

HY463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

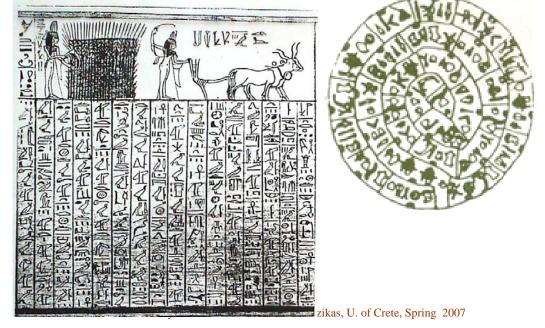
Στατιστικά Κειμένου Text Statistics

Γιάννης Τζίτζικας

Διάλεξη : 14a Ημερομηνία : 16-5-2007

CS463 - Information Retrieval Systems

Yannis Tzitzikas, U. of Crete, Spring 2007



Διάρθρωση

- Συχνότητα Εμφάνισης Λέξεων
- Ο Νόμος του Zipf
- Ο Νόμος του Heaps

😻 Γραπτός Λόγος - Κείμενο

Starting with hieroglyphs, the first written surfaces (stone, wood, animal skin, papyrus and rice paper), and paper, text has been created everywhere, in many forms and languages.

Στατιστικές Ιδιότητες Κειμένου

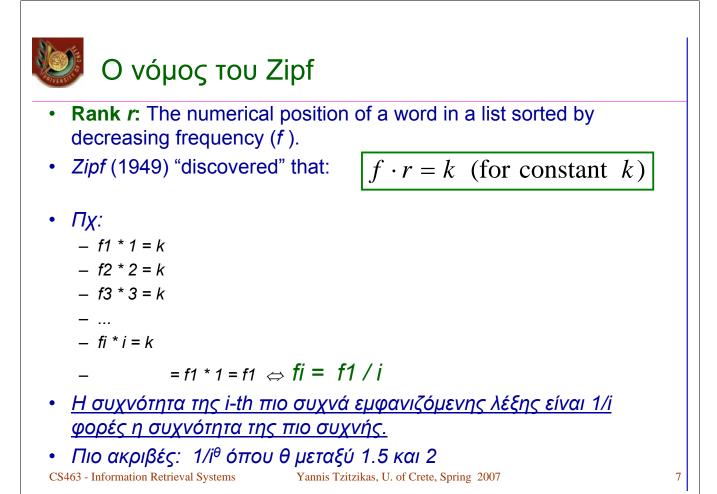
- How is the frequency of different words distributed?
- How fast does vocabulary size grow with the size of a corpus?

Such factors affect the performance of information retrieval and can be used to select appropriate term weights and other aspects of an IR system.

- A few words are very common.
 - 2 most frequent words (e.g. "the", "of") can account for about 10% of word occurrences.
- Most words are very rare.
 - Half the words in a corpus appear only once, called *hapax legomena* (Greek for "read only once")
- Called a "heavy tailed" distribution, since most of the probability mass is in the "tail"

CS463 - Information Retrieval Systems

Yannis Tzitzikas, U. of Crete, Spring 2007


Sample Word Frequency Data

(from B. Croft, UMass)

Frequent Word	Number of Occurrences	Percentage of Total
the	7,398,934	5.9
of	3,893,790	3.1
to	3,364,653	2.7
and	3,320,687	2.6
in	2,311,785	1.8
is	1,559,147	1.2
for	1,313,561	1.0
The	1,144,860	0.9
that	1,066,503	0.8
said	1,027,713	0.8

Frequencies from 336,310 documents in the 1GB TREC Volume 3 Corpus 125,720,891 total word occurrences; 508,209 unique words

5

Sample Word Frequency Data (again)

(from B. Croft, UMass)

Frequent	Number of	Percentage]
Word	Occurrences	of Total	
the	7,398,934	5.9	•1 * 5.9 = 5.9
of	3,893,790	3.1	•2 * 3.1 = 6.2
to	3,364,653	2.7	•3 * 2.7 = 8.1
and	3,320,687	2.6	•4 * 2.6 = 10.4
in	2,311,785	1.8	•5 * 1.8 = 9
is	1,559,147	1.2	•6 * 1.2 = 7.2
for	1,313,561	1.0	•7 * 1 =7
The	1,144,860	0.9	•8 * 0.9 =7.2
that	1,066,503	0.8	•9 * 0.8 =7.2
said	1,027,713	0.8	•

Frequencies from 336,310 documents in the 1GB TREC Volume 3 Corpus 125,720,891 total word occurrences; 508,209 unique words

Vipe Signature Stopwords will account for a large fraction of text so eliminating them greatly reduces inverted-index storage costs. Bad News: For most words, gathering sufficient data for meaningful statistical analysis (e.g. for correlation analysis for query expansion) is difficult since they are extremely rare.

CS463 - Information Retrieval Systems

Yannis Tzitzikas, U. of Crete, Spring 2007

Zipf and Term Weighting

• Luhn (1958) suggested that both extremely common and extremely uncommon words were not very useful for indexing.

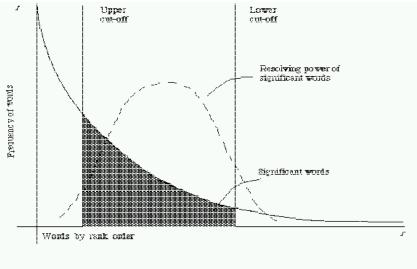
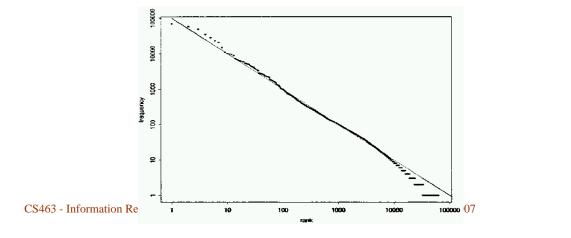


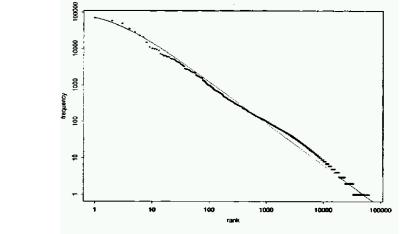
Figure 2.1. A plot of the hyperbolic curve redeting f, the frequency of occurrence and r, the rank other (Adaped from Schultz⁴⁴page 120)


g

Does Real Data Fit Zipf's Law?

- A law of the form $y = kx^c$ is called a power law.
- Zipf's law (fi=f1/i) is a power law with c = -1
- On a log-log plot, power laws give a straight line with slope *c*.

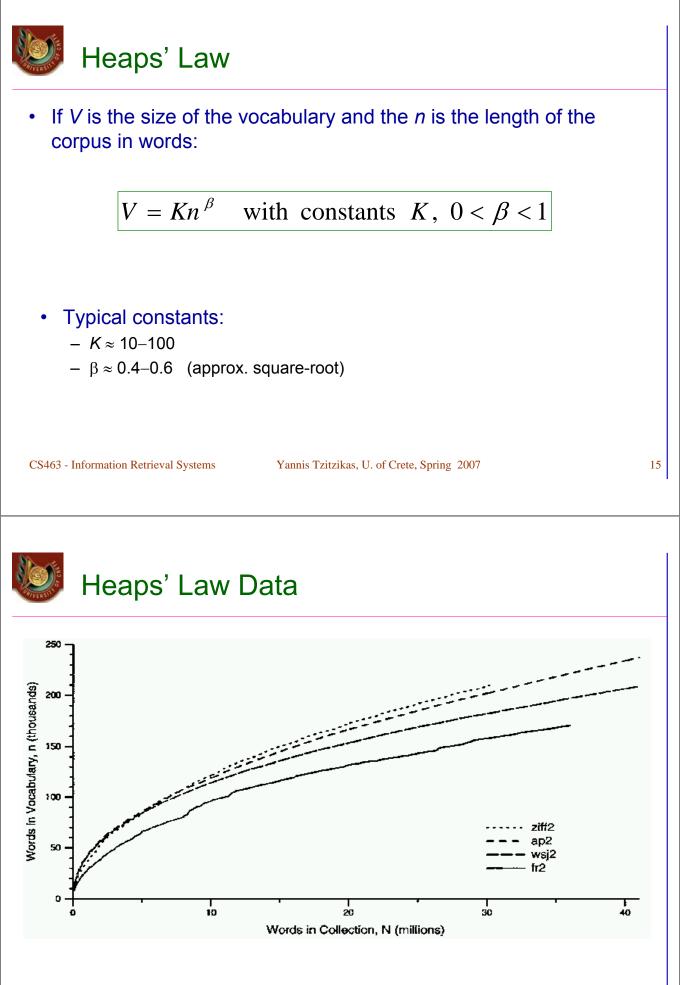
$$\log(y) = \log(kx^{c}) = \log k + c \log(x) = \log k - \log(x)$$


Zipf is quite accurate except for very high and low rank.

Mandelbrot (1954) Correction

- Ziph's Law: $fi = f1/i^{\theta}$
- Mandelbrot correction: fi= f1*k/(c+i)^θ
 - c: parameter
 - k: so that all frequencies add to N
 - This formula fits better with the read texts

11


Explanations for Zipf's Law

Zipf's explanation was his "principle of least effort." Balance between speaker's desire for a small vocabulary and hearer's desire for a large one.
Η επανάληψη λέξεων είναι ευκολότερη από την επινόηση/χρήση νέων
Debate (1955-61) between Mandelbrot and H. Simon over explanation.
Mε επιφύλαξη:
Li (1992) shows that just random typing of letters including a space will generate "words" with a Zipfian distribution.
(http://linkage.rockefeller.edu/wli/zipf/)

Vocabulary Growth

- How does the size of the overall vocabulary (number of unique words) grow with the size of the corpus?
- This determines how the size of the inverted index will scale with the size of the corpus.
- Vocabulary not really upper-bounded due to proper names, typos, etc.

• Explanation for Heaps' Law

 Can be derived from Zipf's law by assuming documents are generated by randomly sampling words from a Zipfian distribution

Average Length of Words

- Why? To estimate the storage space needed for the vocabulary.
- Average word length in TREC-2 = 5 letters
- If we remove stopwords then average word length: 6-7 letters

CS463 - Information Retrieval Systems

Yannis Tzitzikas, U. of Crete, Spring 2007

17