
CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 1

Γιάννης Τζίτζικας
∆ιάλεξη : 14b
Ημερομηνία : 16-5-2007

HΥ463 - Συστήματα Ανάκτησης Πληροφοριών
Information Retrieval (IR) Systems

Συμπίεση Κειμένου
Text Compression

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών
Άνοιξη 2007

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 2

Διάρθρωση Διάλεξης

• Εισαγωγή

• Βασικές Έννοιες

• Στατιστικές Τεχνικές Συμπίεσης

• Τεχνικές Συμπίεσης Λεξικού (Dictionary)

• Συμπίεση Ανεστραμμένου Ευρετηρίου

• Σχετικό μάθημα: ΗΥ438 (Συμπίεση Δεδομένων και Σημάτων)

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 3

Εισαγωγή

• Encoding transforms data from one representation to another

• Compression is an encoding that takes less space

• Lossless: decoder can reproduce message exactly

• Lossy: can reproduce message approximately

• Degree of compression: (Original - Encoded) / Encoded
– example: (125 MB - 25 MB) / 25 MB = 400%

• Compression ratio: the size of the compressed file as a fraction
of the uncompressed file
– example: 25MB/125 MB = 0.2

» (compressed size) = 0.2 (original size)

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 4

Συμπίεση

• Advantages of Compression
– Save space in memory (e.g., compressed cache)

– Save space when storing (e.g., disk, CD-ROM)

– Save time when accessing (e.g., I/O)

– Save time when communicating (e.g., over network)

• Disadvantages of Compression
– Costs time and computation to compress and uncompress

– Complicates or prevents random access

– May involve loss of information (e.g., JPEG)

– Makes data corruption much more costly. Small errors may make all of the
data inaccessible.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 5

Παραδείγματα Τεχνικών Συμπίεσης

Generic File Compression
• files: gzip, bzip, BOA
• archivers: ARC, PKZip
• file systems: NTFS
Communication
• Fax: ITU-T Group 3
• Modems: V.42bis protocol, MNP5
Multimedia
• Images: gif, jbig, jpeg-ls, jpeg
• TV: HDTV (mpeg-4)
• Sound: mp3

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 6

Συμπίεση Κειμένου

• Text Compression vs Data Compression
– Text compression predates most work on general data compression.

– Text compression is a kind of data compression optimized for text (i.e.,
based on a language and a language model).

– Text compression can be faster or simpler than general data compression,
because of assumptions made about the data.

– Text compression assumes a language and language model;

– Data compression learns the model on the fly.

– Text compression is effective when the assumptions are met;

– Data compression is effective on almost any data with a skewed distribution.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 7

Διάκριση Τεχνικών Συμπίεσης

(Α) Στατιστικές τεχνικές (statistical)
– βασίζονται σε εκτιμήσεις όσον αφορά την πιθανότητα εμφάνισης των
συμβόλων

– όσο πιο ακριβείς είναι αυτές οι εκτιμήσεις τόσο καλύτερη συμπίεση
επιτυγχάνεται

– παραδείγματα τέτοιων τεχνικών:

• Huffman coding

• Arithmetic coding

(Β) Τεχνικές βάσει Λεξικού (dictionary-based)
– αντικαθιστούν μια ακολουθία συμβόλων με έναν δείκτη προς μια
προηγούμενη εμφάνιση της ακολουθίας

– παραδείγματα τέτοιων τεχνικών:

• Ziv-Lempel family

– They can compress English text to less than 4 bits per character

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 8

Βασικές Έννοιες

• A symbol can be a character, a text word, or a fixed number of
characters.

• Alphabet: the set of all possible symbols in the text

• Modeling: the task of estimating the probability of each next
symbol

• Model: a collection of probability distributions, one for each
context in which a symbol can be coded

• Coding: The conversion of symbols to binary digits

• Decoding: Reconstruction of the original text (using the same
model)

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 9

(A) Στατιστικές Τεχνικές: Εισαγωγή (I)

Huffman Coding
• Ιδέα:

– Κωδικοποιεί με λιγότερα bits τα σύμβολα με μεγάλη πιθανότητα εμφάνισης

• Αποτελεσματικότητα:
– They are able to compress English text to approximately 5 bits per character

(instead of the usual 7-8)

• Word-based Huffman
– They are able to compress English text to approximately 2 bits per character

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 10

Στατιστικές Τεχνικές: Εισαγωγή (ΙΙ)

Arithmetic Coding
• Ιδέα:

– Computes the code incrementally, one symbol at a time, as oppοsed to
Huffman coding scheme in which each different symbol is pre-encoded using
a fixed-length number of bits.

• Αποτελεσματικότητα
– They can compress English text to just over 2 bits per character

• Αδυναμία
– The incremenal nature does not allow decoding a string which starts in the

middle of the compressed file. This requires decoding the whole text from the
beginning until the desired word. This makes arithmetic coding inadequate
for use in IR environment.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 11

Στατιστικές Τεχνικές:
The Lower Bound of Compression

In an optimal encoding scheme,

a symbol that is expected to occur with probability p

should be assigned a code of length log21/p bits.

[Shannon]

• The number of bits in which a symbol is best coded represents the
information content of the symbol

• Παραδείγματα

•p=1 → log2 1/1 = 0

•p=1/2 → log2 1/(1/2)= log22= 1

•p=1/4 → log2 1/(1/4)= log24=2

•Έστω Α(1/2), Β(1/4), C(1/4)

• |code(A)|=1, |code(B)|=2, |code(C)|=2

• code(A)=1, code(B)=00, code(C)=01

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 12

Στατιστικές Τεχνικές:
The Lower Bound of Compression (ΙΙ)

• The average amount of information per symbol over the whole
alphabet is called the entropy of the probability distribution, given
by:

– E = Σ pi log21/pi

• E is a lower bound on compression, measured in bits per symbol,
which applies to any coding method based on the probability
distribution pi.

Παράδειγμα

• Α(1/2), Β(1/4), C(1/4), cod(A)=1, code(B)=00, code(C)=01

E = 1/2*1 + 1/4*2 + 1/4*2 = 1.5

• Α(1/2), Β(1/2) cod(A)=1, code(B)=0

E = 1/2*1 + 1/2*1 = 1

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 13

Στατιστικές Τεχνικές: Modeling

• Σκοπός
– provide a probability assignment for the next symbol to be coded.

– High compression can be obtained by forming good models

• Διάκριση μοντέλων

– (m1) Adaptive

– (m2) Static

– (m3) Semi-static

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 14

Στατιστικές Τεχνικές>Modeling:
(m1) Adaptive Models

• Start with no information about the text and progressively learn
about its statistical distribution as the compression process goes
on

• Thus, adaptive models need only one pass over the text and store
no additional information apart from the compressed text

• For long enough texts, these models converge to the true
statistical distribution of the text

• Disadvantage:
– The decompression of a file has to start from its beginning (since information

on the distribution of the data is stored incrementally inside the file)

– Inadequate for full-text retrieval where random access to compressed
patterns is a must

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 15

Στατιστικές Τεχνικές>Modeling:
(m2) Static Models

• They assume an average distribution for all input texts

• The modeling phase is done only once for all texts to be coded in
the future

• They tend to achieve poor compression ratios when the data
devites from initial statistical assumptions
– e.g. a model adequate for English literary texts will probably perform poorly

for financial texts containing a lot of different numbers, as each number is
relatively rare and so receives long codes

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 16

Στατιστικές Τεχνικές>Modeling:
(m3) Semi-static Models

• They do not assume any distribution on the data, but learn it in a
first pass.

• In a second pass, they compress the data using a fixed code
derived from the distribution learned from the first pass.

• At decoding time, information on the data distribution is sent to the
decoder before transmitting the encoded symbols.

• Disadvantages:
– they must make 2 passes

– the information on the data distribution must be stored to be used by the
decoder to decompress

• Advantage for IR:
– since the same codes are used at every point in the compressed file, direct

access is possible.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 17

Στατιστικές Τεχνικές>Modeling:
Word-based Models

• They take words instead of characters as symbols.

• Advantages of IR:

– they achieve higher compression rates

– words are the atoms on which most IRS are built

– words are already stored for indexing purposes (inverted files)
and so might be used as part of the model for compression

– word frequencies are also useful in answering queries involving
combinations of words because the best strategy is to start with
the least frequent words first

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 18

Στατιστικές Τεχνικές> Coding

• Coding is the task of obtaining the representation (code) of a
symbol based on a probability distribution given by a model.

• Design goals

– assign short codes to likely codes and long codes to unlikely
ones

– coding and decoding speed

• As the entropy of a probability distribution is a lower bound on how
short the average length of a code can be, the quality of a coder is
measured in terms of how close to the entropy it is able to get

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 19

Στατιστικές Τεχνικές> Coding
Semi-Static Huffman

• First pass: the modeler determines the probability distribution of
the symbols and builds a coding tree

• Second pass: each next symbol is encoded according to the
coding tree

• Compression is achieved by assigning shorter codes to more
frequent symbols.
– Huffman codes

• Invented by Huffman as a class assignment in 1950.

• Used in many, if not most compression algorithms: gzip, bzip, jpeg (as
option), fax compression,…

• Decompression uniqueness is guaranteed because no code is a
prefix of another

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 20

Στατιστικές Τεχνικές> Coding
Semi-Static Huffman: Example

• Original text: for each rose, a rose is a rose

• Compressed text: 0110 0100 1 0101 00 1 0111 00 1

rose
a

each for is_,

1

1

1

11

0

0

0

0 0

• Text: «for each rose, a rose is a rose»

• Frequencies: «rose»(3), «a»(2), «for»(1), «each»(1), « ,»(1), «is»(1)

• Huffman tree: binary trie built on binary codes

No code is

prefixof another

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 21

Στατιστικές Τεχνικές> Coding
Semi-Static Huffman: Building the Huffman Tree

(1) For each symbol of the alphabet a node containing the symbol and its
probability is created
At this point we have a forest of one-node trees whose probabilities sum up to 1

(2) The two nodes with the smallest probabilities become children of a newly
created parent node. To this node with associate with the sum of the
probabilities of its children

(3) The operation is repeated ignoring nodes that are already children, until there is
only one node which becomes the root of the tree.

Notes:

• By delaying the pairing of nodes with high probabilities, the algorithm
necessarily places them closer to the root node, making their code smaller

• The two branches from every internal node are consistently labeled 0 and 1

• Given s symbols and their frequencies in the text, the algorithm build the
Huffman tree in O(s log s) time.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 22

Στατιστικές Τεχνικές> Coding
Semi-Static Huffman: Building the Huffman Tree

• Text: «for each rose, a rose is a rose»

• Frequencies: «rose»(3), «a»(2), «for»(1), «each»(1), « ,»(1), «is»(1)

rose(3)a(2)each(1) for(1) is(1)_,(1)

(2) (2)

(4)

(5)

(9)
each: 000

_,: 001

for: 010

is: 011

a: 10

rose: 11

0

0

0 0 0

1

1

111

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 23

Στατιστικές Τεχνικές> Coding
Semi-Static Huffman: Canonical Tree

• Motivation:

– The number of Huffman trees which can be built for a given
probability distribution is large:

– This is because interchanging left and right subtrees of any
internal node results in a different tree whenever the two
subtrees are different in structure, but the weighted average
code length is not affected

– Instead of using any kind of tree, the preferred choice for most
applications is to adopt a canonical tree which imposes a
particular order to the coding bits.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 24

Στατιστικές Τεχνικές> Coding
Semi-Static Huffman: Canonical Tree (II)

• A Huffman tree is canonical when the height of the left subtree of
any node is never smaller than that of the right subtree, and all
leaves are in increasing order of probabilities from left to right

rose
a

each for is_,

1

1

1

11

0

0

0

0 0

rose

a

each for is_,

1

1

1

11

0

0

0

0 0

Least frequent symbol

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 25

Στατιστικές Τεχνικές> Coding
Semi-Static Huffman: Encoding & Decoding

Encoding: Start at leaf of Huffman tree and follow path to the root.
Reverse order of bits and send.

Decoding: Start at root of Huffman tree and take branch for each bit
received. When at leaf can output message and return to root

The stream of bits in the compressed file is traversed from left to
right

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 26

Στατιστικές Τεχνικές> Coding: Semi-Static Huffman:
Byte-Oriented Huffman Code

• Huffman tree with degree 256 instead of 2

• Typically, the code assigned to each symbol contains between 1
and 5 bytes

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 27

Στατιστικές Τεχνικές> Coding: Semi-Static Huffman:
Remarks

• Huffman coding allows perfoming direct searching on
compressed text.

• The exact search can be done on the compressed text directly,
using any known sequential pattern matching algorithm

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 28

Άλλοι τρόποι κωδικοποίησης

• Restricted Variable-Length Codes
– Use first bit to indicate case.

– 8 most frequent characters fit in 4 bits (0xxx).

– 128 less frequent characters fit in 8 bits (1xxxxxxx)

– In English, 7 most frequent characters are 65% of occurrences

– Expected code length is approximately 5.4 bits per character, for a 32.8%
compression ratio.

• Restricted Var-Length: Generalization for More Symbols
– Use more than 2 cases.

– 1xxx for 23 = 8 most frequent symbols, and

– 0xxx1xxx for next 26 = 64 symbols, and

– 0xxx0xxx1xxx for next 29 = 512 symbols, and …

– Average code length ~ 6.2 bits per symbol (23.0%) compression ratio.

– Pro: Variable number of symbols. Con: Only 72 symbols in 1 byte.

Dictionary Methods

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 30

Dictionary Methods

• They achieve compression by replacing groups of consecutive
symbols (or phrases) with a pointer to an entry in a dictionary

• Thus, the central decision in the design of a dictionary method is
the selection of entries in the dictionary.

• The choice of phrases can be made by

– static,

– semi-adaptive, or

– adaptive algorithms

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 31

Dictionary Methods> Static Dictionaries

• The simplest dictionary schemes use static dictionaries containing
short phrases

• Example: Digram Coding
– Idea: selected pairs of letters are replaced with codewords

– at each step the next two characters are inspected and verified if they
correspond to a digram in the dictionary

– If so, they are coded together and the coding position is shifted by two
characters; otherwise, the single character is represented by its normal code
and the coding position is shifted by one character

• Weaknesses:
– The dictionary may be suitable for one text and unsuitable for another.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 32

Dictionary Methods>
Semi-Static and Adaptive Dictionaries

• Construct a new dictionary for each text to be compressed

• The problem of deciding which phrases to put in the dictionary is
not an easy task

• Adaptive Dictionaries (Ziv-Lempel)
– Idea: Replace strings of characters with a reference to a previous occurrence

of the string.

– This approach is effective because most characters can be coded as part of
a string that has occurred earlier in the text

– If the pointer to an earlier occurrence of a string is stored in fewer bits than
the string it replaces, then compression is achieved

• Disadvanteages of Adaptive Dictionaries
– they do not allow decoding to start in the middle of the compressed file (so,

direct access is not possible unless we decode the text from its beginning)

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 33

Adaptive Dictionary Methods>
Lempel-Ziv Compression Algorithms

• Use the text already encountered to build the dictionary.
– If text follows Zipf's laws, a good dictionary is built.

– No need to store dictionary; encoder and decoder each know how to build it
on the fly.

• Some variants: LZ77, Gzip, LZ78, LZW, Unix compress

• Variants differ on:
– how dictionary is built,

– how pointers are represented (encoded), and

– limitations on what pointers can refer to.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 34

Adaptive Dictionary Methods> LZ77(LZ1)

Data is encoded as a sequence of tuples:

<Number of characters back, Length, Next character>

– Example:

• String: abaababbbbbbbbbbba
• Encoding: <0,0,a> <0,0,b> <2,1,a> <3,2,b> <1,10,a>
• Encoding: <0,0,a>

• String: a
• Encoding: <0,0,a> <0,0,b>

• String: ab
• Encoding: <0,0,a> <0,0,b> <2,1,a>

• String: abaa
• Encoding: <0,0,a> <0,0,b> <2,1,a> <3,2,b>

• String: abaabab
• Encoding: <0,0,a> <0,0,b> <2,1,a> <3,2,b><1,10,a>

• String: abaababbbbbbbbbbba

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 35

Adaptive Dictionary Methods> LZ77(LZ1)

• Optimizations:
– Limit size of back-pointers, e.g., 8K (13 bits).

– Restrict length of phrases, e.g., 15 characters (4 bits).

– Variable-length encode pointers and length.

• Encoding data structures:
– Trie, hash table, or binary search tree.

• Characteristics:
– Very fast decoding.

– Low memory overhead.

– Decoder is sufficiently small to include in compressed data.

• Self expanding archives, typically found on PCs.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 36

Adaptive Dictionary Methods> LZ77> Gzip

• Gzip is a variant of LZ77
– Encoder locates previous strings using a hash table (three characters), then

a linked list

– User preferences (speed vs space) determine list length

– For maximal compression, uses lookahead instead of simple greedy search
for string matches

– Uses one Huffman for offsets, another for lengths and characters

– Huffman codes are semi-static:

• Text is processed in chunks of up to 64K.

• Each chunk has its own Huffman code.

• Huffman codes are stored in the compressed text.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 37

Adaptive Dictionary Methods> LZ78 (LZ2)

• Data is encoded as a sequence of tuples:

– <Phrase ID, Next character>

– Instead of looking backwards for substrings, use a phrase
dictionary

• Phrase length does not need to be stored in the tuple.

• Phrase ids can take up less space than back pointers

• Phrase dictionary grows until a memory limit is reached.

• When full, dictionary:
– is reinitialized,

– is partially rebuilt, or

– becomes static.

• Encodes faster than LZ77, decodes more slowly.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 38

Compression Techniques: Summary

Statistical
Dictionary-based

Modeling
Phrase Selection

Coding

AdaptiveStatic SemiStatic

Huffman Arithmetic Static AdaptiveSemi-Adaptive

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 39

Παραδείγματα Τεχνικών Συμπίεσης

Generic File Compression
• files: gzip (LZ77), bzip (Burrows-Wheeler), BOA (PPM)
• archivers: ARC (LZW), PKZip (LZW+)
• file systems: NTFS
Communication
• Fax: ITU-T Group 3 (run-length + Huffman)
• Modems: V.42bis protocol (LZW) MNP5 (RL + Huffman)
Multimedia
• Images: gif (LZW), jbig (context), jpeg-ls (residual),

jpeg (transform+RL+arithmetic)
• TV: HDTV (mpeg-4)
• Sound: mp3

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 40

Comparing Text Compression Techniques

Character Word

Arithmetic Huffman Huffman Ziv-Lempel

Compression ratio very good poor very good good

Compression speed slow fast fast very fast

Decompression speed slow fast very fast very fast

Memory space low low high moderate

Random access no yes yes no

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 41

Inverted File Compression (Sec. 7.4.5)

• An Inverted file contains:
– (a) a vocabulary containing all distinct words in the text collection

– (b) for each word in the vocabulary, a list of all documents in which that word
occurs

• The size of the inverted file can be reduced by compressing the
inverted lists

beautiful

flowers

garden

house

Vocabulary

70, 80, 100, 233, 450, 890, ...

45, 58, 66, 82, 123, 790, 920, 955, 1240,...

18, 29, 55, 61, 82, 103, 844, 1200, 1345, ...

6, 22, 33, 42, 90, ….

Occurrences

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 42

Inverted File Compression:
Compressing Inverted Lists

• As the list of document numbers within the inverted list is in
ascending order, it can also be considred as a sequence of gaps
between document numbers.

• E.g. [2,8,22,30] -> [2,6,14,8]

• [21002, 21008, 21022, 21030] -> [21002,6,14,8]

• Since processing is usually done sequentially starting from the
beginning of the list, the original document numbers can always be
recomputed through sums of the gaps.

70, 80, 100, 233, 450, 890, ...

45, 58, 66, 82, 123, 790, 920, 955, 1240,...

18, 29, 55, 61, 82, 103, 844, 1200, 1345, ...

6, 22, 33, 42, 90, ….

Occurrences

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 43

Inverted File Compression:
Compressing Inverted Lists (ΙΙ)

• These gaps are
– small for frequent words and

– large for infrequent words

• Compression can be obtained by encoding small values with
shorter codes

• Codings
– Unary code

• An integer x is coded as (x-1) one bits followed by a zero bit, so the code
for the integer 3 is 110

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 44

Inverted File Compression:
Compressing Inverted Lists (ΙΙΙ)

• Elias-γ
– the number x is represented by a concatenation

of two parts:

• (1) a unary code for 1 + ⎣logx ⎦ and

• (2) a code of ⎣logx ⎦ bits that represents the
values of x-2 ⎣logx ⎦ in binary

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 45

Inverted File Compression:
Compressing Inverted Lists (ΙV)

• Elias-δ
– represents the prefix indicating the

number of binary bits by the Elias-γ
code

• Golomb
– presented another run-length coding method for positive integers. It is very

effective when the probability distribution is geometric.

• Example codes for integers:
– MIR BOOK page 185

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 46

Searching Compressed Files

• Huffman coding allows searching directly on compressed text

• Since Huffman coding needs to store the codes of each symbol,
this scheme has to store the whole vocabulary of the corpus
– If we consider words as symbols, then they are already stored in the

vocabulary of the inverted index)

• Evaluating single word queries:
– they are first searched in the vocabulary

– their (Huffman) codes are collected which are then searched in the
compressed file

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 47

Searching Compressed Files
Inverted Files

• Επανάληψη
– we represent gaps by schemes that favor small numbers

– reductions in 90% can be obtained by block addressing indices with blocks
of 1 Kb size

• Remarks:
– Compression does not necessarily degrade time performance

• most of the time spent in answering a query is in the disk transfer

– Query times on compressed or decompressed indices are roughly similar

