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∆ιάλεξη : 14b
Ημερομηνία :

Διάρθρωση

• Συμπίεση Ανεστραμμένου Ευρετηρίου
– συμπίεση λιστών εμφάνισης με ειδική κωδικοποίηση αριθμών κατόπιν  
ομαδοποίησης

• Γενική εισαγωγή στη συμπίεση

• Βασικές Έννοιες• Βασικές Έννοιες

• Στατιστικές Τεχνικές Συμπίεσης

• Τεχνικές Συμπίεσης Λεξικού (Dictionary)χ ς μ ης ξ ( y)

Σ ό άθ ΗΥ438 (Σ ί Δ δ έ Σ ά )
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• Σχετικό μάθημα: ΗΥ438 (Συμπίεση Δεδομένων και Σημάτων)



Inverted File Compression (Sec. 7.4.5 of MIR book)

• An Inverted file contains:
– (a) a vocabulary containing all distinct words in the text collection

– (b) for each word in the vocabulary, a list of all documents in which that word 
occurs

• The size of the inverted file can be reduced by compressing theThe size of the inverted file can be reduced by compressing the 
inverted lists

beautiful

Vocabulary

70, 80, 100, 233, 450, 890, ...

Occurrences

flowers

garden

45, 58, 66, 82, 123, 790, 920, 955, 1240,...

18, 29, 55, 61, 82, 103, 844, 1200, 1345, ...
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house 6, 22, 33, 42, 90, ….

Inverted File Compression:
Compressing Inverted Listsp g

70, 80, 100, 233, 450, 890, ...
Occurrences

45, 58, 66, 82, 123, 790, 920, 955, 1240,...

18, 29, 55, 61, 82, 103, 844, 1200, 1345, ...

6 22 33 42 90

• As the list of document numbers within the inverted list is in 
ascending order, it can also be considered as a sequence of 

6, 22, 33, 42, 90, ….

g q
gaps between document numbers.

• E.g.  [2,8,22,30] [2,6,14,8]

• [21002 21008 21022 21030] [21002 6 14 8]• [21002, 21008, 21022, 21030] [21002,6,14,8]

• Since processing is usually done sequentially starting from the 
beginning of the list, the original document numbers can always be 
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recomputed through sums of the gaps.



Inverted File Compression:
Compressing Inverted Lists (ΙΙ)p g ( )

• These gaps are 
– small for frequent words and 

– large for infrequent words

• Compression can be obtained by encoding small values with 
shorter codesshorter codes

• Codingsg
– Unary code

• An integer x is coded as (x-1) one bits followed by a zero bit, so the code 
for the integer 3 is 110for the integer 3 is 110
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Inverted File Compression:
Compressing Inverted Lists (ΙΙΙ)p g ( )

• Elias-γ
– the number x is represented by a concatenation 

of two parts:

• (1) a unary code for 1 + ⎣logx ⎦ and 

• (2) a code of ⎣logx ⎦ bits that represents the ( ) g p
values of x-2 ⎣logx ⎦ in binary
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Inverted File Compression:
Compressing Inverted Lists (ΙV)p g ( )

• Elias-δ
– represents the prefix indicating the 

number of binary bits by the Elias-γ 
code

• Golomb• Golomb
– presented another run-length coding method for positive integers. It is very 

effective when the probability distribution is geometric.
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• Example codes for integers:
– MIR BOOK page 185

Searching Compressed Files
Inverted Files

• Recall that we represent gaps by schemes that favor small
numbers

• If we first cluster the documents and reassign to them document 
identifiers, then we have more small gaps 

– more space savings!

• Results: reductions in 90% can be obtained by block addressing
indices with blocks of 1 Kb sizeindices with blocks of 1 Kb size

• Other remarks:
– Compression does not necessarily degrade time performance

• most of the time spent in answering a query is in the disk transfer

Query times on compressed or decompressed indices are roughly similar
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– Query times on compressed or decompressed indices are roughly similar



Clustering and Compression of Inverted FilesClustering and Compression of Inverted Files

If we first cluster the documents and reassign to 
them document identifiers, then we have more 
small gaps more space savings!

Διαβάστε το άρθρο:  ECIR’2007 Best Paper Award
(υπάρχει στο wiki)

Searching Compressed Text Files 

• Huffman coding allows searching directly on compressed text
– (we will describe Huffman coding later on)

• Since Huffman coding needs to store the codes of each symbol, 
this scheme has to store the whole vocabulary of the corpus 

If we consider words as symbols then they are already stored in the– If  we consider words as symbols, then they are already stored in the 
vocabulary of the inverted index)

• Evaluating single word queries: 
– they are first searched in the vocabulary

– their (Huffman) codes are collected which are then searched in the 
compressed file

– So the vocabulary of the inverted file can contain entries of  the form:

• [ wordName | HuffmanCode | df | pointer to posting list ]
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[ wordName | HuffmanCode | df | pointer to posting list ]



COMPRESSIONCOMPRESSION

Εισαγωγή

• Encoding transforms data from one representation to another

• Compression is an encoding that takes less space• Compression is an encoding that takes less space

• Lossless: decoder can reproduce message exactly

• Lossy: can reproduce message approximately• Lossy: can reproduce message approximately

• Degree of compression: (Original - Encoded) / Encoded
– example: (125 MB - 25 MB) / 25 MB = 400%example: (125 MB - 25 MB) / 25 MB = 400%

• Compression ratio: the size of the compressed file as a fraction 
of the uncompressed filep
– example:  25MB/125 MB = 0.2

» (compressed size) = 0.2 (original size)
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Συμπίεση

• Advantages of Compression
– Save space in memory (e.g., compressed cache)

– Save space when storing (e.g., disk, CD-ROM)

– Save time when accessing (e.g., I/O)

– Save time when communicating (e.g., over network)Save time when communicating (e.g., over network)

• Disadvantages of Compression
– Costs time and computation to compress and uncompress

– Complicates or prevents random access

– May involve loss of information (e.g., JPEG)y ( g , )

– Makes data corruption much more costly. Small errors may make all of the 
data inaccessible.
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Παραδείγματα Τεχνικών Συμπίεσης

Generic File Compression
• files: gzip, bzip, BOA
• archivers: ARC, PKZip
• file systems: NTFS
CommunicationCommunication
• Fax: ITU-T Group 3
• Modems: V.42bis protocol,  MNP5 p
Multimedia
• Images: gif, jbig, jpeg-ls, jpeg

TV HDTV ( 4)• TV: HDTV (mpeg-4)
• Sound: mp3
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Συμπίεση Κειμένου

• Text Compression vs Data Compression
– Text compression predates most work on general data compression.

– Text compression is a kind of data compression optimized for text (i.e., 
based on a language and a language model).

– Text compression can be faster or simpler than general data compression, 
because of assumptions made about the data.

– Text compression assumes a language and language model;

– Data compression learns the model on the fly.

– Text compression is effective when the assumptions are met;

– Data compression is effective on almost any data with a skewed distribution
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(«ασύμμετρη κατανομή»)

Διάκριση Τεχνικών Συμπίεσης

(Α) Στατιστικές τεχνικές (statistical)
– βασίζονται σε εκτιμήσεις της πιθανότητας εμφάνισης των συμβόλων

– όσο πιο ακριβείς είναι αυτές οι εκτιμήσεις τόσο καλύτερη συμπίεση 
επιτυγχάνεται

– παραδείγματα τέτοιων τεχνικών:ρ γμ χ

• Huffman coding

• Arithmetic coding

(Β) Τεχνικές βάσει Λεξικού (dictionary-based)
– αντικαθιστούν μια ακολουθία συμβόλων με έναν δείκτη προς μια 
προηγούμενη εμφάνιση της ακολουθίας

– παραδείγματα τέτοιων τεχνικών:

• Ziv-Lempel family
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p y

– They can compress English text to  less than 4 bits per character



Βασικές Έννοιες

• A symbol can be a character, a text word, or a fixed number of 
characters.

• Alphabet: the set of all possible symbols in the text

• Modeling: the task of estimating the probability of each next 
symbolsymbol

• Model: a collection of probability distributions, one for each 
context in which a symbol can be codedy

• Coding: The conversion of symbols to binary digits

• Decoding: Reconstruction of the original text (using the same 
model)
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(A) Στατιστικές Τεχνικές: Εισαγωγή (I)

Huffman Coding
• Ιδέα:Ιδέα: 

– Κωδικοποιεί με λιγότερα bits τα σύμβολα με μεγάλη πιθανότητα εμφάνισης

• Αποτελεσματικότητα:
– They are able to compress English text to approximately 5 bits per character

(instead of the usual 7-8)

• Word-based Huffman
– They are able to compress English text to approximately 2 bits per character
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Στατιστικές Τεχνικές: Εισαγωγή (ΙΙ)

Arithmetic Coding
• Ιδέα:Ιδέα:

– Computes the code incrementally, one symbol at a time, as oppοsed to 
Huffman coding scheme in which each different symbol is pre-encoded using 
a fixed-length number of bitsa fixed length number of bits.

• Αποτελεσματικότητα
– They can compress English text to just over 2 bits per character

• Αδυναμία
– The incremenal nature does not allow decoding a string which starts in the 

middle of the compressed file. This requires decoding the whole text from the p q g
beginning until the desired word. This makes arithmetic coding inadequate 
for use in IR environment.
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Στατιστικές Τεχνικές: 
The Lower Bound of Compression

In an optimal encoding scheme, 

a symbol that is expected to occur with probability p y p p y p

should be assigned a code of length log21/p bits.

[Shannon]

• The number of bits in which a symbol is best coded represents the 
information content of  the symbol

• Παραδείγματα

•p=1  → log2 1/1 = 0

•p=1/2 → log 1/(1/2)= log 2= 1•p=1/2 → log2 1/(1/2)= log22= 1

•p=1/4 → log2 1/(1/4)= log24=2

•Έστω Α(1/2), Β(1/4), C(1/4)
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• |code(A)|=1, |code(B)|=2, |code(C)|=2

• For example: code(A)=“1”, code(B)=“00”, code(C)=“01”



Στατιστικές Τεχνικές: 
The Lower Bound of Compression  (ΙΙ)

• The average amount of information per symbol over the whole 
alphabet is called the entropy of the probability distribution, given 
by:by:

– E = Σ pi log21/pi

• E is a lower bound on compression, measured in bits per symbol, 
which applies to any coding method based on the probability 
distribution pidistribution pi.

Παράδειγμα

• Α(1/2) Β(1/4) C(1/4) cod(A)=1 code(B)=00 code(C)=01• Α(1/2), Β(1/4), C(1/4), cod(A)=1, code(B)=00, code(C)=01 

E = 1/2*1 + 1/4*2 + 1/4*2 = 1.5

• Α(1/2) Β(1/2) cod(A)=1 code(B)=0
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Α(1/2), Β(1/2) cod(A) 1, code(B) 0

E = 1/2*1 + 1/2*1 = 1

Στατιστικές Τεχνικές: Modeling

• Σκοπός
– provide a probability assignment for the next symbol to be coded.

– High compression can be obtained by forming good models

Διάκριση μοντέλων• Διάκριση μοντέλων

– (m1) Adaptive

– (m2) Static(m2) Static

– (m3) Semi-static
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Στατιστικές Τεχνικές>Modeling:
(m1) Adaptive Models

• Start with no information about the text and progressively learn 
about its statistical distribution as the compression process goes 
on

• Thus, adaptive models need only one pass over the text and store 
no additional information apart from the compressed textno additional information apart from the compressed text

• For long enough texts, these models converge to the true 
statistical distribution of  the text

• Disadvantage: 
– The decompression of a file has to start from its beginning (since information 

on the distribution of the data is stored incrementally inside the file)on the distribution of the data is stored incrementally inside the file)

– Inadequate for full-text retrieval where random access to compressed 
patterns is a must
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Στατιστικές Τεχνικές>Modeling:
(m2) Static Models

• They assume an average distribution for all input texts

• The modeling phase is done only once for all texts to be coded in g p y
the future

• They tend to achieve poor compression ratios when the data 
deviates from initial statistical assumptionsdeviates from initial statistical assumptions
– e.g. a model adequate for English literary texts will probably perform poorly 

for financial texts containing a lot of different numbers, as each number is 
l ti l d i l drelatively rare and so receives long codes
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Στατιστικές Τεχνικές>Modeling:
(m3) Semi-static Models

• They do not assume any distribution on the data, but learn it in a 
first pass.

• In a second pass, they compress the data using a fixed code 
derived from the distribution learned from the first pass.

At decoding time information on the data distribution is sent to the• At decoding time, information on the data distribution is sent to the 
decoder before transmitting the encoded symbols.

• Disadvantages:g
– they must make 2 passes

– the information on the data distribution must be stored to be used by the 
decoder to decompressdecoder to decompress

• Advantage for IR:
– since the same codes are used at every point in the compressed file, direct 

i ibl
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access is possible.

Στατιστικές Τεχνικές>Modeling:
Word-based Models

• They take words instead of characters as symbols.

• Advantages of IR:g

– they achieve higher compression rates

– words are the atoms on which most IRS are built

– words are already stored for indexing purposes (inverted files) 
and so might be used as part of the model for compression

word frequencies are also useful in answering queries involving– word frequencies are also useful in answering queries involving 
combinations of words because the best strategy is to start with 
the  least frequent words first
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Στατιστικές Τεχνικές> Coding

• Coding is the task of obtaining the representation (code) of a 
symbol based on a probability distribution given by a model.

• Design goals

– assign short codes to likely codes and long codes to unlikely 
onesones

– coding and decoding speed

• As the entropy of a probability distribution is a lower bound on howAs the entropy of a probability distribution is a lower bound on how 
short the average length of a code can be, the quality of a coder is 
measured in terms of how close to the entropy it is able to get

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 27

Στατιστικές Τεχνικές> Coding
Semi-Static Huffman

• First pass: the modeler determines the probability distribution of 
the symbols and builds a coding tree

• Second pass: each next symbol is encoded according to the 
coding tree

Compression is achieved by assigning shorter codes to more• Compression is achieved by assigning shorter codes to more 
frequent symbols.
– Huffman codes 

• Invented by Huffman as a class assignment in 1950.

• Used in many (if not most) compression algorithms: gzip, bzip, jpeg (as 
option), fax compression,…p ), p ,

• Decompression uniqueness is guaranteed because no code is a 
prefix of another
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Στατιστικές Τεχνικές> Coding
Semi-Static Huffman: Example

• Text: «for each rose, a rose is a rose»

• Frequencies: «rose»(3), «a»(2), «for»(1), «each»(1), « ,»(1), «is»(1)

H ffman tree binar trie b ilt on binar codes

10

• Huffman tree: binary trie built on binary codes

rose
a

1

1

0

0

0

each for is_,

110 0
No code is 

prefixof another

• Original text:             for    each  rose,          a    rose    is      a    rose

• Compressed text: 0110 0100 1 0101 00 1 0111 00 1
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Compressed text:  0110   0100   1   0101   00     1    0111   00     1

Στατιστικές Τεχνικές> Coding
Semi-Static Huffman: Building the Huffman Tree

(1) For each symbol of the alphabet a node containing the symbol and its 
probability is created
At this point we have a forest of one node trees whose probabilities sum up to 1At this point we have a forest of one-node trees whose probabilities sum up to 1

(2) The two nodes with the smallest probabilities become children of a newly 
created parent node. To this node with associate the sum of the probabilities of 
its childrenits children

(3) The operation is repeated ignoring nodes that are already children, until there is 
only one node which becomes the root of the tree.

Notes: 

• By delaying the pairing of nodes with high probabilities, the algorithm 
necessarily places them closer to the root node, making their code smaller

• The two branches from every internal node are consistently labeled 0 and 1 

• Given s symbols and their frequencies in the text, the algorithm build the 

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 30

y q , g
Huffman tree in O(s log s) time.



Στατιστικές Τεχνικές> Coding
Semi-Static Huffman: Building the Huffman Tree

• Text: «for each rose, a rose is a rose»

• Frequencies: «rose»(3), «a»(2), «for»(1), «each»(1), « ,»(1), «is»(1)

(9)

(4)

(9)
each: 000

_,: 001

for: 010

0

0
1

1

(2) (2) (5)

for: 010

is: 011

a: 10

11

0 0 0

1

111

rose(3)a(2)each(1) for(1) is(1)_,(1) rose: 11
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Στατιστικές Τεχνικές> Coding
Semi-Static Huffman: Canonical Tree

• Motivation:

– The number of Huffman trees which can be built for a given g
probability distribution is large: 

– This is because interchanging left and right subtrees of any 
internal node results in a different tree whenever the twointernal node results in a different tree whenever the two 
subtrees are different in structure, but the weighted average 
code length is not affected

– Instead of using any kind of tree, the preferred choice for most 
applications is to adopt a canonical tree which imposes a 
particular order to the coding bitsparticular order to the coding bits.
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Στατιστικές Τεχνικές> Coding
Semi-Static Huffman: Canonical Tree (II)

• A Huffman tree is canonical when the height of the left subtree of 
any node is never smaller than that of the right subtree, and all 
leaves are in increasing order of probabilities from left to right

rose

1

1

0

0 rose

1

1

0

0
rose

a
1

1

11

0

0 0

a1

11

0

0 0

each for is_, each for is_,
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Least frequent symbol

Στατιστικές Τεχνικές> Coding
Semi-Static Huffman: Encoding & Decoding

Encoding: Start at leaf of Huffman tree and follow path to the root.  
Reverse order of bits and send.

Decoding: Start at root of Huffman tree and take branch for each bit 
received When at leaf can output message and return to rootreceived.  When at leaf can output message and return to root

The stream of bits in the compressed file is traversed from left to 
rightg
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Στατιστικές Τεχνικές> Coding: Semi-Static Huffman: 
Byte-Oriented Huffman Code

• Huffman tree with degree 256 instead of 2

• Typically, the code assigned to each symbol contains between 1 yp y, g y
and 5 bytes
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Στατιστικές Τεχνικές> Coding: Semi-Static Huffman: 
Remarks

• Huffman coding allows perfoming direct searching on 
compressed text.

• The exact search can be done on the compressed text directly, 
using any known sequential pattern matching algorithmusing any known sequential pattern matching algorithm
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Άλλοι τρόποι κωδικοποίησης

• Restricted Variable-Length Codes
– Use first bit to indicate case.

8 most frequent characters fit in 4 bits (0xxx)– 8 most frequent characters fit in 4 bits (0xxx).

– 128 less frequent characters fit in 8 bits (1xxxxxxx)

– In English, 7 most frequent characters are 65% of occurrences

– Expected code length is approximately 5.4 bits per character, for a 32.8% 
compression ratio.

• Restricted Var-Length: Generalization for More Symbolsg y
– Use more than 2 cases.

– 1xxx for 23 = 8 most frequent symbols, and

0xxx1xxx for next 26 = 64 symbols and– 0xxx1xxx for next 26 = 64 symbols, and

– 0xxx0xxx1xxx for next 29 = 512 symbols, and …

– Average code length ~ 6.2 bits per symbol  (23.0%) compression ratio.
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– Pro: Variable number of symbols. Con: Only 72 symbols in 1 byte.

Dictionary MethodsDictionary Methods



Dictionary Methods

• They achieve compression by replacing groups of consecutive 
symbols (or phrases) with a pointer to an entry in a dictionary

• Thus, the central decision in the design of a dictionary method is 
the selection of entries in the dictionarythe selection of entries in the dictionary.

• The choice of phrases can be made byThe choice of phrases can be made by 

– static,

– semi-adaptive, orp

– adaptive algorithms
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Dictionary Methods> Static Dictionaries

• The simplest dictionary schemes use static dictionaries containing 
short phrases

• Example: Digram Coding
– Idea: selected pairs of letters are replaced with codewords

at each step the next two characters are inspected and verified if they– at each step the next two characters are inspected and verified if they 
correspond to a digram in the dictionary

– If so, they are coded together and the coding position is shifted by two 
characters; otherwise the single character is represented by its normal codecharacters; otherwise, the single character is represented by its normal code 
and the coding position is shifted by one character

• Weaknesses:
– The dictionary may be suitable for one text and unsuitable for another.
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Dictionary Methods> 
Semi-Static and Adaptive Dictionaries

• Construct a new dictionary for each text to be compressed

• The problem of deciding which phrases to put in the dictionary is p g p p y
not an easy task

• Adaptive Dictionaries (Ziv-Lempel)
Id R l t i f h t ith f t i– Idea: Replace strings of characters with a reference to a previous occurrence 
of the string. 

– This approach is effective because most characters can be coded as part of 
t i th t h d li i th t ta string that has occurred earlier in the text

– If the pointer to an earlier occurrence of a string is stored in fewer bits than 
the string it replaces, then compression is achieved

• Disadvanteages of Adaptive Dictionaries
– they do not allow decoding to start in the middle of the compressed file (so, 

direct access is not possible unless we decode the text from its beginning)
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p g g)

Adaptive Dictionary Methods> 
Lempel-Ziv Compression Algorithms

• Use the text already encountered to build the dictionary.
– If text follows Zipf's laws, a good dictionary is built.

– No need to store dictionary; encoder and decoder each know how to build it 
on the fly.

• Some variants: LZ77, Gzip, LZ78, LZW, Unix compress

• Variants differ on:
– how dictionary is built,

– how pointers are represented (encoded), and

– limitations on what pointers can refer tolimitations on what pointers can refer to.
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Adaptive Dictionary Methods> LZ77(LZ1)

Data is encoded as a sequence of tuples:

<Number of characters back, Length, Next character>

– Example:Example:

• String:       abaababbbbbbbbbbba
• Encoding: <0,0,a> <0,0,b> <2,1,a> <3,2,b> <1,10,a>
• Encoding: <0,0,a>

• String:       a 
• Encoding: <0,0,a> <0,0,b>

• String:       ab
• Encoding: <0,0,a> <0,0,b> <2,1,a>

• String:       abaag

• Encoding: <0,0,a> <0,0,b> <2,1,a> <3,2,b>

• String:       abaabab
• Encoding: <0,0,a> <0,0,b> <2,1,a> <3,2,b><1,10,a>
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Encoding: 0,0,a  0,0,b  2,1,a  3,2,b 1,10,a

• String:       abaababbbbbbbbbbba

Adaptive Dictionary Methods> LZ77(LZ1)

• Optimizations:
– Limit size of back-pointers, e.g., 8K (13 bits).

– Restrict length of phrases, e.g., 15 characters (4 bits).

– Variable-length encode pointers and length.

• Encoding data structures:• Encoding data structures:
– Trie, hash table, or binary search tree.

• Characteristics:
– Very fast decoding.

– Low memory overhead.

– Decoder is sufficiently small to include in compressed dataDecoder is sufficiently small to include in compressed data.

• Self expanding archives, typically found on PCs.
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Adaptive Dictionary Methods> LZ77> Gzip

• Gzip is a variant of LZ77
– Encoder locates previous strings using a hash table (three characters), then 

a linked list

– User preferences (speed vs space) determine list length

– For maximal compression, uses lookahead instead of simple greedy search p p g y
for string matches

– Uses one Huffman for offsets, another for lengths and characters

– Huffman codes are semi-static:Huffman codes are semi static:

• Text is processed in chunks of up to 64K.

• Each chunk has its own Huffman code.

H ff d t d i th d t t• Huffman codes are stored in the compressed text.
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Adaptive Dictionary Methods> LZ78 (LZ2)

• Data is encoded as a sequence of tuples:

– <Phrase ID, Next character>,

– Instead of looking backwards for substrings, use a phrase 
dictionary

• Phrase length does not need to be stored in the tuple.

• Phrase ids can take up less space than back pointers

• Phrase dictionary grows until a memory limit is reached• Phrase dictionary grows until a memory limit is reached.

• When full, dictionary:
– is reinitialized,,

– is partially rebuilt, or

– becomes static.

Encodes faster than LZ77 decodes more slowly
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• Encodes faster than LZ77, decodes more slowly.



Compression Techniques: Summary

StatisticalStatistical
Dictionary-based

Coding

Modeling
Phrase Selection

Coding

Huffman Arithmetic Static AdaptiveSemi Adaptive

AdaptiveStatic SemiStatic

Huffman Arithmetic Static AdaptiveSemi-Adaptive
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Παραδείγματα Τεχνικών Συμπίεσης

Generic File Compression
• files: gzip (LZ77), bzip (Burrows-Wheeler), BOA (PPM)
• archivers: ARC (LZW), PKZip (LZW+)
• file systems: NTFS
CommunicationCommunication
• Fax: ITU-T Group 3  (run-length + Huffman)
• Modems: V.42bis protocol (LZW) MNP5 (RL + Huffman)p ( ) ( )
Multimedia
• Images: gif (LZW), jbig (context), jpeg-ls (residual), 

jpeg (transform+RL+arithmetic)jpeg (transform+RL+arithmetic)
• TV: HDTV (mpeg-4)
• Sound: mp3
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Comparing Text Compression Techniques

---------------------------------------------------------------------------------------------------------------------------

Character Word

Arithmetic Huffman Huffman Ziv LempelArithmetic Huffman Huffman Ziv-Lempel

---------------------------------------------------------------------------------------------------------------------------

Compression ratio very good poor very good good

Compression speed slo fast fast er fastCompression speed slow fast fast very fast

Decompression speed slow fast very fast very fast

Memory space low low high moderate

R dRandom access no yes yes no

---------------------------------------------------------------------------------------------------------------------------
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