiter’s
Default Logic. Section 3 discusses prop-
erties and design decisions of this ap-
proach, and outlines some alternative
intuitions on these issues. Sections 4–6
describe some basic default logic vari-
ants: Justified Default Logic [Lukasze-
wicz 1988], Constrained Default Logic
[Schaub 1992], and approaches to pri-
oritization [Brewka 1994]. In Section 7
we briefly discuss some further default
logics, namely Cumulative Default
Logic [Brewka 1991], Rational Default
Logic [Mikitiuk and Truszczynski 1995],
Disjunctive Default Logic [Gelfond et al.
1991], and weak extensions [Marek and
Truszczynski 1993].

No prior knowledge of Default Logic is
required since this is a tutorial paper.
However, we assume that the reader is

CONTENTS

1. Introduction: Default Reasoning
2. Default Logic

2.1 The Notion of a Default
2.2 The Syntax of Default Logic
2.3 Informal Discussion of the Semantics
2.4 An Operational Definition of Extensions
2.5 Some Examples
2.6 Reiter’s Original Definition of Extensions

3. Properties of Default Logic
3.1 Existence of Extensions
3.2 Joint Consistency of Justifications
3.3 Cumulativity and Lemmas

4. Justified Default Logic
4.1 Motivation and Formal Presentation
4.2 Lukaszewicz’ Original Definition

5. Constrained Default Logic
5.1 Motivation and Definition
5.2 A Fixpoint Characterization
5.3 Interconnections

6. Priorities on Defaults
6.1 Motivation
6.2 Static Priorities
6.3 Dynamic Priorities

7. Other Variants of Default Logic
7.1 Rational Default Logic
7.2 Cumulative Default Logic
7.3 Disjunctive Default Logic
7.4 Weak Extensions

8. Conclusion

338 • G. Antoniou

ACM Computing Surveys, Vol. 31, No. 3, September 1999

familiar with notation and the basic
concepts of classical logic.

2. DEFAULT LOGIC

2.1 The Notion of a Default

A rule used by football organizers in
Germany might be: “A football game
shall take place, unless there is snow in
the stadium.” This rule of thumb is rep-
resented by the default

football : ¬snow

takesPlace
.

The interpretation of the default is as
follows: If there is no information that
there will be snow in the stadium, it is
reasonable to assume ¬snow and con-
clude that the game will take place (so
preparations can proceed). But if there
is a heavy snowfall during the night
before the game is scheduled, then this
assumption can no longer be made. Now
we have definite information that there
is snow, so we cannot assume ¬snow,
therefore the default cannot be applied.
In this case we need to refrain from the
previous conclusion (the game will take
place), so the reasoning is nonmono-
tonic.

Before proceeding with more exam-
ples, let us first explain why classical
logic is not appropriate to model this
situation. Of course, we could use the
rule

football ∧ ¬snow 3 takesPlace.

The problem with this rule is that we
have to definitively establish that there
will be no snow in the stadium before
applying the rule. But that would mean
that no game could be scheduled in the
winter, which would create a revolution
in Germany! It is important to under-
stand the difference between having to
know that it will not snow, and being
able to assume that it will snow. De-
faults support the drawing of conclu-
sions based upon assumptions.

The same example could have been
represented by the default

football : takesPlace

takesPlace
,

together with the classical rule snow
3 ¬takesPlace. In case we know snow
then we can deduce ¬takesPlace in clas-
sical logic, therefore we cannot assume
takesPlace, as required by the default.
In this representation, the default says
“Football matches usually takes place,”
and exceptions to this rule are repre-
sented by classical rules such as the
above one.

Defaults can be used to model proto-
typical reasoning, which means that
most instances of a concept have some
property. One example is the statement
“Typically, children have (living) par-
ents” which may be expressed by the
default

child~X! : hasParents~X!

hasParents~X!
.

A further form of default reasoning is
no-risk reasoning. It concerns situations
where we draw a conclusion even if it is
not the most probable, because another
decision could lead to a disaster. Per-
haps the best example is the following
main principle of justice in the Western
cultures: “In the absence of evidence to
the contrary assume that the accused is
innocent.” In default form:

accused~X! : innocent~X!

innocent~X!
.

Defaults naturally occur in many ap-
plication domains. Let us give an exam-
ple from legal reasoning. According to
German law, a foreigner is usually ex-
pelled if they have committed a crime.
One of the exceptions to this rule con-
cerns political refugees. This informa-
tion is expressed by the default

A Tutorial on Default Logics • 339

ACM Computing Surveys, Vol. 31, No. 3, September 1999

criminal~X! ∧ foreigner~X! : expel~X!

expel~X!

in combination with the rule

politicalRefugee~X! 3 ¬expel~X!.

Hierarchies with exceptions are com-
monly used in biology. Here is a stan-
dard example:

Typically, molluscs are shell-bearers.
Cephalopods are molluscs.
Cephalopods are not shell-bearers.

It is represented by the default

mollusc~X! : shellBearer~X!

shellBearer~X!

together with the rule

cephalopod~X! 3 mollusc~X!

∧ ¬shellBearer~X!.

Defaults can be used naturally to model
the Closed World Assumption [Reiter
1978], which is used in database theory,
algebraic specification, and logic pro-
gramming. According to this assump-
tion, an application domain is described
by certain axioms (in form of relational
facts, equations, rules, etc.) with the
following understanding: a ground fact
(that is, a nonparameterized statement
about single objects) is taken to be false
in the problem domain if it does not
follow from the axioms. The closed
world assumption has the simple de-
fault representation

true : ¬w

¬w

for each ground atom w. The explana-
tion of the default is: if it is consistent
to assume ¬w (which is equivalent to
not having a proof for w) then conclude
¬w.

Further examples of defaults can be
found in, say, Besnard [1989]; Ethering-

ton [1987b]; Lukaszewicz [1990]; and
Poole [1994].

2.2 The Syntax of Default Logic

A default theory T is a pair ~W, D!
consisting of a set W of predicate logic
formulae (called the facts or axioms of
T) and a countable set D of defaults. A
default d has the form

w : c1, . . . , cn

x

where w, c1, . . . , cn, x are closed
predicate logic formulae, and n . 0.
The formula w is called the prerequisite,
c1, . . . , cn the justifications, and x the
consequent of d. Sometimes w is denoted
by pre~d!, $c1, . . . , cn% by just~d!, and
x by cons~d!. For a set D of defaults,
cons~D! denotes the set of consequents
of the defaults in D. A default is called
normal iff it has the form w : c / c.

One point that needs some discussion
is the requirement that the formulae in
a default be ground. This implies that

bird~X! : flies~X!

flies~X!

is not a default according to the defini-
tion above. Let us call such rules of
inference open defaults. An open default
is interpreted as a default schema,
meaning that it represents a set of de-
faults (this set may be infinite).

A default schema looks like a default,
the only difference being that w, c1,
. . . , cn, x are arbitrary predicate logic
formulae (i.e., they may contain free
variables). A default schema defines a
set of defaults, namely

ws : c1s, . . . , cns

xs

for all ground substitutions s that as-
sign values to all free variables occur-

340 • G. Antoniou

ACM Computing Surveys, Vol. 31, No. 3, September 1999

ring in the schema. That means free
variables are interpreted as being uni-
versally quantified over the whole de-
fault schema. Given a default schema

bird~X! : flies~X!

flies~X!

and the facts bird~tweety! and
bird~sam!, the default theory repre-
sented is ~$bird~tweety!, bird~sam!%,
$bird~tweety! : flies~tweety!/flies~tweety!,
bird~sam! : flies~sam!/flies~sam!%!.

2.3 Informal Discussion of the Semantics

Given a default w : c1, . . . , cn / x, its
informal meaning is the following:

If w is known, and if it is consistent to
assume c1, . . . , cn, then conclude x.

In order to formalize this interpretation
we must say in which context w should
be known, and with what c1, . . . , cn
should be consistent. A first guess
would be the set of facts, but this turns
out to be inappropriate. Consider the
default schema

friend~X, Y! ∧ friend~Y, Z! : friend~X, Z!

friend~X, Z!

which says “Usually my friends’ friends
are also my friends”. Given the infor-
mation friend~tom, bob!, friend~bob,
sally! and friend~sally, tina!, we would
like to conclude friend~tom,
tina!. But this is only possible if we
apply the appropriate instance of the
default schema to friend~sally, tina!
and friend~tom,! sally}. The latter for-
mula stems from a previous application
of the default schema.1 If we did not
admit this intermediate step and used
the original facts only, then we could
not get the expected result.

Another example is the default theory

T 5 ~W, D! with W 5 $green,
aaaMember% and D 5 $d1, d2% with

d1 5
green : ¬likesCars

¬likesCars
,

d2 5
aaaMember : likesCars

likesCars
.

If consistency of the justifications was
tested against the set of facts, then both
defaults could be subsequently applied.
But then we would conclude both
likesCars and ¬likesCars, which is a
contradiction. It is unintuitive to let the
application of default rules lead to an
inconsistency, even if they contradict
each other. Instead, if we applied the
first default, and then checked applica-
tion of the second with respect to the
current knowledge collected so far, the
second default would be blocked: from
the application of the first default we
know ¬likesCars, so it is not consis-
tent to assume likesCars. After these
examples, here is the formal definition:

d 5 w : c1, . . . , cn / x is applicable
to a deductively closed set of formulae
E iff w [E and ¬c1 [y E, . . . , ¬cn

[y E.

The example of Greens and AAA mem-
bers indicates that there can be several
competing current knowledge bases
which may be inconsistent with one an-
other. The semantics of Default Logic
will be given in terms of extensions that
will be defined as the current knowl-
edge bases satisfying some conditions.
Intuitively, extensions represent possi-
ble world views which are based on the
given default theories; they seek to ex-
tend the set of known facts with “rea-
sonable” conjectures based on the avail-
able defaults. The formal definition will
be given in the next subsection. Here we
just collect some desirable properties of
extensions.1With other instantiations, of course.

A Tutorial on Default Logics • 341

ACM Computing Surveys, Vol. 31, No. 3, September 1999

—An extension E should include the set
W of facts since W contains the cer-
tain information available: W # E.

—An extension E should be deductively
closed because we do not want to pre-
vent classical logical reasoning. Actu-
ally, we want to draw more conclu-
sions, and that is why we apply
default rules in addition. Formally: E
5 Th~E!, where Th denotes the de-
ductive closure.

—An extension E should be closed un-
der the application of defaults in D
(formally: if w : c1, . . . , cn / x [D,
w [E and ¬c1 [y E, . . . , ¬cn [y E
then x [E). That is, we do not stop
applying defaults until we are forced
to. The explanation is that there is no
reason to stop at some particular
stage if more defaults might be ap-
plied; extensions are maximal possi-
ble world views.

These properties are certainly insuffi-
cient because they do not include any
“upper bound,” that is, they don’t pro-
vide any information about which for-
mulae should be excluded from an ex-
tension. So we should require that an
extension E be minimal with respect to
these properties. Unfortunately, this re-
quirement is still insufficient. To see
this, consider the default theory T 5

~W, D! with W 5 $aussie% and D 5

$aussie : drinksBeer/drinksBeer%.
Let E 5 Th~$aussie, ¬drinksBeer%!.
It is easily checked that E is minimal
with the three properties mentioned
above, but it would be highly unintui-
tive to accept it as an extension, since
that would support the following argu-
ment: “If Aussies usually drink Beer
and if somebody is an Aussie, then as-
sume that she does not drink Beer.”

2.4 An Operational Definition of
Extensions

For a given default theory T 5 ~W, D!
let P 5 ~d0, d1, . . . ! be a finite or infi-
nite sequence of defaults from D with-
out multiple occurrences. Think of P as
a possible order in which we apply some
defaults from D. Of course, we don’t
want to apply a default more than once
within such a reasoning chain because
no additional information would be
gained by doing so. We denote the ini-
tial segment of P of length k by P@k#,
provided the length of P is at least k
(from now on, this assumption is always
made when referring to P@k#). With
each such sequence P we associate two
sets of first-order formulae, In~P! and
Out~P!:

—In~P! is Th~W ø $cons~d!?d occurs
in P}. So, In~P! collects the informa-
tion gained by the application of the
defaults in P and represents the cur-
rent knowledge base after the defaults
in P have been applied.

—Out~P! 5 $¬c?c [just~d! for some
d occurring in P}. So, Out~P! collects
formulae that should not turn out to
be true, i.e., that should not become
part of the current knowledge base
even after subsequent application of
other defaults.

Let us give a simple example. Consider
the default theory T 5 ~W, D! with W
5 $a% and D containing the following
defaults:

d1 5
a : ¬b

¬b
, d2 5

b : c

c
.

For P 5 ~d1! we have In~P! 5 Th~$a,
¬b%! and Out~P! 5 $b%. For P 5 ~d2,
d1! we have In~P! 5 Th~$a, c, ¬b%!
and Out~P! 5 $¬c, b%.

Up to now we have not assured that

342 • G. Antoniou

ACM Computing Surveys, Vol. 31, No. 3, September 1999

the defaults in P can be applied in the
order given. In the example above, ~d2,
d1! cannot be applied in this order (ap-
plied according to the definition in the
previous subsection). To be more spe-
cific, d2 cannot be applied, since b [y
In~~!! 5 Th~W! 5 Th~$a%! which is
the current knowledge before we at-
tempt to apply d2. On the other hand,
there is no problem with P 5 ~d1!; in
this case we say that P is a process of T.
Here is the formal definition:

—P is called a process of T iff dk is
applicable to In~P@k#!, for every k
such that dk occurs in P.

Given a process P of T we define the
following:

—P is successful iff In~P! ù Out~P!
5 À, otherwise it is failed.

—P is closed iff every d [D that is
applicable to In~P! already occurs in
P. Closed processes correspond to the
desired property of an extension E
being closed under application of de-
faults in D.

Consider the default theory T 5 ~W,
D! with W 5 $a% and D containing the
following defaults

d1 5
a : ¬ b

d
, d2 5

true : c

b
.

P1 5 ~d1! is successful but not closed
since d2 may be applied to In~P1! 5
Th~$a, d%!. P2 5 ~d1, d2! is closed but
not successful: both In~P2! 5 Th~$a,
d, b%! and Out~P2! 5 $b, ¬c% contain
b. On the other hand, P3 5 ~d2! is a
closed and successful process of T.
According to the following definition,
which was first introduced in Antoniou
and Sperschneider [1994], In~P3! 5

Th~$a, b%! is an extension of T, in fact
its single extension.

Definition 1. A set of formulae E is
an extension of the default theory T iff
there is some closed and successful pro-
cess P of T such that E 5 In~P!.

In examples, it is often useful to ar-
range all possible processes in a canoni-
cal manner within a tree, called the
process tree of the given default theory
T. The nodes of the tree are labeled
with two sets of formulae, an In-set (to
the left of the node) and an Out-set (to
the right of the node). The edges corre-
spond to default applications, and are
labeled with the default that is being
applied. The paths of the process tree
starting at the root correspond to pro-
cesses of T.

2.5 Some Examples

Let T 5 ~W, D! with W 5 À and D 5
$true : a/¬a%. The process tree in Fig-
ure 1 shows that T has no extensions.
Indeed, the default may be applied be-
cause there is nothing preventing us
from assuming a. But when the default
is applied, the negation of a is added to
the current knowledge base, so the de-
fault invalidates its own application be-
cause both the In and the Out-set con-
tain ¬a. This example demonstrates
that there need not always be an exten-
sion of a default theory.

Figure 1. A process
tree.

A Tutorial on Default Logics • 343

ACM Computing Surveys, Vol. 31, No. 3, September 1999

Let T 5 ~W, D! be the default theory
with W 5 À and D 5 $d1, d2% with

d1 5
true : p

¬q
, d2 5

true : q

r
.

The process tree of T is found in Figure
2 and shows that T has exactly one
extension, namely Th~$¬q%!. The right
path of the tree shows an example
where application of a default destroys
the applicability of a previous default:
d1 can be applied after d2, but then ¬q
becomes part of the In-set, whilst it is
also included in the Out-set (as the
negation of the justification of d2).

Let T 5 ~W, D! with W 5 $green,
aaaMember% and D 5 $d1, d2% with

d1 5
green : ¬likesCars

¬likesCars
,

d2 5
aaaMember : likesCars

likesCars
.

The process tree in Figure 3 shows
that T has exactly two extensions
(where g stands for green, a for
aaaMember, and l for likesCars).

2.6 Reiter’s Original Definition of
Extensions

In this subsection we present Reiter’s
original definition of extensions [Reiter
1980]. In subsection 2.3 we briefly ex-
plained that the most difficult problem
in describing the meaning of a default is
to determine the appropriate set with
which the justifications of the defaults
must be consistent. The approach
adopted by Reiter is to use some theory
beforehand. That is, choose a theory
which plays the role of a context or belief
set and always check consistency
against this context. Let us formalize
this notion:

—A default d 5 w : c1, . . . , cn / x is
applicable to a deductively closed set
of formulae F with respect to belief set
E (the aforementioned context) iff w

[F, and ¬c1 [y E, . . . , ¬cn [y E
(that is, each c i is consistent with E).

Note that the concept “ d is applicable to
E” used so far is a special case where
E 5 F. The next question that arises is
which context to use. First, note that
when a belief set E has been estab-
lished, some formulae will become part
of the knowledge base by applying de-

Figure 2. A process tree.

344 • G. Antoniou

ACM Computing Surveys, Vol. 31, No. 3, September 1999

faults with respect to E. Therefore, they
should be believed, i.e., be members of
E. On the other hand, what would be a
justification for a belief if it were not
obtained from default application w.r.t.
E? We require that E contain only for-
mulae that can be derived from the axi-
oms by default application w.r.t. E.

Let us now give a formal presentation
of these ideas. For a set D of defaults,
we say that F is closed under D with
respect to belief set E iff, for every de-
fault d in D that is applicable to F with
respect to belief set E, its consequent x

is also contained in F.
Given a default theory T 5 ~W, D!

and a set of formulae E, let LT~E! be
the least set of formulae that contains
W, is closed under logical conclusion
(i.e., first-order deduction), and closed
under D with respect to E. Informally
speaking, LT~E! is the set of formulae
that are sanctioned by the default the-
ory T with respect to the belief set E.

Now, according to Reiter’s definition,
E is an extension of T iff E 5 LT~E!.
This fixpoint definition says that E is
an extension iff by deciding to use E as
a belief set, exactly the formulae in E
will be obtained from default applica-
tion. But please note the difficulty in
applying this definition: we have to
guess E and subsequently check for the
fulfillment of the fixpoint equation.
Having to guess is one of the most seri-

ous obstacles in understanding the con-
cepts of Default Logic and in being able
to apply them to concrete cases.

The following theorem shows that Re-
iter’s extension concept is equivalent to
the definition in subsection 2.4.

THEOREM 1. Let T 5 ~W, D! be a de-
fault theory. E is an extension of T (in
the sense of definition 2.1) iff E 5
LT~E!.

We conclude by giving a quasiinduc-
tive characterization of extensions, also
due to Reiter: Given a default theory T
5 ~W, D!, we say that E has a quasi-
inductive definition in T iff E 5 ø

i
Ei,

where E0 5 Th~W! and Ei11 5 Th~Ei

ø $cons~d!%d [D! is applicable to Ei

w.r.t. belief set E}.

THEOREM 2. E is an extension of T iff
E has a quasiinductive definition in T.

This characterization replaces the
LT-operator by a construction, both of
them using the set E as context or belief
set. Given a set of formulae E, this
characterization is intuitively appeal-
ing. But notice that still it is necessary
to first guess E before checking whether
it is an extension. In this sense, the
characterization is not as easy to apply
as the process model from subsection
2.4.

The relationship of processes to the
quasiinductive definition is that the tra-

Figure 3. A process tree.

A Tutorial on Default Logics • 345

ACM Computing Surveys, Vol. 31, No. 3, September 1999

versal of the process tree operational-
izes the idea of guessing. More formally:
if a branch of the process tree leads to a
closed and successful process P, then
the quasiinductive construction using
In~P! as a belief set yields the same
result. But some branches of the process
tree can lead to failed processes; this is
the price we have to pay if we wish to
avoid guessing.

3. PROPERTIES OF DEFAULT LOGIC

In this section we discuss some proper-
ties of Default Logic. Some of these
properties can be interpreted as defi-
ciencies, or they highlight some of Reit-
er’s original “design decisions” and show
alternative ideas that could be followed
instead. In this sense, the discussion in
this section motivates alternative ap-
proaches that will be presented in sub-
sequent sections. One point that should
be stressed is that there is not a “cor-
rect” default logic approach, but rather
the most appropriate for the concrete
problem at hand. Different intuitions
lead to different approaches that may
work better for some applications and
worse for others.

3.1 Existence of Extensions

We saw that a default theory may not
have any extensions. Is this a shortcom-
ing of Default Logic? One might hold
the view that if the default theory in-
cludes “nonsense” (for example true :
p / ¬p), then the logic should indeed be
allowed to provide no answer. According
to this view, it is up to the user to
provide meaningful information in the
form of meaningful facts and defaults;
after all, if a program contains an error,
we don’t blame the programming lan-
guage.

The opposite view regards nonexist-
ence of extensions as a drawback, and
would prefer a more “fault-tolerant” logic;
one which works even if some pieces of
information are deficient. This view-
point is supported by the trend towards

heterogeneous information sources,
where it is not easy to identify which
source is responsible for the deficiency,
or where the single pieces of informa-
tion are meaningful, but lead to prob-
lems when put together.

A more technical argument in favor of
the second view is the concept of semi-
monotonicity. Default Logic is a method
for performing nonmonotonic reasoning,
so we cannot expect it to be monotonic
when new knowledge is added to the set
of facts. However, we might expect that
the addition of new defaults would yield
more, and not less information.2 For-
mally, semi-monotonicity means the fol-
lowing:

Let T 5 ~W, D! and T9 5 ~W, D9! be
default theories such that D # D9.
Then for every extension E of T there
is an extension E9 of T9 such that E
E9.

Default Logic violates this property. For
example, T 5 ~À, $true : p/p%! has the
single extension E 5 Th~$p%!, but T9
5 ~À, $true : p/p, true : q/¬q%! has no
extension. So nonexistence of extensions
leads to the violation of semi-monotonic-
ity. Even though the concept of semi-
monotonicity is not equivalent to the
existence of extensions, these two prop-
erties usually come together (for a more
formal support of this claim see Anto-
niou et al. [1996]).

If we adopt the view that the possible
nonexistence of extensions is a problem,
then there are two alternative solutions.
The first one consists in restricting at-
tention to those classes of default theo-
ries for which the existence of exten-
sions is guaranteed. In his classical
paper [Reiter 1980], Reiter already
showed that if all defaults in a theory T
are normal (in which case T is called a
normal default theory), then T has at

2Some researchers would disagree with this view
and regard semi-monotonicity as not desirable;
see, for example, Brewka [1991].

346 • G. Antoniou

ACM Computing Surveys, Vol. 31, No. 3, September 1999

least one extension. Essentially this is
because all processes are successful, as
can be easily seen.

THEOREM 3. Normal default theories
always have extensions. Furthermore,
they satisfy semi-monotonicity.

One problem with the restriction to
normal default theories is that their
expressiveness is limited. In general, it
can be shown that normal default theo-
ries are strictly less expressive than
general default theories. Normal de-
faults have limitations, particularly re-
garding the interaction among defaults.
Consider the example

Bill is a high school dropout.
Typically, high school dropouts are
adults.
Typically, adults are employed.

These facts are naturally represented
by the normal default theory T 5
~$dropout~bill!%, $dropout~X! : adult
~X!/adult~X!, adult~X! : employed~X!/
employed~X!%!. T has the single exten-
sion Th~$dropout~bill!, adult~bill!,
employed~bill!}!. It is acceptable to as-
sume that Bill is adult, but it is counter-
intuitive to assume that Bill is em-
ployed! That is, whereas the second
default on its own is accurate, we want
to prevent its application in case the
adult X is a high school dropout. This
can be achieved if we change the second
default to

adult~X! : employed~X! ∧ ¬dropout~X!

employed~X!
.

But this default is not normal.3 Defaults
of this form are called semi-normal;
Etherington [1987a] studied this class
of default theories, and gave a sufficient
condition for the existence of exten-

sions. Another way of expressing inter-
actions among defaults is the use of
explicit priorities; this approach will be
further discussed in Section 6.

Instead of imposing restrictions on
the form of defaults in order to guaran-
tee the existence of extensions, the
other principal way is to modify the
concept of an extension in such a way
that all default theories have at least
one extension, and that semi-monoto-
nicity is guaranteed. In Sections 4 and 5
we will discuss two important variants
with these properties, Lukaszewicz’
Justified Default Logic and Schaub’s
Constrained Default Logic.

3.2 Joint Consistency of Justifications

It is easy to see that the default theory
consisting of the defaults true : p / q
and true : ¬p / r has the single exten-
sion Th~$q, r%!. This shows that the
joint consistency of justifications is not
required. Justifications are not sup-
posed to form a consistent set of beliefs,
rather they are used to sanction “jump-
ing” to some conclusions.

This design decision is natural and
makes sense for many cases, but can
also lead to unintuitive results. As an
example consider the default theory,
due to Poole, which says that, by de-
fault, a robot’s arm (say a or b) is us-
able unless it is broken; further, we
know that either a or b is broken. Given
this information, we would not expect
both a and b to be usable.

Let us see how Default Logic treats
this example. Consider the default the-
ory T 5 ~W, D! with W 5 $broken~a!
∨ broken~b!% and D consisting of the
defaults

true : usable~a! ∧ ¬broken~a!

usable~a!
,

true : usable~b! ∧ ¬broken~b!

usable~b!
.

3Note that it is unreasonable to add ¬dropout~X!
to the prerequisite of the default to keep it nor-
mal, because then we would have to definitely
know that an adult is not a high school dropout
before concluding that the person is employed.

A Tutorial on Default Logics • 347

ACM Computing Surveys, Vol. 31, No. 3, September 1999

Since we do not have definite informa-
tion that a is broken we may apply the
first default and obtain E9 5 Th~W ø

$usable~a!%!. Since E9 does not include
broken~b! we may apply the second de-
fault and get Th~W ø $usable~a!,
usable~b!%! as an extension of T. This
result is undesirable, as we know that
either a or b is broken.

In Section 5 we shall discuss Con-
strained Default Logic as a prototypical
Default Logic approach that enforces
joint consistency of justifications of de-
faults involved in an extension.

The joint consistency property gives
up part of the expressive power of de-
fault theories: under this property any
default with several justifications w :
c1, . . . , cn / x is equivalent to the mod-
ified default w : c1 ∧ . . . ∧ cn / x
which has one justification. This is in
contrast to a result in Besnard [1989],
which shows that in Default Logic, de-
faults with several justifications are
strictly more expressive than defaults
with just one justification. Essentially,
in default logics adopting joint consis-
tency it is impossible to express default
rules of the form “In case I am ignorant
about p (meaning that I know neither p
nor ¬p) I conclude q”. The natural rep-
resentation in default form would be
true : p, ¬p / q, but this default can
never be applied if joint consistency is
required, because its justifications con-
tradict one another; on the other hand it
can be applicable in the sense of Default
Logic.

Another example for which joint con-
sistency of justifications is undesirable
is the following.4 When I prepare for a
trip then I use the following default
rules:

If I may assume that the weather will be
bad I’ll take my sweater.
If I may assume that the weather will be
good then I’ll take my swimsuit.

In the absence of any reliable infor-
mation about the weather I am cautious
enough to take both with me. But note
that I am not building a consistent be-
lief set upon which I make these deci-
sions; obviously the assumptions of the
default rules contradict each other. So
Default Logic will treat this example in
the intended way, whereas joint consis-
tency of justifications will prevent me
from taking both my sweater and my
swimsuit with me.

3.3 Cumulativity and Lemmas

Cumulativity is, informally speaking,
the property that allows for the safe use
of lemmas. Formally: Let D be a fixed,
countable set of defaults. For a formula
w and a set of formulae W we define W
£ Dw iff w is included in all extensions of
the default theory ~W, D!. Now, cumu-
lativity is the following property:

If W £ Dw, then for all c :

W £ Dc N W ø $w% £ Dc.

If we interpret w as a lemma, cumula-
tivity says that the same formulae can
be obtained from W as from W ø $w%.
This is the standard basis of using lem-
mas in, say, mathematics. Default Logic
does not respect cumulativity: consider
T 5 ~W, D! with W 5 À and D consist-
ing of the defaults

true : a

a
,

a ∨ b : ¬a

¬a

(this example is due to Makinson). The
only extension of T is Th~$a%!. Obvi-
ously, W £ Da. From a ∨ b [Th~$a%!
we get W £ Da ∨ b. If we take W9 5 $a
∨ b%, then the default theory ~W9, D! has
two extensions, Th~$a%! and Th~$¬a,
b%!; therefore W ø $a ∨ b% £y Da.

An analysis of cumulativity and other
abstract properties of nonmonotonic in-
ference is found in Makinson [1994]. A4My thanks go to an anonymous referee.

348 • G. Antoniou

ACM Computing Surveys, Vol. 31, No. 3, September 1999

lot of work has been invested in devel-
oping default logics that possess the
cumulativity property, one notable ap-
proach being Brewka’s Cumulative De-
fault Logic [Brewka 1991]. But it is
doubtful whether this is the right way
to go, since it has additional conceptual
and computational load, due to the use
of assertions rather than plain formulae
(see Section 7.2 for more information).

One might argue that semimonotonic-
ity is rather unintuitive because it re-
quires a defeasible conclusion which
was based on some assumptions to be
represented by a certain piece of infor-
mation, that means a fact, and yet ex-
hibit the same behaviour.

From the practical point of view the
really important issue is whether we
are able to represent and use lemmas in
a safe way. How can we do this in
Default Logic? Schaub [1992] proposed
the representation of a lemma by a cor-
responding lemma default which
records in its justifications the assump-
tions on which a conclusion was based.
The formal definition of a lemma de-
fault is as follows.

Let Px be a nonempty, successful pro-
cess of T, minimal with the property x

[In~Px!. A lemma default dx corre-
sponding to x is the default

true : c1, . . . , cn

x

where $c1, . . . , cn% 5 $c?c [just~d!%
for a d occurring in Px. This default
collects all assumptions that were used
in order to derive x.

THEOREM 4. Let x be included in an
extension of T and dx a corresponding
lemma default. Then every extension of
T is an extension of T ’ 5 ~W, D ø

$dx%!, and conversely.

So it is indeed possible to represent
lemmas in Default Logic, not as facts
(as required by cumulativity) but rather
as defaults, which appears more natural

anyway, since it highlights the nature
of a lemma as having been proven de-
feasibly and thus as being open to dis-
putation.

4. JUSTIFIED DEFAULT LOGIC

4.1 Motivation and Formal Presentation

Lukaszewicz considered the possible
nonexistence of extensions as a repre-
sentational shortcoming of the original
Default Logic, and presented a variant,
Justified Default Logic [Lukaszewicz
1988] which avoids this problem. The
essence of his approach is the following:
If we have a successful but not yet
closed process, and all ways of expand-
ing it by applying a new default lead to
a failed process, then we stop and ac-
cept the current In-set as an extension.
In other words, we take back the final,
“fatal” step that causes failure.

Consider the default theory T 5 ~W,
D! with W 5 $holidays, sunday% and
D consisting of the defaults

d1 5
sunday : goFishing ∧ ¬ wakeUpLate

goFishing
,

d2 5
holidays : wakeUpLate

wakeUpLate
.

It is easily seen that T has only one
extension (in the sense of Section 2),
namely Th({holidays, sunday, wakeUp-
Late}). But if we apply d1 first, then d2
can be applied and leads to a failed
process. In this sense we lose the inter-
mediate information Th({holidays, sun-
day, goFishing}). On the other hand, in
Justified Default Logic we would stop
after the application of d1 instead of
applying d2 and running into failure;
therefore we accept Th({holidays, sun-
day, goFishing}) as an additional (modi-
fied) extension.

Technically, this is achieved by pay-
ing attention to maximally successful
processes. Let T be a default theory,

A Tutorial on Default Logics • 349

ACM Computing Surveys, Vol. 31, No. 3, September 1999

and let P and G be processes of T. We
define P , G iff the set of defaults oc-
curring in P is a proper subset of the
defaults occurring in G. P is called a
maximal process of T, iff P is successful
and there is no successful process G
such that P , G. A set of formulae E is
called a modified extension of T iff there
is a maximal process P of T such that
E 5 In~P!.

In the example above, P 5 ~d1! is
a maximal process: the only process
that strictly includes P is G 5 ~d1, d2!
which is not successful. Therefore
Th~$holidays, sunday, goFishing%! is a
modified extension of T. T has another
modified extension, which is the single
extension Th~$holidays, sunday, wake-
UpLate%! of T. Obviously every closed
and successful process is a maximal pro-
cess (since no new default can be ap-
plied). Therefore we have the following
result:

THEOREM 5. Every extension of a de-
fault theory T is a modified extension of T.

In the process of a default theory T
maximal processes correspond either to
closed and successful nodes, or to nodes
n such that all immediate children of n
are failed.

It is instructive to look at a default
theory without an extension, for exam-
ple T 5 ~W, D! with W 5 À and D 5
$true : p/¬p%. The empty process is
maximal (though not closed), because
the application of the “strange default”
would lead to a failed process, therefore
Th~À! is a modified extension of T.
Since any branch of the process tree can
be extended successfully to a modified
extension, the following result can be
shown.

THEOREM 6. Every default theory has
at least one modified extension. Further-
more, Justified Default Logic satisfies
semi-monotonicity.

4.2 Lukaszewicz’ Original Definition

The original definition given in
Lukaszewicz [1988] was based on fix-
point equations. Let T 5 ~W, D! be a
default theory, and E, F, E9 and F9 sets
of formulae. We say that a default d 5

w : c1, . . . , cn / x is applicable to E9

and F9 with respect to E and F iff w [

E9 and E ø $x% ?5 ¬c for all c [F
ø $c1, . . . , cn%.

E9 and F9 are closed under the appli-
cation of defaults in D with respect to E
and F iff, whenever a default d 5 w :
c1, . . . , cn / x in D is applicable to E9

and F9 with respect to E and F, x [

E9 and $c1, . . . , cn% # F9.
Define LT

1 ~E, F! and LT
2 ~E, F! to be

the smallest sets of formulae such that
LT

1 ~E, F! is deductively closed, W #

LT
1 ~E, F!, and LT

1 ~E, F! and LT
2 ~E, F!

are closed under D with respect to E
and F.

The following theorem shows that
modified extensions correspond exactly
to sets E and F satisfying the fixed-
point equations E 5 LT

1 ~E, F! and F
5 LT

2 ~E, F!. This is not surprising: in-
tuitively, the idea behind the compli-
cated definition of the L-operators is to
maintain the set of justifications of de-
faults that have been applied (i.e., the
sets F and F9 which, in fact, correspond
to ¬Out~P!), and to avoid applications
of defaults if they lead to an inconsis-
tency with one of these justifications.

THEOREM 7. Let T be a default the-
ory. For every modified extension E of T
there is a set of formulae F such that E
5 LT

1 ~E, F! and F 5 LT
2 ~E, F!.

Conversely, let E and F be sets of
formulae such that E 5 LT

1 ~E, F! and
F 5 LT

2 ~E, F!. Then E is a modified
extension of T.

350 • G. Antoniou

ACM Computing Surveys, Vol. 31, No. 3, September 1999

5. CONSTRAINED DEFAULT LOGIC

5.1 Motivation and Definition

Justified Default Logic avoids running
into inconsistencies and can therefore
guarantee the existence of modified ex-
tensions. On the other hand, it does not
require joint consistency of default jus-
tifications; for example, the default the-
ory T 5 ~W, D! with W 5 À and D 5
$true : p/q, true :¬p/r% has the single
modified extension Th~$q, r%!. Con-
strained Default Logic [Schaub 1992;
Delgrande et al. 1994] is a Default Logic
approach which enforces joint consis-
tency. In the example above, after the
application of the first default the sec-
ond default may not be applied because
p contradicts ¬p.

Furthermore, since the justifications
are consistent with each other, we test
the consistency of their conjunction
with the current knowledge base. In the
terminology of processes, we require the
consistency of In~P! ø ¬Out~P!.

Finally, we adopt the idea from the
previous section that namely a default
may only be applied if it does not lead to
a contradiction (failure) a posteriori.
That means, if w : c1, . . . , cn / x is
tested for application to a process P,
then In~P! ø ¬Out~P! ø $c1, . . . ,
cn, x% must be consistent. We note that
the set Out no longer makes sense since
we require joint consistency. Instead,
we have to maintain the set of formulae
which consists of W, all consequents
and all justifications of the defaults
that have been applied.

—Given a default theory T 5 ~W, D!
and a sequence P of defaults in D
without multiple occurrences, we de-
fine Con~P! 5 Th~W ø $w%?w is the
consequent or a justification of a de-
fault occurring in P}. Sometimes we
refer to Con~P! as the set of con-
straints or the set of supporting be-
liefs.

Con~P! represents the set of beliefs
supporting P. For the default theory T
5 ~W, D! with W 5 À and D 5 $d1 5
true : p/q, d2 5 true : ¬p/r% let P1 5

~d1!. Then Con~P1! 5 Th~$p, q%!.
We say that a default d 5 w : c1,

. . . , cn / x is applicable to a pair of
deductively closed sets of formulae ~E,
C! iff w [E and c1 ∧ . . . ∧ cn ∧ x is
consistent with C. A pair ~E, C! of de-
ductively closed sets of formulae is
called closed under D if, for every de-
fault w : c1, . . . , cn / x [D that is ap-
plicable to ~E, C!, x [E and $c1,
. . . , cn, x% # C.

In the example above, d2 is not applica-
ble to ~In~P1!, Con~P1!! 5 ~Th~$q%!,!
Th~$p, q%! because $ ¬p ∧ r% ø Th~$p,
q%! is inconsistent.

Let P 5 ~d0, d1, . . . ! be a sequence
of defaults in D without multiple occur-
rences.

—P is a constrained process of the de-
fault theory T 5 ~W, D! iff, for all k
such that P@k# is defined, dk is appli-
cable to ~In~P@k#!, Con~P@k#!!.

—A closed constrained process P is a
constrained process such that every
default d which is applicable to
~In~P!, Con~P!! already occurs in P.

—A pair of sets of formulae ~E, C! is a
constrained extension of T iff there is
a closed constrained process P of T
such that ~E, C! 5 ~In~P!, Con~P!!.

Note that we do not need a concept of
success here because of the definition of
default applicability we adopted: d is
only applicable to ~E, C! if it does not
lead to a contradiction. Let us reconsider
the “broken arms” example: T 5 ~W, D!
with W 5 $broken~a! ∨ broken~b!%, and
D consisting of the defaults

A Tutorial on Default Logics • 351

ACM Computing Surveys, Vol. 31, No. 3, September 1999

d1 5
true : usable~a! ∧ ¬broken~a!

usable~a!
,

d2 5
true : usable~b! ∧ ¬broken~b!

usable~b!
.

It is easily seen that there are two
closed constrained processes, ~d1! and
~d2!, leading to two constrained exten-
sions:

~Th~W ø $usable~a!%!, Th~$broken~b!,

usable~a!, ¬broken~a!%!!,

and

~Th~W ø $usable~b!%!, Th~$broken~a!,

usable~b!, ¬broken~b!%!!

The effect of the definitions above is
that it is impossible to apply both de-
faults together: after the application of,
say, d1, ¬broken~a! is included in the
Con-set; together with broken~a! ∨
broken~b! it follows broken~b!, there-
fore d2 is blocked. The two alternative
constrained extensions describe the two
possible cases we would have intuitively
expected.

For another example consider T 5
~W, D! with W 5 $p% and D 5 $p :
¬r/q, p : r/r%. T has two constrained
extensions, ~Th~$p, q%!, Th~$p, q,
¬r%!! and ~Th~$p, r%!, Th~$p, r%!!.
Note that for both constrained exten-
sions, the second component collects the
assumptions supporting the first compo-
nent.

5.2 A Fixpoint Characterization

Schaub’s original definition of con-
strained extensions used a fixed-point
equation [Schaub 1992]: Let T 5 ~W,
D! be a default theory. For a set C of
formulae let QT~C! be the pair of small-
est sets of formulae ~E9, C9! such that

(1) W # E9 # C9

(2) E9 and C9 are deductively closed

(3) For every w : c1, . . . , cn / x [D, if
w [E9 and C ø $c1, . . . , cn, x% is
consistent, then x [E9 and $c1,
. . . , cn, x% # C9.

The following result shows that this def-
inition is equivalent to the definition of
constrained extensions from the previ-
ous subsection.

THEOREM 8. ~E, C! is a constrained
extension of T iff ~E, C! 5 QT~C!.

THEOREM 9. Every default theory has
at least one constrained extension. Fur-
thermore Constrained Default Logic is
semi-monotonic.

5.3 Interconnections

In the following we describe the rela-
tionship among the default logic vari-
ants presented so far.

THEOREM 10. Let T be a default the-
ory and E 5 In~P! an extension of T,
where P is a closed and successful pro-
cess of T. If E ø ¬Out~P! is consistent,
then ~E, Th~E ø ¬Out~P!!! is a con-
strained extension of T.

The converse does not hold since the
existence of an extension is not guaran-
teed. For example T 5 ~À, $true :
p/¬p%! has the single constrained ex-
tension ~Th~À!, Th~À!!, but no exten-
sion.

THEOREM 11. Let T be a default the-
ory and E 5 In~P! a modified exten-
sion of T, where P is a maximal process
of T. If E ø ¬Out~P! is consistent,
then ~E, Th~E ø ¬Out~P!!! is a con-
strained extension of T.

The example T 5 ~W, D! with W 5 À
and D 5 $true : p/q, true : ¬p/r% shows
that we cannot expect the first compo-

352 • G. Antoniou

ACM Computing Surveys, Vol. 31, No. 3, September 1999

nent of a constrained extension to be a
modified extension: T has the single
modified extension Th~$q, r%!, but pos-
sesses two constrained extensions,
~Th~$q%!, Th~$p, q%!! and ~Th~$r%!,
Th~$¬p, r%!!. As the following result
demonstrates, it is not accidental that
for both constrained extensions, the
first component is included in the modi-
fied extension.

THEOREM 12. Let T be a default the-
ory and ~E, C! a constrained extension
of T. Then there is a modified extension
F of T such that E # F.

The following examples illustrates
well the difference between the three
approaches. Consider the default theory
T 5 ~W, D! with W 5 À and

D 5 Htrue : p

q
,

true : ¬p

r
,

true : ¬q, ¬r

s J.

T has the single extension

Th~$q, r%!,

two modified extensions,

Th~$q, r%!

Th~$s%!,

and three constrained extensions

~Th~$q%!, Th~$q, p%!!

~Th~$r%!, Th~$r, ¬p%!!

~Th~$s%!, Th~$s, ¬q, ¬r%!!.

This theory illustrates the essential dif-
ferences of the three approaches dis-
cussed. Default Logic does not care
about inconsistencies among justifica-
tions, and may run into inconsistencies.
Thus the first two defaults can be ap-
plied together, while if the third default
is applied first, then the process is not
closed and subsequent application of an-

other default leads to failure. Justified
Default Logic avoids the latter situa-
tion, so we obtain an additional modi-
fied extension. Constrained Default
Logic avoids running into failure, too,
but additionally requires joint consis-
tency of justifications; therefore the two
first defaults cannot be applied in con-
junction, as in the other two ap-
proaches. Thus we get three constrained
extensions.

We conclude this section by noting
that for normal default theories, all de-
fault logic approaches discussed are
identical. In other words, they coincide
for the “well-behaved” class of default
theories, and seek to extend it in differ-
ent directions.

THEOREM 13. Let T be a normal de-
fault theory, and E a set of formulae.
The following statements are equivalent.

(a) E is an extension of T.

(b) E is a modified extension of T.

(c) There exists a set of formulae C such
that ~E, C! is a constrained exten-
sion of T.

6. PRIORITIES ON DEFAULTS

6.1 Motivation

Often it is desirable to have priorities
among defaults indicating a preference
on which default to apply in situations
where several defaults are applicable.
One approach is to use implicit criteria
of preference such as specificity among
defaults; systems in this category in-
clude Baader and Hollunder [1993];
Etherington and Reiter [1983]; Pearl
[1990]; and Touretzky et al. [1987].

This family of approaches suffers
from the problem that the criterion may
not be sufficient to model different ap-
plication domains. For example, while
specificity is appropriate for taxonomic
information found in biology, it cannot
capture the legal principle that a more
recent law is preferred to an older one.

A Tutorial on Default Logics • 353

ACM Computing Surveys, Vol. 31, No. 3, September 1999

Therefore other kinds of approaches
may have to be used, in which the prior-
ity information is represented explicitly.
In the following we discuss two such
approaches, which are based on the idea
of static priorities and dynamic priori-
ties, respectively.

6.2 Static Priorities

In Prioritized Default Logic [Brewka
1994], the user gives explicitly the prior-
ity order in which defaults have to be
applied in situations where more than
one default is applicable. In the sim-
plest case a strict well-ordering (that
means, an irreflexive total order in
which every subset of D has a smallest
element) is used. Let us consider the
default theory T 5 ~W, D! with W 5
$bird, penguin% and D consisting of the
defaults

d1 5
penguin : ¬flies

¬flies
, d2 5

bird : flies

flies
.

Suppose a total order ,, is given
according to which d1 is preferred over
d2, i.e. d1 ,, d2. Then T together with
,, should only admit the extension
Th~$bird, penguin, ¬flies%!.

Let T 5 ~W, D! be a normal default
theory, and ,, a strict well order on
D. A process P 5 ~d0, d1, . . . ! of T is
generated by ,, iff, for all i, d i is the ,,
— minimal default from P 2 P@i# that
is applicable to In~P@i#!, provided that
such a d i exists. Clearly, P is closed; it
is also successful since T is a normal
default theory. We say that E is gener-
ated by ,, iff E 5 In~P! for a process
P that is generated by ,, .

P and E, as defined above, are
uniquely determined. In the previous
example, ,, is defined by d1 ,, d2.
~d1! is the process generated by ,,, and
Th~$bird, penguin, ¬flies%! is the ex-
tension generated by ,,.

Of course, we cannot always expect
the defaults to be ordered in a total
way. Often defaults should be left in-
comparable with one another. In other
words, requiring a total ordering of de-
faults will often be a kind of overspecifi-
cation. Here is a simple example from
politics.

According to conservative politicians,
taxes should be cut without cutting
spending; the latter is unnecessary be-
cause reduced taxes are supposed to
lead to increased economic growth. Rad-
ical conservatives proclaim tax cuts and
spending cuts because the government
should be as lean as possible. According
to social democrats, neither taxes nor
spending should be cut because they
believe government should afford wel-
fare programs and create additional de-
mand. This information can be ex-
pressed by the following defaults:

d1 5
conservative : taxCut ∧ ¬spendingCut

taxCut ∧ ¬ spendingCut

d2 5
conservative ∧ radical : taxCut ∧ spendingCut

taxCut ∧ spendingCut

d3 5
socialDemocrat : ¬taxCut ∧ ¬spendingCut

¬taxCut ∧ ¬spendingCut

Intuitively it is clear that d2 should be
given higher priority than d1 because
the information that somebody is a rad-
ical conservative is more specific than
the information that she is a conserva-
tive. But there is no reason to prescribe
any order between d1 and d3, or between
d2 and d3. Thus we only have d2 , d1.

Technically speaking, the priority in-
formation will be given in the form of a
strict partial order , on the set of de-
faults. The definition of the semantics
will make use of all strict well orders
that contain ,. This approach resem-
bles the treatment of concurrency in
computer science, where meaning is as-
signed by considering all possible lin-
earizations.

354 • G. Antoniou

ACM Computing Surveys, Vol. 31, No. 3, September 1999

Definition 2. T 5 ~W, D, ,! is a
prioritized default theory if ~W, D! is a
normal default theory and , a strict
partial order on D. E is a PDL-extension
of T iff there is a strict well order ,, on
D which contains , and generates E.

Consider the previous example, with
the set of facts W 5 $conservative,
radical%, and , defined by d2 , d1.
There are three strict well orders on D
that contain ,, namely

d3 ,, d2 ,, d1,

d2 ,, d3 ,, d1,

and

d2 ,, d1 ,, d3.

It is easily seen that all of them lead to
the same PDL-extension, namely Th
~$conservative, radical, taxCut, spend-
ingCut%!.

By definition of a PDL-extension E,
E 5 In~P! for a closed and successful
process P. Therefore we make the fol-
lowing observation:

THEOREM 14. If E is a PDL-extension
of the prioritized default theory T 5
~W, D, ,! then E is an extension of
~W, D!.

The next result follows from the ob-
servation that given a finite set M, ev-
ery strict partial order on M is included
in a strict well order on M. A strict
partial order , defines some con-
straints about which elements should
precede which other elements. A strict
total order ,, respecting these con-
straints can always be constructed.
Since M is finite, a minimal element
exists. Therefore the extension gener-
ated by ,, is a PDL-extension.

THEOREM 15. A prioritized default
theory T 5 ~W, D, ,! always has a
PDL-extension if D is finite.

The above theorem is not true for
infinite sets of defaults. Let D 5 $d iui
$ 0%, and , the strict partial order on
D determined by d i , d0 for all i . 0.
Then there is no strict well order of D
containing ,; there are, of course, strict
total orders, but the existence of mini-
mal elements cannot be established.

6.3 Dynamic Priorities

The main drawback of the previous ap-
proach is that the user has to provide
all priority information, which is sup-
posed to be static and not change over
time. These requirements may be too
strict for some problems. Brewka [1994]
proposed an approach in which priority
information is part of the logical lan-
guage and can be derived like any other
statement. For example, it is possible to
write

p : d1 , d2

d1 , d2

to express that “In cases p is true, usu-
ally default d1 should be given prefer-
ence over default d2”. Of course there
may be some exceptions in which d1 ,
d2 cannot be assumed due to other in-
formation being available.

As this example shows, the approach
uses names to refer to defaults, and a
preference relation , as part of the
language. Reasoning about priorities is
very flexible, but the high expressive-
ness brings problems, too; for example,
it is possible that even if all defaults are
normal there is no extension. Consider
the theory consisting of the following
two defaults:

d1 5
true : d2 , d1

d2 , d1

, d2 5
true : d1 , d2

d1 , d2

.

A Tutorial on Default Logics • 355

ACM Computing Surveys, Vol. 31, No. 3, September 1999

Default d1 says that usually you should
prefer default d2 instead of d1, and vice
versa. Therefore this theory has no ex-
tension.

7. OTHER VARIANTS OF DEFAULT LOGIC

In this section we briefly review some
further Default Logic approaches with-
out going into technical details.

7.1 Rational Default Logic

Constrained Default Logic enforces joint
consistency of the justifications of de-
faults that contribute to an extension,
but goes one step further by requiring
that the consequent of a default be con-
sistent with the current Con-set. Ratio-
nal Default Logic [Mikitiuk and Truszc-
zynski 1995] does not require the latter
step. Technically, a default w : c1,
. . . , cn / x is rationally applicable to a
pair of deductively closed sets of formu-
lae ~E, C! iff w [E and $c1, . . . , cn%
ø C is consistent.

As an example, consider the default
theory T 5 ~W, D! with W 5 À and D
5 $true : b/c, true : ¬b/d, true : ¬c/e,
true : ¬d/f%. T has the single extension
Th~$c, d%!, three constrained exten-
sions,

~Th~$e, f%!, Th~$e, ¬c, f, ¬d%!!

~Th~$c, f%!, Th~$c, b, f, ¬d%!!

~Th~$d, e%!, Th~$d, ¬b, e, ¬c%!! (5)

but two rational extensions, Th~$c, f%!
and Th~$d, e%!. The first constrained
extension is “lost” in Rational Default
Logic because it is not closed under
application of further defaults. true :
b / c and true : ¬b / d are both ratio-
nally applicable to Th~$e, f%!; but once
one of them is applied to Th~$e, f%! we
get a failed situation.

Mikitiuk and Truszczynski [1995]
show that if E is an extension of T in
Rational Default Logic, then ~E, C! is a

constrained extension of T for some set
C. The converse is true for semi-normal
default theories.

Rational Default Logic does not guar-
antee the existence of extensions. For
example, the default theory consisting
of the single default true : p / ¬p does
not have any extensions.

7.2 Cumulative Default Logic

As mentioned earlier, Cumulative De-
fault Logic was introduced by Brewka to
ensure the property of cumulativity
[Brewka 1991]. The solution he adopted
was to use so-called assertions, pairs
~w, J! of a formula w and a set of formu-
lae J, which collects the assumptions
that were used to deduce w. When a
default is applied to deduce w the justi-
fications of that default are added to J.

We illustrate this approach by consid-
ering the example from subsection 3.3
which showed that Default Logic vio-
lates cumulativity. Consider T 5 ~W,
D! with W 5 À and D consisting of the
defaults

true : a

a
,

a ∨ b : ¬a

¬a
.

In the beginning we can apply only the
first default and derive the assertion
~a, $a%!, meaning that we derived a
based on the assumption a. Obviously
the second default is not applicable. The
violation of cumulativity in Default
Logic was caused by the addition of a
∨ b as a new fact which opened the way
for the application of the second default
instead of the first one. But in Cumula-
tive Default Logic we are allowed to add
the assertion ~a ∨ b, $a%! to the default
theory (if a is derived based on a, then
a ∨ b is also derived based on a), but
now the second default is still not appli-
cable because ¬a is not consistent with
the set of supporting beliefs $a%.

Note that adding a to the default the-

356 • G. Antoniou

ACM Computing Surveys, Vol. 31, No. 3, September 1999

ory as we did in Default Logic corre-
sponds to adding the assertion ~a, À!,
which is different from ~a, $a%!. If we
disregard $a%, which is the assumption
upon which the deduction of a was
based, then indeed we can get more
conclusions; this forgetting is the deeper
reason for the failure of Default Logic to
satisfy cumulativity.

From the technical and practical
point of view, the use of assertions is
complicated and causes practical prob-
lems, for example with regard to imple-
mentation; this is the price we have to
pay for cumulativity. And the gain is
questionable in the light of our discus-
sion in subsection 3.3, which argued
that lemmas can and should be repre-
sented as defaults, rather than facts.
Nevertheless, Cumulative Default Logic
was historically an important one.

7.3 Disjunctive Default Logic

The “broken arm” example from subsec-
tion 3.2 shows that Default Logic has a
deficiency with the correct treatment of
disjunctive information. Gelfond et al.
[1991] proposes a way out of these diffi-
culties by the following analysis: if a
formula w ∨ c becomes part of the cur-
rent knowledge base (either as a fact or
as a consequent of some default), it
should not be included as a predicate
logic formula. Instead, it should have
the effect that one of w and c becomes
part of an extension. In other words, the
expression

broken~a!ubroken~b!

should have the effect that an extension
contains one of the two disjuncts, rather
than the disjunction broken~a! ∨
broken~b!. To see another example, con-
sider the default theory T 5 ~W, D!
with W 5 $p ∨ q% and D 5 $p : r/r,
q : r/r%. In Default Logic we know the
formula p ∨ q but are unable to apply
any of the two defaults; so we end up
with the single extension Th~$p ∨ q%!.
On the other hand, Disjunctive Default

Logic leads to two extensions, one in
which p is included, and one in which q
is included. In the former case p : r / r
becomes applicable, in the latter case
q : r / r becomes applicable. So we end
up with two extensions, Th~$p, r%! and
Th~$q, r%!, which is intuitively more
appealing. For more details, see Gelfond
et al. [1991].

7.4 Weak Extensions

All variants of Default Logic discussed
so far share the same idea of treating
prerequisites of defaults: in order for a
default d to be applicable, its prerequi-
site must be proven using the facts and
the consequents of defaults that were
applied before d. For example, in order
for the default p : true /p to be applica-
ble, p must follow from the facts, or be
the consequent of another default etc. A
default theory consisting only of this
default has the single extension Th~À!.

This has led researchers to refer to
Default Logic as being “strongly
grounded” in the given facts. In con-
trast, Autoepistemic Logic [Moore 1985]
provides more freedom in choosing what
one wants to believe in. Weak exten-
sions of default theories were intro-
duced to capture this intuition in the
default logic framework [Marek and
Truszczynski 1993].

In the framework of weak extensions,
we can simply decide to believe in some
formulae. The only requirement is that
this decision can be justified using the
facts and default rules. Reconsider the
default theory consisting of the single
default p : true / p. We may decide to
believe in p or not. Suppose we do be-
lieve in p; then the default can be ap-
plied and gives us p as a consequence.
In this sense the default justifies the
decision to believe in p; Th~$p%! is thus
a weak extension. Of course, we could
also adopt the more cautious view and
decide not to believe in p; then the
default is not applicable, so p cannot be

A Tutorial on Default Logics • 357

ACM Computing Surveys, Vol. 31, No. 3, September 1999

proved and our decision is again justi-
fied. In general, extensions of a theory
T are also weak extensions of T. For a
technical discussion, see Marek and
Truszczynski [1993].

8. CONCLUSION

Default Logic is an important method of
knowledge representation and reason-
ing, because it supports reasoning with
incomplete information, and because de-
faults can be found naturally in many
application domains, such as diagnostic
problems, information retrieval, legal
reasoning, regulations, specifications of
systems and software, etc. Default Logic
can be used either to model reasoning
with incomplete information, which was
the original motivation, or as a formal-
ism which enables compact representa-
tion of information [Cadoli et al. 1994].
Important prerequisites for the develop-
ment of successful applications in these
domains include (i) the understanding
of the basic concepts, and (ii) the exist-
ence of powerful implementations.

The aim of this paper is to contribute
to the first requirement. We have dis-
cussed the basic concepts and ideas of
Default Logic, and based the presenta-
tion on operational interpretations,
rather than on fixpoints, as usually
done. The operational interpretations
allow learners to apply concepts to con-
crete problems in a straightforward
way. This is an important point, be-
cause the difficulty of understanding
Default Logic should not be underesti-
mated. A survey among students at the
University of Toronto regarding their
ranking of the difficulty of several non-
monotonic reasoning formalisms re-
sulted in Default Logic (presented based
on fixpoints) being perceived as the sec-
ond most difficult one, surpassed only
by the full version of Circumscription
[McCarthy 1980], but well ahead of Au-
toepistemic Logic [Moore 1985].

In this paper we have not discussed
the semantics of Default Logic (see Bes-
nard and Schaub [1994]; Engelfriet and
Treur [1996]; Teng [1996]), or complex-

ity issues (see Gottlob [1992]; Kautz and
Selman [1989]). An argumentation-the-
oretic study of default logics is found in
Bondarenko et al. [1997].

Implementation aspects were also
outside the scope of this paper; some
entry points to current work in the area
include Cholewinski [1994]; Cholewin-
ski et al. [1995]; Courtney et al. [1996];
Linke and Schaub [1995]; Niemela
[1995]; Risch and Schwind [1994]; and
Schaub [1995].

REFERENCES

ANTONIOU, G., O’NEILL, T., AND THURBON, J.
1996. Studying properties of classes of de-
fault logics: Preliminary report. In Proceed-
ings of the Fourth Pacific Rim International
Conference on Artificial Intelligence,
Springer-Verlag, New York, 558–569.

ANTONIOU, G. AND SPERSCHNEIDER, V. 1994.
Operational concepts of nonmonotonic logics.
Part 1: Default logic. Artif. Intell. Rev. 8, 3–16.

BAADER, F. AND HOLLUNDER, B. 1993. How to
prefer more specific defaults in terminological
logics. In Proceedings of the 13th Interna-
tional Joint Conference on Artificial Intelli-
gence, MIT Press, Cambridge, MA.

BESNARD, P. 1989. An Introduction to Default
Logic. Springer-Verlag, Vienna, Austria.

BESNARD, P. AND SCHAUB, T. 1994. possible
worlds semantics for default logics. Fun-
dam. Inf. 21, 39–66.

BONDARENKO, A., DUNG, P. M., KOWALSKI, R. A.,
AND TONI, F. 1997. An abstract, argumen-
tation-theoretic approach to default reasoning.
Artif. Intell. 93, 1-2, 63–101.

BREWKA, G. 1991. Cumulative default logic: in
defense of nonmonotonic inference rules. Ar-
tif. Intell. 50, 2 (July 1991), 183–205.

BREWKA, G. 1994. Reasoning about priorities in
default logic. In Proceedings of the 12th Na-
tional Conference on Artificial Intelligence
(vol. 2) (AAAI’94, Seattle, WA, July 31–Aug.
4), B. Hayes-Roth and R. E. Korf, Eds.
Amer. Assn. for Artificial Intelligence, Menlo
Park, CA, 940–945.

CADOLI, M., DONINI, F. M., AND SCHAERF,
M. 1994. Is intractability of non-monotonic
reasoning a real drawback?. In Proceedings
of the 12th National Conference on Artificial
Intelligence (vol. 2) (AAAI’94, Seattle, WA,
July 31–Aug. 4), B. Hayes-Roth and R. E.
Korf, Eds. Amer. Assn. for Artificial Intelli-
gence, Menlo Park, CA, 946–951.

CHOLEWINSKI, P. 1994. Stratified default logic.
In Proceedings of the Conference on Computer
Science Logic, Springer-Verlag, New York,
456–470.

CHOLEWINSKI, P., MAREK, W., MIKITIUK, A., AND
TRUSZCZYNSKI, M. 1995. Experimenting

358 • G. Antoniou

ACM Computing Surveys, Vol. 31, No. 3, September 1999

with default logic. In Proceedings of the In-
ternational Conference on Logic Program-
ming, MIT Press, Cambridge, MA.

COURTNEY, A., ANTONIOU, G., AND FOO, N.
1996. Exten: A system for computing default
logic extensions. In Proceedings of the
Fourth Pacific Rim International Conference
on Artificial Intelligence, Springer-Verlag,
New York, 471–482.

DELGRANDE, J. P., SCHAUB, T., AND JACKSON, W. K.
1994. Alternative approaches to default logic.
Artif. Intell. 70, 1-2 (Oct. 1994), 167–237.

ENGELFRIET, J. AND TREUR, J. 1996. Semantics
for default logic based on specific branching
time models. In Proceedings of the 12th Eu-
ropean Conference on Artificial Intelligence,
John Wiley and Sons, Inc., New York, NY,
60–64.

ETHERINGTON, D W 1987. Formalizing non-
monotonic reasoning systems. Artif. Intell.
31, 1 (Jan. 1987), 41–85.

ETHERINGTON, D. 1987. Reasoning with Incom-
plete Information. Pitman Publishing, Lon-
don, UK.

ETHERINGTON, D. AND REITER, R. 1983. On in-
heritance hierarchies with exceptions. In
Proceedings of the National Conference on Ar-
tificial Intelligence, AAAI Press, Menlo
Park, CA, 104–108.

GELFOND, M., LIFSCHITZ, V., PRZYMUSINSKA, H., AND
TRUSZCZYNSKI, M. 1991. Disjunctive de-
faults. In Proceedings of the 2nd Interna-
tional Conference on Principles of Knowledge
Representation and Reasoning, Morgan
Kaufmann, San Mateo, CA, 230–237.

GOTTLOB, G. 1992. Complexity results for non-
monotonic logics. J. Logic Comput. 2, 397–425.

KAUTZ, H. A. AND SELMAN, B. 1989. Hard prob-
lems for simple default logics. In Proceed-
ings of the First International Conference on
Principles of Knowledge Representation and
Reasoning, R. J. Brachman, H. J. Levesque,
and R. Reiter, Eds. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, 189–197.

LINKE, T AND SCHAUB, T. 1995. Lemma han-
dling in default logic theorem proving. In
Proceedings of the Conference on Symbolic
and Quantitative Approaches to Reasoning
and Uncertainty, Springer-Verlag, New
York, 285–292.

LUKASZEWICZ, W. 1988. Considerations on de-
fault logic. Comput. Intell. 4, 1, 1–16.

LUKASZEWICZ, W. 1990. Non-Monotonic Reason-
ing: Formalization of Commonsense Reasoning.
Ellis Horwood, Upper Saddle River, NJ.

MAKINSON, D. 1994. General patterns in non-
monotonic reasoning. In Handbook of Logic
in Artificial Intelligence and Logic Program-
ming: Nonmonotonic Reasoning and Uncer-
tain Reasoning (vol. 3), D. M. Gabbay, C. J.
Hogger, and J. A. Robinson, Eds. Oxford
University Press, Inc., New York, NY, 35–110.

MAREK, V. AND TRUSZCZYNSKI, M. 1993. Non-
monotonic Reasoning. Springer-Verlag, New
York, NY.

MCCARTHY, J. 1980. Circumscription: A form of
non-monotonic reasoning. Artif. Intell. 13,
27–39.

MIKITIUK, A. AND TRUSZCZYNSKI, M. 1995.
Constrained and rational default logics. In
Proceedings of the 14th International Joint
Conference on Artificial Intelligence, Morgan
Kaufmann, San Mateo, CA, 1509–1515.

MOORE, R. C. 1985. Semantical considerations
on nonmonotonic logic. Artif. Intell. 25, 1
(Jan. 1985), 75–94.

NIEMELA, I. 1995. Towards efficient default rea-
soning. In Proceedings of the 14th Interna-
tional Joint Conference on Artificial Intelli-
gence, Morgan Kaufmann, San Mateo, CA,
312–318.

PEARL, J. 1990. System z: A natural ordering of
defaults with tractable applications to non-
monotonic reasoning. In Proceedings of the
Third International Conference on Theoretical
Aspects of Reasoning about Knowledge,
Springer-Verlag, New York, NY.

POOLE, D. 1994. Default logic. In Handbook of
Logic in Artificial Intelligence and Logic Pro-
gramming: Nonmonotonic Reasoning and Un-
certain Reasoning (vol. 3), D. M. Gabbay, C. J.
Hogger, and J. A. Robinson, Eds. Oxford
University Press, Inc., New York, NY, 189–215.

REITER, R. 1978. On closed world databases.
In Logic and Data Bases, H. Gallaire and J.
Minker, Eds. Plenum Press, New York, NY,
55–76.

REITER, R. 1980. A logic for default reasoning.
Artif. Intell. 13, 81–132.

RISCH, V. AND SCHWIND, C. 1994. Tableau-based
characterization and theorem proving for de-
fault logic. J. Autom. Reasoning 13, 223–242.

SCHAUB, T. 1992. On constrained default theo-
ries. In Proceedings of the 10th European
Conference on Artificial Intelligence (ECAI
’92, Vienna, Austria, Aug. 3–7), B. Neumann,
Ed. John Wiley and Sons, Inc., New York,
NY, 304–308.

SCHAUB, T. 1995. A new methodology for query-
answering in default logics via structure-ori-
ented theorem proving. J. Autom. Reasoning
15, 1, 95–165.

TENG, C. 1996. Possible world partition sequen-
ces: A unifying framework for uncertain reason-
ing. In Proceedings of 12th Conference on Un-
certainty in Artificial Intelligence, 517–524.

TOURETZKY, D., HORTY, J., AND THOMASON, R.
1987. A clash of intuitions: The current state
of nonmonotonic multiple inheritance systems.
In Proceedings of the 10th International Joint
Conference on Artificial Intelligence,
MIT Press, Cambridge, MA, 476–482.

Received: June 1996; revised: May 1997; accepted: August 1998

A Tutorial on Default Logics • 359

ACM Computing Surveys, Vol. 31, No. 3, September 1999

