Recent Advances in Query Optimization

Tutorial by:

S. Sudarshan
IIT Bombay
sudarsha@cse.iitb.ernet.in
www.cse.iitb.ernet.in/~sudarsha

Talk Outline

- System R, Volcano
- Recent extensions (including OODBs, ORDBs)
- OLAP
- Materialized views:
 - maintenance, use and selection, continuous queries
- Caching of Query Results
- Data Warehouses and Virtual Warehouses
System R

- Join order selection
 - $A_1 \bowtie A_2 \bowtie A_3 \bowtie \ldots \bowtie A_n$
 - Left deep join trees

- Dynamic programming
 - Best plan computed for each subset of relations
 - Best plan (A_1, \ldots, A_n) = min cost plan of
 - $A_1 \bowtie$ Best plan(A_2, \ldots, A_n)
 - $A_2 \bowtie$ Best plan(A_1, A_3, \ldots, A_n)
 - \ldots
 - $A_n \bowtie$ Best plan(A_1, \ldots, A_{n-1})

System R (cont)

- Selects and projects pushed down to lowest possible place
- Sort order
 - Join may be cheaper if inputs are sorted on join attr
 - \Rightarrow Best plan(set-of-relations, sort-order)
- Starburst (successor to System R)
 - Retains single query block-at-a-time cost based optimization
 - Heuristic Query Rewrite
 - Including decorrelation of nested queries
Decorrelation

- Idea: convert nested subqueries to joins
- Consider

  ```
  select * from emp E
  where E.numchildren <>
  (select count(*) from person
   where person.parent = E.name
  )
  ```

- Can’t always express using basic rel. algebra
- Long history:
 - Special cases: Kim 88, Dayal 88, Muralikrishna 93
 - General case: P. Seshadri et al 95: use outerjoin

Decorrelation (cont)

- Pushing semijoins into decorrelated query
 - Use selections on correlation variables
 - Select * from R, S
 - where R.A = S.A and R.B = (select min(T.B) from T where T.A=R.A)
 - Don’t evaluate groupby/min on all of T:
 - GB T.A, min(T.B) (T SJ T.A=R.A (R A=S.A S))
Magic Rewriting

- Recursive views are now part of SQL-3, supported by DB2 and Oracle already
- Magic rewriting pushes semijoins through recursive views
 \[
 \text{path (X, Y) :- edge (X, Y)}
 \]
 \[
 \text{path (X, Y) :- edge (X, Z), path(Z, Y)}
 \]
 Query: \text{?path(Pune, Y)}
- Long history, see survey by Ramakrishnan and Ullman

Predicate Movearound

- Idea: pull \text{R.A=5} up, infer \text{S.A=5}, and push \text{S.A=5} down into subtree \text{S}
- Generalizes to any constraints
- History:
 - Fold/unfold transformation in logic programs
 - Aggregate constraints and relevance RS, VLDB91
 - Fold/unfold and constraints RS, ILPS 92
 - for SQL LMSS, SIGMOD 93
- Aggregate constraints
Volcano Extensible Query Optimizer Generator

- General purpose cost based query optimizer, based on equivalence rules on algebras
 - E.g. equivalences: join associativity, select push down, aggregate push down, etc
 - Extensible: new operations and equivalences can be easily added
 - Notion of physical properties generalizes “interesting sort order” idea of System R
 - Developed by Graefe and McKenna 1993
- Follow up to EXODUS, but much more efficient

Key Ideas in Volcano

- DAG representation of query
 - Equivalence nodes and operation nodes
 - Compactly represents set of all evaluation plans
 - Choose one child of each equivalence node, and all children of operation nodes

![Diagram of DAG representation](image)
Key Ideas of Volcano (Cont)

- Hashing scheme used to efficiently detect duplicate expressions
 - gives ID to each equivalence node, hash function of operation nodes based on IDs of child equivalence nodes
- Physical algebra also represented by DAG
- Best plan found for each equivalence node
 - use cheapest of child operation nodes
 - dynamic programming: cache best plans
 - branch and bound pruning used when searching

Main Benefits of Volcano

- Highly Extensible
 - can handle arbitrary algebraic expressions
 - new operators and equivalence rules easy to add
 - must be careful of search space though
- Yet (reasonably) efficient
 - generalizes the dynamic programming idea of System-R optimizer
 - Optimizations of Pellenkroft et al. [VLDB 97] eliminate redundant derivations for joins
- Ideas are used in MS SQL Server and Tandem
Parametrized Query Optimization

- Some parameters to the query may not be available at optimization time
 - selection constants (e.g. in stored procedures)
 - memory size

- Idea:
 - come up with a set of plans optimal at different points in parameter space,
 - select best when parameters are known at run time

- Work in this area
 - Ganguly [VLDB 1998], Ganguly and Krishnamurthy [COMAD 95], Ng et al [SIGMOD 92]

Parametric Query Opt (Cont)

- Results of Ganguly [1998]
 - Number of parametrically optimal queries is quite small, so idea is practical
 - nice algorithms for single parameter case
 - extended above to two parameter case, but general case is harder

- Optimization for best expected case
 - (P. Seshadri, PODS 99)
Sampling and Approximate Query Answering

- In databases, sampling originally proposed for query size estimation (estimate need not be perfect) Li and Naughton [94], Olken [93]
- Used today for generating quick and dirty (fast but approximate) results
 - especially for aggregates on large tables
- Online aggregates (Hellerstein ..)
- Generating histograms (Ioannidis ..)

Optimization in OODB/ORDBs

- Major issues
 - Path expressions:
 - e.g. forall (p in person) print (p->spouse->name)
 - can convert pointer dereferences to joins
 - can “assemble objects” in a clever sequence to minimize I/O (Graefe 93, Blakeley et al, Open OODB optimizer 95)
 - Path indices
 - e.g. forall (p in person suchthat p->spouse->name = “Rabri”) ...
Optimization in ORDBs

- Expensive predicates/functions in selects/projects
 - e.g. selects based on image manipulation
 - usual heuristic of “push select predicates to lowest possible level” does not work
- Hack to System R: treat predicates like joins
 - not an issue with Volcano
 - also heuristics to limit search space (Hellerstein and Naughton (93,94), Chaudhuri et al (93))

Extended ADTs

- ADTs are a simple way to add new types to a database. Used extensively in data blades/cartridges/...
- Extended ADTs -- understand some semantics of ADT functions, and optimize
 - e.g. if Image.smooth().clip(10,10) is equivalent to Image.clip(10,10).smooth choose the one that is cheaper to compute
 - Predator ORDB supports such optimizations (P. Seshadri [1998])
Multi Query Optimization

- Idea: Given a set of queries to evaluate, exploit common subexpressions by materializing and sharing them

- Problems: Many equivalent forms of a query
 - Some have CSE, others don’t. E.g.:
 - \(R \bowtie S \bowtie T \) and \(R \bowtie P \bowtie S \) versus \(R \bowtie S \bowtie T \) and \(R \bowtie S \bowtie P \)

- Exhaustive algs: Sellis [1988], and others
 - Try every combination of forms of every query.
 - Problem: cost is doubly exponential

Multi Query Optimization (Cont)

- Heuristics
 - Find best plans for each query, look for CSEs in best plans
 - Subramaniam and Venkataraman [SIGMOD98]
 - Volcano SH [RSSB99]
 - When optimizing query \(i \), treat subparts of plans for earlier queries as available cheaply
 - Volcano RU [RSSB99]
Greedy Heuristics for MQO

- Greedy heuristic:
 - Repeat
 - find subexpression which if materialized and shared will give most benefit (cheapest plan)
 - subproblem: given some subexpressions are materialized, find best plans for given queries
 - also: update the best plans \textit{incrementally} as new subexpressions are checked for materialization
 - materialize above subexpression
 - Until no further benefits can be got

Greedy Heuristic (Cont)

- Monotonicity addition to greedy heuristic:
 - Benefit of materializing a subexpression cannot increase as other subexpressions are materialized
 - Assume above, and keep heap of overestimates of benefits -- reduces number of benefit recomputations
- Performance study shows greedy heuristic gives very significant benefits on TPCD queries at reasonable cost
- Volcano-SH and Volcano-RU are very fast but give much less benefits than Greedy
OLAP - Data Cube

- Idea: analysts need to group data in many different ways
 - eg. Sales(region, product, prodtype, prodstyle, date, saleamount)
 - saleamount is a measure attribute, rest are dimension attributes
 - groupby every subset of the other attributes
 - precompute above to give online response
 - Also: hierarchies on attributes: date -> weekday, date -> month -> quarter -> year

OLAP Issues

- MOLAP: cube in memory, multi-dimensional array
- ROLAP: cube in DB, represented as a relation

<table>
<thead>
<tr>
<th>Type</th>
<th>Size</th>
<th>Colour</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shirt</td>
<td>14</td>
<td>Blue</td>
<td>10</td>
</tr>
<tr>
<td>Shirt</td>
<td>20</td>
<td>Blue</td>
<td>25</td>
</tr>
<tr>
<td>Shirt</td>
<td>ALL</td>
<td>Blue</td>
<td>35</td>
</tr>
<tr>
<td>Shirt</td>
<td>14</td>
<td>Red</td>
<td>3</td>
</tr>
<tr>
<td>Shirt</td>
<td>20</td>
<td>Red</td>
<td>7</td>
</tr>
<tr>
<td>Shirt</td>
<td>ALL</td>
<td>Red</td>
<td>10</td>
</tr>
<tr>
<td>Shirt</td>
<td>ALL</td>
<td>ALL</td>
<td>45</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>ALL</td>
<td>ALL</td>
<td>ALL</td>
<td>1290</td>
</tr>
</tbody>
</table>
Data Cube Lattice

- Cube lattice

 ![Diagram of a cube lattice]

- Can materialize some groupbys, compute others on demand
- Question: which groupbys to materialize?
- Question: what indices to create
- Question: how to organize data (chunks, etc)

Cube: Selecting what to materialize

- Basic cube: materializes everything
- Greedy Algo: max benefit per unit space
 - Benefit computation takes into account what is already materialized
 - Harinarayanan et al [SIGMOD 96], Gupta [ICDE97], Labio et al ...
- Smallest Algo
 - Deshpande et al [SIGMOD 98]
Materialized Views

- Can materialize (precompute and store) views to speed up queries
 - Incremental maintenance
 - when database is updated, propagate updates to materialized view
 - Deciding when to use materialized views
 - even if query does not refer to materialized view, optimizer can figure out it can be used
 - Deciding what to materialize
 - based on workload, choose best set of views to materialize, subject to space constraints

Incremental View Maintenance

- E.g. \(R \bowtie S \)
 \[(R \cup \text{ir}) \bowtie S = R \bowtie S \cup \text{ir} \bowtie S\]
 \[(R \setminus \text{dr}) \bowtie S = R \bowtie S \setminus \text{dr} \bowtie S\]
- similar techniques for selection, projection (must maintain multiplicity counters though) and aggregation
- Blakeley et al. [SIGMOD 87], Gupta and Mumick survey [DE Bulletin 95].
Continuous Querying

- Idea: define a query, results get updated and shown to you dynamically, as base data changes
- E.g. applications:
 - network monitoring, stock monitoring
 - alerting systems (e.g., new book arrived in library)
 - better than triggers for this application
- Implementation techniques similar to materialized view maintenance
- Maier et al, SIGMOD 98 demo session

When to Use Materialized Views

- Let $V = R \bowtie S$ be materialized
- Query may V, but may still be better to replace by view definition. Eg selection on V
- Query may use $R \bowtie S$, but may be better to replace by V
- Job of query optimizer
 - Chaudhuri et al [ICDE95]
 - Falls out as special case of multiquery optimization algos of RSSB99
Deciding What to Materialize

- Maintenance cost and query cost
 - Workload:
 - Queries and update transactions
 - Weights for each component of workload
 - Workload cost depends on what is materialized
- Goal: find set of views that gives minimum cost if materialized, subject to space constraints
- Note: materializing views can reduce even update costs
 - Indices, and SQL assertions

History

- Roussopolous [1982]: exhaustive A* algorithm
- Ross, Srivastava and Sudarshan [SIGMOD 96] suggest materializing views can reduce update costs, give heuristics
- Labio et al. [1997], Gupta [1997], Sellis et al [1997], Yang, Karlapalem and Li [1997] give various exhaustive/heuristic/greedy algorithms
- Chaudhuri and Narsayya [1998] considers only indices, being introduced in SQL server
- Exhaustive algs are all doubly exponential!
Caching of Query Results

- Store results of earlier queries

Motivation
- Speed up access to remote data
- Also reduce monetary costs if charge for access
- Interactive querying often results in related queries
 - Results of one query can speed up processing of another
- Caching can be at client side, in middleware, and even in a database server itself

Query Caching (Cont)

- Differences from page/object caching
 - Results that are cached are defined by a (possibly complex) query
 - Cost of computing different results is different --- cost of fetching a page is same for all pages
 - Sizes of different results is different --- page size is fixed
- One heuristic: benefit =
 \[
 \frac{\text{recomp-cost} \times \text{freq-access}}{\text{size}}
 \]
 - Update frequency must also be taken into account
Query Caching (Cont)

- Differences from selection of views to materialize
 - what to cache decided based on recent queries
 - => set of cached results changes dynamically
 - adapts as users change their behaviour
 - cached data may not be maintained up-to-date
 - => if base data has been updated, query optimizer must choose between recomputing cached results and incrementally computing changes

Query Caching (Cont)

- Predicate caching (Wiederhold et al 1996) and Semantic caching (Dar et al, 1996)
 - not tied to query optimizer
- ADMS (Roussopolous, 1994)
 - handles SPJ queries, with specific graph structure
- WATCHMAN (Scheurmann et al, VLDB96)
 - makes caching decisions based on cost, frequency of usage and size
 - reuses cached results only if exactly same query repeats
Query Caching (Cont)

- Dynamat (Roussopolous et al, SIGMOD 99)
 - considers caching of data cube queries
 - not general purpose unlike ADMS, but handles update costs better
- Web caching is somewhat similar
 - cached pages differ in size, and in access cost (e.g., local pages can be accessed faster)

Data Warehouses

- Characteristics:
 - Very large
 - typical schema: very large fact table, small dimension tables
 - typical query: aggregate on join of fact table and dimension tables
- Can exploit above characteristics for optimizing queries
 - e.g., join dimension tables (even if cross product), build in memory index, scan fact table, probe index. Summarize if required and output
Data Warehouses (Cont)

- Synchronized scans
 - multiple queries can share a scan of fact table
 - slow some queries down so others catch up

- Bit map indices
 - for selections on low cardinality attributes
 - e.g.: M 10011100011001
 F 01100011100110
 - idea: and-ing of bit maps is very efficient, use on bitmaps to filter to relevant tuples, retrieve them
 - Quass and O’Neill [Sigmod 1997], various DB products (DB2, Informix, ...)

Virtual Warehouses/Databases

- Data sources are numerous and distributed
 - may be accessible only via html
 - => wrappers needed
 - Stanford TSIMMIS project, Junglee, and others have built wrappers.
 - may support only limited number of access types through forms interfaces
 - site descriptions: describe what data is contained at a site Levy et al [1995].
 - Query sent only to relevant sites.
Virtual Warehouses and Databases (Cont)

- Provide user with view of a single database, which can be queried
- Underlying system must find best/good way of evaluating query

Parallel Databases

- Search space is extremely large in general
 - How to partition data
 - How to partition operations
- Two basic approaches
 - Each operation is parallelized across all nodes
 - Get best sequential plan, then parallelize
 - scheduling issues
 - pipelining issues
New Applications

- Querying semistructured data
 - XML
 - Querying on the web
 - WebSQL, WebOQL, .. (Mendelzon.., Shmueli.., Laks..)
 - Formal query languages for semi-structured data
 - Buneman et al

Conclusions

- Query optimization has come a long way in the last 5/6 years
- Still an area of active research
 - Lots of work on selection of materialized views, and caching late
 - Driving forces: Object relational DBS, Web, increasingly complex DSS queries, Data mining
 - Query optimizers are still very expensive in space and time. Better approximation algorithms could help a lot.