
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών
Άνοιξη 2009

HΥ463 - Συστήματα Ανάκτησης Πληροφοριών
Information Retrieval (IR) Systems

Συμπίεση Κειμένουμ μ
Text Compression

Γιάννης Τζίτζικας
∆ άλ ξ 14b

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 1

∆ιάλεξη : 14b
Ημερομηνία :

Διάρθρωση

• Συμπίεση Ανεστραμμένου Ευρετηρίου
– συμπίεση λιστών εμφάνισης με ειδική κωδικοποίηση αριθμών κατόπιν
ομαδοποίησης

• Γενική εισαγωγή στη συμπίεση

• Βασικές Έννοιες• Βασικές Έννοιες

• Στατιστικές Τεχνικές Συμπίεσης

• Τεχνικές Συμπίεσης Λεξικού (Dictionary)χ ς μ ης ξ (y)

Σ ό άθ ΗΥ438 (Σ ί Δ δ έ Σ ά)

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 2

• Σχετικό μάθημα: ΗΥ438 (Συμπίεση Δεδομένων και Σημάτων)

Inverted File Compression (Sec. 7.4.5 of MIR book)

• An Inverted file contains:
– (a) a vocabulary containing all distinct words in the text collection

– (b) for each word in the vocabulary, a list of all documents in which that word
occurs

• The size of the inverted file can be reduced by compressing theThe size of the inverted file can be reduced by compressing the
inverted lists

beautiful

Vocabulary

70, 80, 100, 233, 450, 890, ...

Occurrences

flowers

garden

45, 58, 66, 82, 123, 790, 920, 955, 1240,...

18, 29, 55, 61, 82, 103, 844, 1200, 1345, ...

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 3

house 6, 22, 33, 42, 90, ….

Inverted File Compression:
Compressing Inverted Listsp g

70, 80, 100, 233, 450, 890, ...
Occurrences

45, 58, 66, 82, 123, 790, 920, 955, 1240,...

18, 29, 55, 61, 82, 103, 844, 1200, 1345, ...

6 22 33 42 90

• As the list of document numbers within the inverted list is in
ascending order, it can also be considered as a sequence of

6, 22, 33, 42, 90, ….

g q
gaps between document numbers.

• E.g. [2,8,22,30] [2,6,14,8]

• [21002 21008 21022 21030] [21002 6 14 8]• [21002, 21008, 21022, 21030] [21002,6,14,8]

• Since processing is usually done sequentially starting from the
beginning of the list, the original document numbers can always be

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 4

recomputed through sums of the gaps.

Inverted File Compression:
Compressing Inverted Lists (ΙΙ)p g ()

• These gaps are
– small for frequent words and

– large for infrequent words

• Compression can be obtained by encoding small values with
shorter codesshorter codes

• Codingsg
– Unary code

• An integer x is coded as (x-1) one bits followed by a zero bit, so the code
for the integer 3 is 110for the integer 3 is 110

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 5

Inverted File Compression:
Compressing Inverted Lists (ΙΙΙ)p g ()

• Elias-γ
– the number x is represented by a concatenation

of two parts:

• (1) a unary code for 1 + ⎣logx ⎦ and

• (2) a code of ⎣logx ⎦ bits that represents the () g p
values of x-2 ⎣logx ⎦ in binary

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 6

Inverted File Compression:
Compressing Inverted Lists (ΙV)p g ()

• Elias-δ
– represents the prefix indicating the

number of binary bits by the Elias-γ
code

• Golomb• Golomb
– presented another run-length coding method for positive integers. It is very

effective when the probability distribution is geometric.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 7

• Example codes for integers:
– MIR BOOK page 185

Searching Compressed Files
Inverted Files

• Recall that we represent gaps by schemes that favor small
numbers

• If we first cluster the documents and reassign to them document
identifiers, then we have more small gaps

– more space savings!

• Results: reductions in 90% can be obtained by block addressing
indices with blocks of 1 Kb sizeindices with blocks of 1 Kb size

• Other remarks:
– Compression does not necessarily degrade time performance

• most of the time spent in answering a query is in the disk transfer

Query times on compressed or decompressed indices are roughly similar

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 8

– Query times on compressed or decompressed indices are roughly similar

Clustering and Compression of Inverted FilesClustering and Compression of Inverted Files

If we first cluster the documents and reassign to
them document identifiers, then we have more
small gaps more space savings!

Διαβάστε το άρθρο: ECIR’2007 Best Paper Award
(υπάρχει στο wiki)

Searching Compressed Text Files

• Huffman coding allows searching directly on compressed text
– (we will describe Huffman coding later on)

• Since Huffman coding needs to store the codes of each symbol,
this scheme has to store the whole vocabulary of the corpus

If we consider words as symbols then they are already stored in the– If we consider words as symbols, then they are already stored in the
vocabulary of the inverted index)

• Evaluating single word queries:
– they are first searched in the vocabulary

– their (Huffman) codes are collected which are then searched in the
compressed file

– So the vocabulary of the inverted file can contain entries of the form:

• [wordName | HuffmanCode | df | pointer to posting list]

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 10

[wordName | HuffmanCode | df | pointer to posting list]

COMPRESSIONCOMPRESSION

Εισαγωγή

• Encoding transforms data from one representation to another

• Compression is an encoding that takes less space• Compression is an encoding that takes less space

• Lossless: decoder can reproduce message exactly

• Lossy: can reproduce message approximately• Lossy: can reproduce message approximately

• Degree of compression: (Original - Encoded) / Encoded
– example: (125 MB - 25 MB) / 25 MB = 400%example: (125 MB - 25 MB) / 25 MB = 400%

• Compression ratio: the size of the compressed file as a fraction
of the uncompressed filep
– example: 25MB/125 MB = 0.2

» (compressed size) = 0.2 (original size)

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 12

Συμπίεση

• Advantages of Compression
– Save space in memory (e.g., compressed cache)

– Save space when storing (e.g., disk, CD-ROM)

– Save time when accessing (e.g., I/O)

– Save time when communicating (e.g., over network)Save time when communicating (e.g., over network)

• Disadvantages of Compression
– Costs time and computation to compress and uncompress

– Complicates or prevents random access

– May involve loss of information (e.g., JPEG)y (g ,)

– Makes data corruption much more costly. Small errors may make all of the
data inaccessible.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 13

Παραδείγματα Τεχνικών Συμπίεσης

Generic File Compression
• files: gzip, bzip, BOA
• archivers: ARC, PKZip
• file systems: NTFS
CommunicationCommunication
• Fax: ITU-T Group 3
• Modems: V.42bis protocol, MNP5 p
Multimedia
• Images: gif, jbig, jpeg-ls, jpeg

TV HDTV (4)• TV: HDTV (mpeg-4)
• Sound: mp3

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 14

Συμπίεση Κειμένου

• Text Compression vs Data Compression
– Text compression predates most work on general data compression.

– Text compression is a kind of data compression optimized for text (i.e.,
based on a language and a language model).

– Text compression can be faster or simpler than general data compression,
because of assumptions made about the data.

– Text compression assumes a language and language model;

– Data compression learns the model on the fly.

– Text compression is effective when the assumptions are met;

– Data compression is effective on almost any data with a skewed distribution

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 15

(«ασύμμετρη κατανομή»)

Διάκριση Τεχνικών Συμπίεσης

(Α) Στατιστικές τεχνικές (statistical)
– βασίζονται σε εκτιμήσεις της πιθανότητας εμφάνισης των συμβόλων

– όσο πιο ακριβείς είναι αυτές οι εκτιμήσεις τόσο καλύτερη συμπίεση
επιτυγχάνεται

– παραδείγματα τέτοιων τεχνικών:ρ γμ χ

• Huffman coding

• Arithmetic coding

(Β) Τεχνικές βάσει Λεξικού (dictionary-based)
– αντικαθιστούν μια ακολουθία συμβόλων με έναν δείκτη προς μια
προηγούμενη εμφάνιση της ακολουθίας

– παραδείγματα τέτοιων τεχνικών:

• Ziv-Lempel family

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 16

p y

– They can compress English text to less than 4 bits per character

Βασικές Έννοιες

• A symbol can be a character, a text word, or a fixed number of
characters.

• Alphabet: the set of all possible symbols in the text

• Modeling: the task of estimating the probability of each next
symbolsymbol

• Model: a collection of probability distributions, one for each
context in which a symbol can be codedy

• Coding: The conversion of symbols to binary digits

• Decoding: Reconstruction of the original text (using the same
model)

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 17

(A) Στατιστικές Τεχνικές: Εισαγωγή (I)

Huffman Coding
• Ιδέα:Ιδέα:

– Κωδικοποιεί με λιγότερα bits τα σύμβολα με μεγάλη πιθανότητα εμφάνισης

• Αποτελεσματικότητα:
– They are able to compress English text to approximately 5 bits per character

(instead of the usual 7-8)

• Word-based Huffman
– They are able to compress English text to approximately 2 bits per character

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 18

Στατιστικές Τεχνικές: Εισαγωγή (ΙΙ)

Arithmetic Coding
• Ιδέα:Ιδέα:

– Computes the code incrementally, one symbol at a time, as oppοsed to
Huffman coding scheme in which each different symbol is pre-encoded using
a fixed-length number of bitsa fixed length number of bits.

• Αποτελεσματικότητα
– They can compress English text to just over 2 bits per character

• Αδυναμία
– The incremenal nature does not allow decoding a string which starts in the

middle of the compressed file. This requires decoding the whole text from the p q g
beginning until the desired word. This makes arithmetic coding inadequate
for use in IR environment.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 19

Στατιστικές Τεχνικές:
The Lower Bound of Compression

In an optimal encoding scheme,

a symbol that is expected to occur with probability p y p p y p

should be assigned a code of length log21/p bits.

[Shannon]

• The number of bits in which a symbol is best coded represents the
information content of the symbol

• Παραδείγματα

•p=1 → log2 1/1 = 0

•p=1/2 → log 1/(1/2)= log 2= 1•p=1/2 → log2 1/(1/2)= log22= 1

•p=1/4 → log2 1/(1/4)= log24=2

•Έστω Α(1/2), Β(1/4), C(1/4)

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 20

• |code(A)|=1, |code(B)|=2, |code(C)|=2

• For example: code(A)=“1”, code(B)=“00”, code(C)=“01”

Στατιστικές Τεχνικές:
The Lower Bound of Compression (ΙΙ)

• The average amount of information per symbol over the whole
alphabet is called the entropy of the probability distribution, given
by:by:

– E = Σ pi log21/pi

• E is a lower bound on compression, measured in bits per symbol,
which applies to any coding method based on the probability
distribution pidistribution pi.

Παράδειγμα

• Α(1/2) Β(1/4) C(1/4) cod(A)=1 code(B)=00 code(C)=01• Α(1/2), Β(1/4), C(1/4), cod(A)=1, code(B)=00, code(C)=01

E = 1/2*1 + 1/4*2 + 1/4*2 = 1.5

• Α(1/2) Β(1/2) cod(A)=1 code(B)=0

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 21

Α(1/2), Β(1/2) cod(A) 1, code(B) 0

E = 1/2*1 + 1/2*1 = 1

Στατιστικές Τεχνικές: Modeling

• Σκοπός
– provide a probability assignment for the next symbol to be coded.

– High compression can be obtained by forming good models

Διάκριση μοντέλων• Διάκριση μοντέλων

– (m1) Adaptive

– (m2) Static(m2) Static

– (m3) Semi-static

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 22

Στατιστικές Τεχνικές>Modeling:
(m1) Adaptive Models

• Start with no information about the text and progressively learn
about its statistical distribution as the compression process goes
on

• Thus, adaptive models need only one pass over the text and store
no additional information apart from the compressed textno additional information apart from the compressed text

• For long enough texts, these models converge to the true
statistical distribution of the text

• Disadvantage:
– The decompression of a file has to start from its beginning (since information

on the distribution of the data is stored incrementally inside the file)on the distribution of the data is stored incrementally inside the file)

– Inadequate for full-text retrieval where random access to compressed
patterns is a must

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 23

Στατιστικές Τεχνικές>Modeling:
(m2) Static Models

• They assume an average distribution for all input texts

• The modeling phase is done only once for all texts to be coded in g p y
the future

• They tend to achieve poor compression ratios when the data
deviates from initial statistical assumptionsdeviates from initial statistical assumptions
– e.g. a model adequate for English literary texts will probably perform poorly

for financial texts containing a lot of different numbers, as each number is
l ti l d i l drelatively rare and so receives long codes

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 24

Στατιστικές Τεχνικές>Modeling:
(m3) Semi-static Models

• They do not assume any distribution on the data, but learn it in a
first pass.

• In a second pass, they compress the data using a fixed code
derived from the distribution learned from the first pass.

At decoding time information on the data distribution is sent to the• At decoding time, information on the data distribution is sent to the
decoder before transmitting the encoded symbols.

• Disadvantages:g
– they must make 2 passes

– the information on the data distribution must be stored to be used by the
decoder to decompressdecoder to decompress

• Advantage for IR:
– since the same codes are used at every point in the compressed file, direct

i ibl

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 25

access is possible.

Στατιστικές Τεχνικές>Modeling:
Word-based Models

• They take words instead of characters as symbols.

• Advantages of IR:g

– they achieve higher compression rates

– words are the atoms on which most IRS are built

– words are already stored for indexing purposes (inverted files)
and so might be used as part of the model for compression

word frequencies are also useful in answering queries involving– word frequencies are also useful in answering queries involving
combinations of words because the best strategy is to start with
the least frequent words first

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 26

Στατιστικές Τεχνικές> Coding

• Coding is the task of obtaining the representation (code) of a
symbol based on a probability distribution given by a model.

• Design goals

– assign short codes to likely codes and long codes to unlikely
onesones

– coding and decoding speed

• As the entropy of a probability distribution is a lower bound on howAs the entropy of a probability distribution is a lower bound on how
short the average length of a code can be, the quality of a coder is
measured in terms of how close to the entropy it is able to get

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 27

Στατιστικές Τεχνικές> Coding
Semi-Static Huffman

• First pass: the modeler determines the probability distribution of
the symbols and builds a coding tree

• Second pass: each next symbol is encoded according to the
coding tree

Compression is achieved by assigning shorter codes to more• Compression is achieved by assigning shorter codes to more
frequent symbols.
– Huffman codes

• Invented by Huffman as a class assignment in 1950.

• Used in many (if not most) compression algorithms: gzip, bzip, jpeg (as
option), fax compression,…p), p ,

• Decompression uniqueness is guaranteed because no code is a
prefix of another

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 28

Στατιστικές Τεχνικές> Coding
Semi-Static Huffman: Example

• Text: «for each rose, a rose is a rose»

• Frequencies: «rose»(3), «a»(2), «for»(1), «each»(1), « ,»(1), «is»(1)

H ffman tree binar trie b ilt on binar codes

10

• Huffman tree: binary trie built on binary codes

rose
a

1

1

0

0

0

each for is_,

110 0
No code is

prefixof another

• Original text: for each rose, a rose is a rose

• Compressed text: 0110 0100 1 0101 00 1 0111 00 1

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 29

Compressed text: 0110 0100 1 0101 00 1 0111 00 1

Στατιστικές Τεχνικές> Coding
Semi-Static Huffman: Building the Huffman Tree

(1) For each symbol of the alphabet a node containing the symbol and its
probability is created
At this point we have a forest of one node trees whose probabilities sum up to 1At this point we have a forest of one-node trees whose probabilities sum up to 1

(2) The two nodes with the smallest probabilities become children of a newly
created parent node. To this node with associate the sum of the probabilities of
its childrenits children

(3) The operation is repeated ignoring nodes that are already children, until there is
only one node which becomes the root of the tree.

Notes:

• By delaying the pairing of nodes with high probabilities, the algorithm
necessarily places them closer to the root node, making their code smaller

• The two branches from every internal node are consistently labeled 0 and 1

• Given s symbols and their frequencies in the text, the algorithm build the

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 30

y q , g
Huffman tree in O(s log s) time.

Στατιστικές Τεχνικές> Coding
Semi-Static Huffman: Building the Huffman Tree

• Text: «for each rose, a rose is a rose»

• Frequencies: «rose»(3), «a»(2), «for»(1), «each»(1), « ,»(1), «is»(1)

(9)

(4)

(9)
each: 000

_,: 001

for: 010

0

0
1

1

(2) (2) (5)

for: 010

is: 011

a: 10

11

0 0 0

1

111

rose(3)a(2)each(1) for(1) is(1)_,(1) rose: 11

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 31

Στατιστικές Τεχνικές> Coding
Semi-Static Huffman: Canonical Tree

• Motivation:

– The number of Huffman trees which can be built for a given g
probability distribution is large:

– This is because interchanging left and right subtrees of any
internal node results in a different tree whenever the twointernal node results in a different tree whenever the two
subtrees are different in structure, but the weighted average
code length is not affected

– Instead of using any kind of tree, the preferred choice for most
applications is to adopt a canonical tree which imposes a
particular order to the coding bitsparticular order to the coding bits.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 32

Στατιστικές Τεχνικές> Coding
Semi-Static Huffman: Canonical Tree (II)

• A Huffman tree is canonical when the height of the left subtree of
any node is never smaller than that of the right subtree, and all
leaves are in increasing order of probabilities from left to right

rose

1

1

0

0 rose

1

1

0

0
rose

a
1

1

11

0

0 0

a1

11

0

0 0

each for is_, each for is_,

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 33

Least frequent symbol

Στατιστικές Τεχνικές> Coding
Semi-Static Huffman: Encoding & Decoding

Encoding: Start at leaf of Huffman tree and follow path to the root.
Reverse order of bits and send.

Decoding: Start at root of Huffman tree and take branch for each bit
received When at leaf can output message and return to rootreceived. When at leaf can output message and return to root

The stream of bits in the compressed file is traversed from left to
rightg

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 34

Στατιστικές Τεχνικές> Coding: Semi-Static Huffman:
Byte-Oriented Huffman Code

• Huffman tree with degree 256 instead of 2

• Typically, the code assigned to each symbol contains between 1 yp y, g y
and 5 bytes

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 35

Στατιστικές Τεχνικές> Coding: Semi-Static Huffman:
Remarks

• Huffman coding allows perfoming direct searching on
compressed text.

• The exact search can be done on the compressed text directly,
using any known sequential pattern matching algorithmusing any known sequential pattern matching algorithm

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 36

Άλλοι τρόποι κωδικοποίησης

• Restricted Variable-Length Codes
– Use first bit to indicate case.

8 most frequent characters fit in 4 bits (0xxx)– 8 most frequent characters fit in 4 bits (0xxx).

– 128 less frequent characters fit in 8 bits (1xxxxxxx)

– In English, 7 most frequent characters are 65% of occurrences

– Expected code length is approximately 5.4 bits per character, for a 32.8%
compression ratio.

• Restricted Var-Length: Generalization for More Symbolsg y
– Use more than 2 cases.

– 1xxx for 23 = 8 most frequent symbols, and

0xxx1xxx for next 26 = 64 symbols and– 0xxx1xxx for next 26 = 64 symbols, and

– 0xxx0xxx1xxx for next 29 = 512 symbols, and …

– Average code length ~ 6.2 bits per symbol (23.0%) compression ratio.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 37

– Pro: Variable number of symbols. Con: Only 72 symbols in 1 byte.

Dictionary MethodsDictionary Methods

Dictionary Methods

• They achieve compression by replacing groups of consecutive
symbols (or phrases) with a pointer to an entry in a dictionary

• Thus, the central decision in the design of a dictionary method is
the selection of entries in the dictionarythe selection of entries in the dictionary.

• The choice of phrases can be made byThe choice of phrases can be made by

– static,

– semi-adaptive, orp

– adaptive algorithms

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 39

Dictionary Methods> Static Dictionaries

• The simplest dictionary schemes use static dictionaries containing
short phrases

• Example: Digram Coding
– Idea: selected pairs of letters are replaced with codewords

at each step the next two characters are inspected and verified if they– at each step the next two characters are inspected and verified if they
correspond to a digram in the dictionary

– If so, they are coded together and the coding position is shifted by two
characters; otherwise the single character is represented by its normal codecharacters; otherwise, the single character is represented by its normal code
and the coding position is shifted by one character

• Weaknesses:
– The dictionary may be suitable for one text and unsuitable for another.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 40

Dictionary Methods>
Semi-Static and Adaptive Dictionaries

• Construct a new dictionary for each text to be compressed

• The problem of deciding which phrases to put in the dictionary is p g p p y
not an easy task

• Adaptive Dictionaries (Ziv-Lempel)
Id R l t i f h t ith f t i– Idea: Replace strings of characters with a reference to a previous occurrence
of the string.

– This approach is effective because most characters can be coded as part of
t i th t h d li i th t ta string that has occurred earlier in the text

– If the pointer to an earlier occurrence of a string is stored in fewer bits than
the string it replaces, then compression is achieved

• Disadvanteages of Adaptive Dictionaries
– they do not allow decoding to start in the middle of the compressed file (so,

direct access is not possible unless we decode the text from its beginning)

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 41

p g g)

Adaptive Dictionary Methods>
Lempel-Ziv Compression Algorithms

• Use the text already encountered to build the dictionary.
– If text follows Zipf's laws, a good dictionary is built.

– No need to store dictionary; encoder and decoder each know how to build it
on the fly.

• Some variants: LZ77, Gzip, LZ78, LZW, Unix compress

• Variants differ on:
– how dictionary is built,

– how pointers are represented (encoded), and

– limitations on what pointers can refer tolimitations on what pointers can refer to.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 42

Adaptive Dictionary Methods> LZ77(LZ1)

Data is encoded as a sequence of tuples:

<Number of characters back, Length, Next character>

– Example:Example:

• String: abaababbbbbbbbbbba
• Encoding: <0,0,a> <0,0,b> <2,1,a> <3,2,b> <1,10,a>
• Encoding: <0,0,a>

• String: a
• Encoding: <0,0,a> <0,0,b>

• String: ab
• Encoding: <0,0,a> <0,0,b> <2,1,a>

• String: abaag

• Encoding: <0,0,a> <0,0,b> <2,1,a> <3,2,b>

• String: abaabab
• Encoding: <0,0,a> <0,0,b> <2,1,a> <3,2,b><1,10,a>

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 43

Encoding: 0,0,a 0,0,b 2,1,a 3,2,b 1,10,a

• String: abaababbbbbbbbbbba

Adaptive Dictionary Methods> LZ77(LZ1)

• Optimizations:
– Limit size of back-pointers, e.g., 8K (13 bits).

– Restrict length of phrases, e.g., 15 characters (4 bits).

– Variable-length encode pointers and length.

• Encoding data structures:• Encoding data structures:
– Trie, hash table, or binary search tree.

• Characteristics:
– Very fast decoding.

– Low memory overhead.

– Decoder is sufficiently small to include in compressed dataDecoder is sufficiently small to include in compressed data.

• Self expanding archives, typically found on PCs.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 44

Adaptive Dictionary Methods> LZ77> Gzip

• Gzip is a variant of LZ77
– Encoder locates previous strings using a hash table (three characters), then

a linked list

– User preferences (speed vs space) determine list length

– For maximal compression, uses lookahead instead of simple greedy search p p g y
for string matches

– Uses one Huffman for offsets, another for lengths and characters

– Huffman codes are semi-static:Huffman codes are semi static:

• Text is processed in chunks of up to 64K.

• Each chunk has its own Huffman code.

H ff d t d i th d t t• Huffman codes are stored in the compressed text.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 45

Adaptive Dictionary Methods> LZ78 (LZ2)

• Data is encoded as a sequence of tuples:

– <Phrase ID, Next character>,

– Instead of looking backwards for substrings, use a phrase
dictionary

• Phrase length does not need to be stored in the tuple.

• Phrase ids can take up less space than back pointers

• Phrase dictionary grows until a memory limit is reached• Phrase dictionary grows until a memory limit is reached.

• When full, dictionary:
– is reinitialized,,

– is partially rebuilt, or

– becomes static.

Encodes faster than LZ77 decodes more slowly

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 46

• Encodes faster than LZ77, decodes more slowly.

Compression Techniques: Summary

StatisticalStatistical
Dictionary-based

Coding

Modeling
Phrase Selection

Coding

Huffman Arithmetic Static AdaptiveSemi Adaptive

AdaptiveStatic SemiStatic

Huffman Arithmetic Static AdaptiveSemi-Adaptive

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 47

Παραδείγματα Τεχνικών Συμπίεσης

Generic File Compression
• files: gzip (LZ77), bzip (Burrows-Wheeler), BOA (PPM)
• archivers: ARC (LZW), PKZip (LZW+)
• file systems: NTFS
CommunicationCommunication
• Fax: ITU-T Group 3 (run-length + Huffman)
• Modems: V.42bis protocol (LZW) MNP5 (RL + Huffman)p () ()
Multimedia
• Images: gif (LZW), jbig (context), jpeg-ls (residual),

jpeg (transform+RL+arithmetic)jpeg (transform+RL+arithmetic)
• TV: HDTV (mpeg-4)
• Sound: mp3

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 48

Comparing Text Compression Techniques

Character Word

Arithmetic Huffman Huffman Ziv LempelArithmetic Huffman Huffman Ziv-Lempel

Compression ratio very good poor very good good

Compression speed slo fast fast er fastCompression speed slow fast fast very fast

Decompression speed slow fast very fast very fast

Memory space low low high moderate

R dRandom access no yes yes no

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 49

