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Abstract
Many commercial database systems maintain histograms to sum-
marize the contents of relations and permit efficient estimation of
query result sizes and access plan costs. Although several types of
histograms have been proposed in the past, there has never been a
systematic study of all histogram aspects, the available choices for
each aspect, and the impact of such choices on histogram effective-
ness. In this paper, we provide a taxonomy of histograms that cap-
tures all previously proposed histogram types and indicates many
new possibilities. We introduce novel choices for several of the tax-
onomy dimensions, and derive new histogram types by combining
choices in effective ways. We also show how sampling techniques
can be used to reduce the cost of histogram construction. Finally, we
present results from an empirical study of the proposed histogram
types used in selectivity estimation of range predicates and identify
the histogram types that have the best overall performance.

1 Introduction

Several modules of a database system require estimates of
query result sizes. For example, query optimizers select the
most efficient access plan for a query based on the estimated
costs of competing plans. These costs are in turn based on
estimates of intermediate result sizes. Sophisticated user
interfaces also use estimates of result sizes as feedback to
users before a query is actually executed. Such feedback
helps to detect errors in queries or misconceptions about the
database.

Query result sizes are usually estimated using a variety
of statistics that are maintained for relations in the database.
These statistics merely approximate the distribution of data
values in attributes of the relations. Consequently, they rep-
resent an inaccurate picture of the actual contents of the
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database. The resulting size-estimation errors may under-
mine the validity of the optimizer’s decisions or render the
user interface application unreliable. Earlier work has shown
that errors in query result size estimates may increase expo-
nentially with the number of joins [IC91]. This result, in con-
junction with the increasing complexity of queries, demon-
strates the critical importance of accurate estimation.

Several techniques have been proposed in the literature to
estimate query result sizes [MCS88], including histograms
[Koo80], sampling [LNS90, HS95], and parametric tech-
niques [CR94, SLRD93]. Of these, histograms approxi-
mate the frequency distribution of an attribute by grouping
attribute values into “buckets” (subsets) and approximating
true attribute values and their frequencies in the data based
on summary statistics maintained in each bucket. The main
advantages of histograms over other techniques are that they
incur almost no run-time overhead, they do not require the
data to fit a probability distribution or a polynomial and, for
most real-world databases, there exist histograms that pro-
duce low-error estimates while occupying reasonably small
space (of the order of 200 bytes in a catalog)

�

. Hence, they
are the most commonly used form of statistics in practice
(e.g., they are used in DB2, Informix, Ingres, Microsoft SQL
Server, Sybase) and are the focus of this paper.

Although histograms are used in many systems, the his-
tograms proposed in earlier works are not always effective
or practical. For example, equi-depth histograms [Koo80,
PSC84, MD88] work well for range queries only when the
data distributionhas low skew, while serial histograms [IC93,
Ioa93, IP95] have only been proven optimal for equality joins
and selections when a list of all the attribute values in each
bucket is maintained. (In serial histograms, attribute values
assigned to the same bucket need not be contiguous.)

In this paper, motivated by the above issues, we identify
several key properties that characterize histograms and de-
termine their effectiveness in query result size estimation.
These properties are mutually orthogonal and form the basis
for a general taxonomy of histograms. After placing all ex-
isting histogram types in the appropriate places in the taxon-
omy, we introduce novel techniques for several of the taxon-

�

Nevertheless, one can construct data distributions that cannot be ap-
proximated well using a small number of buckets.
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Abstract partitioning rule Equi-width partitioning rule

� Adjoin to
�

a third column derived from the first two and
sort

�
on it. Histogram buckets correspond to groups of

elements of
�

that are contiguous in the order of the sorted
third column.

� The third column is equal to the value column.

� Specify a restricted subclass of all possible histograms on
a distribution

�
, based on the number of elements of

�
allowed in each bucket, and consider only histograms in this
subclass.

� There are no restrictions on the number of elements allowed
in each bucket.

� Adjoin a fourth column derived from the first two. � The fourth column is identical to the value column.

� Determine the unique partition of
�

into � buckets such
that the histogram belongs to the restricted subclass and sat-
isfies a specified constraint on the fourth column.

� Partition
�

so that the buckets contain attribute values in
ranges of equal size.

Figure 1: Abstract partitioning rule and an example

omy dimensions, e.g., for assigning attribute values to buck-
ets and approximating the data in a bucket, and then derive
new histogram types by combining these techniques in effec-
tive ways. We also provide efficient sampling-based meth-
ods to construct several of the new histograms together with
guidelines on the required sample size. Finally, we compare
empirically the accuracy of both old and new histograms us-
ing a large set of data distributions and range queries. The
results of these experiments identify the techniques that are
most effective for each property in the histogram taxonomy,
and point towards the histogram types with the best overall
performance.

2 Histogram Definitions and Usage

The predicates that we consider are of the form �������
	 ,
where � is a non-negative real or integer-valued attribute in a
relation � and � and 	 are constants such that ����	 . Observe
that such predicates include equality predicates (choose ��
	 ) and “one-sided” predicates such as ����	 (choose ����� ).
2.1 Data Distributions

The domain � of � is the set of all possible values of �
and the (finite) value set � ( ��� ) is the set of values of �
that are actually present in � . Let ���������� � �� !��"$# ,
where �%�'&(��) when  *&,+ . The spread -.� of �/� is defined
as -0�1(�/�32 � � �/� , for � �� 1&�" . (We take -/456� � and
-879 � .)

The frequency :%� of �/� is the number of tuples ;�<=�
with ;.> � ��/� . The cumulative frequency ?@� of �%� is the
number of tuples ;A< � with ;.> � � � � , i.e., ? � B �).C � : ) . The data distribution of � (in � ) is the set of
pairs DEE�GFH� ��I : ��J0I FK��L I :�L J8I >/>/> I FK� 7 I : 7 J # . Similarly, the
cumulative data distribution of � is the set of pairs D'M

�GFH� �%I ? �NJ8I FH��L I ?8L J0I >.>/> I FH� 7 I ? 7 J # . Finally, the extended cu-
mulative data distribution of � , denoted by D*M 2 , is the cu-
mulative data distribution of D�M extended over the entire do-

main � by assigning a zero frequency to every value in � � � .

2.2 Histogram Definition
A histogram on attribute � is constructed by partitioning the
data distribution D into O ( P � ) mutually disjoint subsets
called buckets and approximating the frequencies and values
in each bucket in some common fashion. The buckets are de-
termined according to a partitioning rule that seeks to effec-
tively approximate D . (Note that this notion of a histogram
is more general than the classical definition.)

In order to describe both new and existing partitioning
rules in a uniform manner, we first present a multi-step ab-
stract partitioning rule that captures the entire collection of
partitioningrules in the paper (Figure 1). To illustrate our ab-
stract definition, we also show how each step can be instanti-
ated to yield the partitioningrule for classical equi-width his-
tograms [Koo80]. In the description, D is viewed as a rela-
tion with two columns, the value column and the frequency
column.

Based on the description in the table, every histogram is
characterized by these properties:

1. Partition class: The restricted class of histograms
considered by the partitioning rule.

2. Partitionconstraint: The mathematical constraint that
uniquely identifies the histogram within its partition
class.

3. Sort parameter and source parameter: The parame-
ters derived from D and placed in its third and fourth
column, respectively.

Each histogram is also characterized by the following addi-
tional properties:

4. Approximation of values within a bucket: The as-
sumption that determines the approximate values within
a bucket of the histogram.

5. Approximation of frequencies within a bucket: The
assumption that determines the approximate frequency
of each value within a bucket of the histogram.
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Properties 4 and 5 determine the information that needs to be
stored for each bucket. Note that all of the above properties
are mutually orthogonal.

2.3 Histogram Maintenance and Usage

Typically, histograms are stored in system catalogs with the
number of buckets limited only by the available disk space.
Database updates are periodically propagated to histograms
so that their effectiveness does not degrade. Techniques for
determining appropriate schedules for such propagation are
beyond the scope of this paper and do not affect the results
presented here.

The range of a bucket
� � D is the interval � ����F � J8I � � F � J�� ,

where ��� F � J and � � F � J are the smallest and largest attribute
values covered by

�
. The length of its range is equal to

� � F � J � ��� F � J . To estimate the result size of the predicate
�,� � � 	 , an estimation routine identifies each bucket�

for which the ranges � ��� F � J8I � � F � J�� and � � I 	 � overlap.
Then, using specified approximation formulas, it estimates
the number of values in each identified bucket that satisfy the
range predicate, along with the frequency of each such value.
These frequencies are summed over all identified buckets to
yield the estimate of the result size.

3 Previous Approaches to Histograms
Several different histograms have been proposed in the liter-
ature. This section discusses the various choices that have
been considered for instantiating the properties discussed
above. The next section presents specific histograms as char-
acterized by properties 1-3.

3.1 Partition Class

As indicated above, the histograms that we consider are serial L
in the sense that histogram buckets correspond to groups of
elements of D that are contiguous in the order of the sort pa-
rameter. Classical histograms (both “equi-height” and “equi-
depth”) have no constraints on the number of elements of D
that can be assigned to a bucket. On the other hand, end-
biased histograms [IC93, IP95] require that all but one of
their buckets are singleton, i.e., they contain a single element
of D . One of the advantages of the end-biased histograms
is their storage efficiency. As we will see later, singleton
buckets occupy less space than buckets containing multiple
attribute values. Hence, histograms with several singleton
buckets (such as end-biased histograms) occupy less space
than general serial histograms with the same number of buck-
ets.

3.2 Partition Constraint

For the serial class, three different types of histograms have
been defined, for various source parameters:
�
Our current usage of the term is different from, and more general than,

the usage in our earlier work [IC93, Ioa93, IP95]. In that work frequency
was the only sort parameter considered.

	 Equi-sum: In an equi-sum histogram (with O buckets),
the sum of the source values in each bucket is equal
to ��
 O times the sum of all the source values in the
histogram.

	 V-optimal: In a v-optimal histogram, a weighted variance
of the source values is minimized. That is, the quantityB�)/C ��� )���) is minimized, where � ) is the number of
entries in the + th bucket and � ) is the variance of the
source values in the + th bucket.

	 Spline-based: In a spline-based histogram, the maximum
absolute difference between a source value and the aver-
age of the source values in its bucket is minimized.

For the end-biased class, only the v-optimal histogram has
been proposed, defined exactly as above.

3.3 Sort Parameter and Source Parameter
For the sort parameter, attribute values and frequencies have
been proposed in the past. For the source parameter, spreads,
frequencies, and cumulative frequencies have been proposed.

3.4 Approximation of Attribute Values and
Frequencies

All histograms make the uniform frequency assumption and
approximate all frequencies in a bucket by their average.
Thus, all histograms require storage of the average frequency
for each bucket.

Three different approaches exist for approximating the set
of attribute values within a bucket. The most common is the
continuous values assumption, where all possible values in �
that lie in the range of the bucket are assumed to be present
[SAC 2 79]. When � is an uncountably infinite set, (e.g., an
interval of real numbers), the contribution of a bucket to a
range query result size is estimated by linear interpolation.
This assumption requires storage of the lowest and highest
value in each bucket. Note that, for singleton buckets, this
requires storing only one attribute value.

Another approach is the point value assumption [PSC84],
where only one attribute value is assumed to be present (usu-
ally the lowest among those actually in the bucket). This as-
sumption requires storage of this single attribute value. Fi-
nally, the histograms considered in [IP95] record every dis-
tinct attribute value that appears in each bucket (i.e., no as-
sumptions are made). Such histograms require an auxiliary
index for efficient access when estimating the result size of a
query.

4 Previous Histograms
Several well-known and other relatively recent histograms
are described in this section. Each one is primarily identified
by its partition constraint and its sort and source parameters.
If the choice in the above three properties is p, s, and u,
respectively, then the histogram is named p(s,u). For s and
u the abbreviations S, V, F, and C are used for spreads,
attribute values, frequencies, and cumulative frequencies,
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respectively. When this definition is applied to a partition
class other than serial, p is enhanced with the class name
as well. Figure 2 provides an overview of the property
combinations that have been proposed in the past.

SOURCE     PARAMETER

SPREAD (S) 

EQUI−SUM EQUI−SUM

V−OPTIMAL

        SORT
 PARAMETER FREQUENCY (F) CUM.  FREQ(C)

VALUE(V)

FREQUENCY(F)

SPLINE−BASED

Figure 2: Histogram Taxonomy.

Each of these histograms is discussed in a separate subsec-
tion. Within each bucket, each histogram makes the uniform
distribution assumption for frequencies and usually the con-
tinuous values assumption for attribute values.

4.1 Trivial Histogram

Trivial histograms have a single bucket and vacuously belong
to all histogram classes. They are equivalent to the popular
uniform distribution assumption, used in most of the early
and a few of the current database systems [SAC 2 79].

4.2 Equi-sum(V,S) alias Equi-width

Equi-sum(V,S) histograms group contiguous ranges of at-
tribute values into buckets, and the sum of the spreads in each
bucket (i.e., the maximum minus the minimum value in the
bucket) is approximately equal to ��
 O times the maximum
minus the minimum value that appears in � [Koo80]. They
are commonly known as equi-width histograms and are used
in many commercial systems.

4.3 Equi-sum(V,F) alias Equi-depth

Equi-sum(V,F) histograms are like equi-widthhistograms but
have the sum of the frequencies in each bucket be equal rather
than the sum of the spreads [Koo80, PSC84]. They are popu-
larly called equi-depth (or equi-height) histograms. If the fre-
quency :%� of some value �%� is greater than the total frequency
allowed for a bucket, �%� appears in multiple contiguous buck-
ets, so that the total frequency of ��� (summed over all buck-
ets in which � � appears) equals : � . Piatetsky-Shapiro and
Connell [PSC84] considered equi-depth histograms in con-
junction with the point value assumption and derived place-
ments of the single point in each bucket for effective size es-
timation. Use of these histograms in commercial systems has
been limited, because exact determination of “bucket bound-
aries” (i.e., the lowest and highest value in each bucket) can
be very expensive. In Section 7, we discuss several ap-
proximate techniques for determining bucket boundaries that
make practical implementation of essentially all types of his-
tograms (including equi-depth histograms) feasible.

4.4 Spline-based(V,C)

Spline-based(V,C) histograms have not been actually pro-
posed in the database literature, but are inspired by efforts in
numerical analysis to approximate curves. Such a histogram

is constructed effectively by obtaininga piece-wise linear ap-
proximation to D M 2 . Since any range-query result size can
be expressed in terms of cumulative frequencies, the better
the approximation, the lower the result size estimation errors.

The problem of identifying optimal piecewise-linear ap-
proximations is known in numerical analysis as the optimal
knot placement problem, which unfortunately, has no effi-
cient solution [dB95]. We have adapted a heuristic algorithm
due to deBoor [dB78]. Although rather complicated, the al-
gorithm has very low time and space complexity; a detailed
description appears elsewhere [dB78].

4.5 V-Optimal(F,F)

V-optimal(F,F) histograms group contiguous sets of frequen-
cies into buckets so as to minimize the variance of the over-
all frequency approximation. In earlier work [IC93, Ioa93,
IP95], they were simply called v-optimal serial histograms,
and it was assumed that they would record every distinct at-
tribute value that appeared in each bucket. The importance
of these histograms is due to the fact that, under the above
assumption and under a definition of optimality that captures
the average over all possible queries and databases, these
histograms have been proven to be optimal for estimating
the result size of tree, function-free, equality join and selec-
tion queries [IP95]. The canonical construction algorithm in-
volves an exhaustive (exponential-complexity) enumeration
of all serial histograms and is clearly impractical. In Sec-
tion 6, we show how to adapt a randomized algorithmto com-
puting the v-optimal histogram.

4.6 V-Optimal-End-Biased(F,F)

V-optimal-end-biased(F,F) histograms are serial histograms
in which some of the highest frequencies and some of the
lowest frequencies are placed in individualbuckets, while the
remaining (middle) frequencies are all grouped in a single
bucket. In earlier work [IP95], they were called v-optimal
end-biased histograms. The importance of these histograms
is due to their competitiveness with the v-optimal(F,F) his-
tograms in many real-life situations [IP95]. The canoni-
cal construction algorithm involves an exhaustive enumera-
tion of all end-biased histograms in slightly over linear time
[IP95].

5 New Approaches to Histograms
None of the histograms described above are sufficiently ac-
curate for general use in range query result size estimation.
In this section, we propose several new choices for many
of the histogram properties. We motivate each one by iden-
tifying the particular problem that it solves. The next sec-
tion presents the specific combinations of these choices with
which we experimented.

5.1 Partition Class

Biased histograms form an interesting class of histograms
that falls between the serial and end-biased classes (i.e., it is
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a subclass of the former and a superclass of the latter). Bi-
ased histograms have at least one singleton bucket and pos-
sibly multiple non-singleton buckets. This new class allows
systematic tradeoffs between the high accuracy of serial his-
tograms and the low storage costs and computational effi-
ciency of end-biased histograms.

5.2 Partition Constraint
We introduce two new partition constraints, which (as al-
ways) can be combined with various sort and source parame-
ters. The goal of all the new partition constraints (and the ear-
lier v-optimalityconstraint) is to avoid groupingvastly differ-
ent source parameter values into a bucket.

	 Maxdiff: In a maxdiff histogram, there is a bucket bound-
ary between two source parameter values that are adja-
cent (in sort parameter order) if the difference between
these values is one of the O � � largest such differences.

	 Compressed: In a compressed histogram, the � highest
source values are stored separately in � singleton buck-
ets; the rest are partitioned as in an equi-sum histogram.
In our implementation, we choose � to be the number of
source values that (a) exceed the sum of all source values
divided by the number of buckets and (b) can be accom-
modated in a histogram with O buckets. It turns out that
most compressed histograms belong to the biased class.

5.3 Sort Parameter and Source Parameter
In most earlier serial histograms, the sort and source parame-
ters have been either attribute values or frequencies, and the
resulting histograms have been reasonably effective for ap-
proximating either value sets or frequency sets, respectively.
The goal of any histogram, however, is to approximate well
the entire data distribution D , i.e., to approximate well both
the value and frequency sets. Therefore, serial partitionings
should contiguouslygroup quantities that reflect proximityof
both attribute values and frequencies. Toward this end, we
introduce area as a possible choice for the sort and source
parameters, defined as the product of the frequency and the
spread. That is, the area � � of �/� is given by � �G :/� -8� . The
area parameter is abbreviated below by A.

5.4 Approximation of Attribute Values Within a
Bucket

One of the most serious drawbacks of previous histograms
is their inaccuracy in approximating value sets with non-
uniform spreads. As indicated by the experimental results in
Section 8, the continuous values and point value assumptions
used in previous histograms can lead to significant estimation
errors.

To overcome thisproblem, we introduce the uniformspread
assumption, under which each attribute value within a bucket
is assumed to have a spread equal to the bucket average.
This assumption requires storage of the lowest and high-
est value in each bucket together with the number of dis-
tinct attribute values in the bucket. The continuous values

and point value assumptions also assume that attribute values
have equal spreads. However, instead of storing the actual
number of distinct values in each bucket, they make crude as-
sumptions about it.

Example 5.1 Consider an equi-width histogram for an at-
tribute with domain � �� � I � I�� I >/>.>H# . Assume that the
range of a given bucket is equal to � � I � ��� � , the number of
distinct values in it is equal to 10, and the sum of frequencies
of attribute values in it is 200. Suppose we wish to estimate
the result size for the range predicate � � �E��� ��� . Under
the uniform spread assumption, the values in the bucket are� I � � I���� I >.>8> I��	� I � ��� , each having a frequency of 20, so that
the estimated result size is 40. Under the continuous values
assumption, the values in the bucket are � I�� I >/>/> I � �	� , each
value having a frequency of 2, so that the estimated result size
is ��
� �  ��� . Finally, under the point value assumption,
the only value in the bucket is 1 (with a frequency of 200), so
that the estimated result size is 0.

6 New Histograms
In this section, we introduce several new types of histograms
obtained by specifying new choices for histogram properties
as above or by combining earlier choices in novel ways.
Figure 3 provides an overview of the new combinations that
we introduce (enclosed in boxes) together with the earlier
combinations discussed in Section 4. Note that all locations
in the table correspond to valid histograms. We focus on
histograms that intuitively appear to have good potential.

SOURCE     PARAMETER

SPREAD (S) 

EQUI−SUM EQUI−SUM

V−OPTIMAL

V−OPTIMAL

COMPRESSED

V−OPTIMAL

 

V−OPTIMAL

        SORT
 PARAMETER FREQUENCY (F) AREA (A) CUM.  FREQ (C)

VALUE (V)

FREQUENCY (F)

   AREA (A)

V−OPTIMAL

COMPRESSED
MAX−DIFF MAXDIFF

MAXDIFF

MAXDIFF

SPLINE−BASED

Figure 3: Augmented Histogram Taxonomy.

Each one of the new histograms is discussed in a separate
subsection. All histograms make the uniform spread and the
uniform frequency assumptions when approximating the data
distribution within a bucket.

6.1 V-Optimal(V,F), V-Optimal(V,A), V-Optimal(A,A),
and V-Optimal(V,C)

These histograms are identical to v-optimal(F,F) histograms,
except that they use different sort and source parameters.

The v-optimal(V,F) and v-optimal(V,A) histograms min-
imize the variances in frequencies and areas respectively,
while grouping contiguous attribute values. Using � (resp.,�

) as the source parameter ensures that skew in the frequency
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(resp., frequency and value) domains are considered in the
bucketization, while using � as the sort parameter often re-
sults in a good approximation of the value domain.

By definition, the v-optimal(A,A) histograms minimize
the variance of the overall approximation of area. Therefore,
such a histogram should achieve a close approximation to
both the value and frequency sets.

The reason for using the cumulative frequency parameter
is somewhat different. Since the result sizes for any range
query can be expressed in terms of cumulative frequencies,
by grouping into buckets cumulative frequencies that are
similar (v-optimal constraint), we should obtain a good ap-
proximation of D�M .

To avoid the exponential cost of the canonical algorithm
to construct these histograms, we provide a randomized al-
gorithm that with high probability finds a histogram close to
the actual v-optimal histogram. The algorithm is applicable
independent of the sort and source parameter choice. Ex-
perimentation with the Iterative-Improvement (II) and Two-
Phase Optimization (2PO) randomized algorithms, which
have been proposed as search strategies in query optimization
[SG88, IK90], has shown that the simpler II algorithm pro-
duces very effective serial histograms, so we use II through-
out. Details about II may be found in the above references. In
our specific adaptation of II to the current problem, we define
the neighbors of a histogram

�
to be all valid histograms that

can be obtained by incrementing or decrementing a bucket
boundary of

�
by one position in the domain of source val-

ues.

6.2 V-Optimal-End-Biased(A,A)
V-optimal-end-biased(A,A) histograms histograms are iden-
tical to the v-optimal-end-biased(F,F)histograms, except that
they use area for the sort and source parameters.

6.3 Maxdiff(V,F), Maxdiff(V,A)
As mentioned in Section 5.2, the goal of all the new partition
constraints is to avoid grouping attribute values with vastly
different source parameter values into a bucket. The maxd-
iff histograms try to achieve this goal by inserting bucket
boundaries between adjacent source values (in sort param-
eter order) that differ by large amounts.The motivations for
using various sort and source parameters is exactly the same
as those for the corresponding v-optimal histograms (Section
6.1).

These histograms can be efficiently constructed by first
computing the differences between adjacent source parame-
ters, and then placing the bucket boundaries where the O � �
highest differences occur.

6.4 Compressed(V,F) and Compressed(V,A)
Compressed(V,F) histograms (resp., compressed(V,A) his-
tograms) group contiguousattributevalues intobuckets, place
the attribute values with the highest frequencies (resp., areas)
in singleton buckets, and then divide the remaining values
among multiple buckets in an equi-sum fashion.

By keeping values with high frequencies or areas in single-
ton buckets, these histograms achieve great accuracy in ap-
proximating the skewed frequency distributionsand/or nonuni-
form spreads that are typical of many real-life data sets.

7 Some Computational Techniques
As can be seen from the above discussion, construction of
the histograms considered in this paper requires, among other
things,

	 computation of “quantiles” (see definitionbelow) for equi-
depth histograms;

	 computation of the frequency and cumulative frequency
of each attribute value;

	 computation of the number of distinct attribute values
that lie in a given range; and

	 computation of the spread of each attribute value.

In this section, we consider techniques for efficient computa-
tion of these quantities. We focus on methods that require at
most one complete scan through the relation. (Such a scan is
required when the data is initially loaded. Moreover, a com-
plete scan is typically required by current DBMSs in order
to compute quantities such as the largest and smallest key
value in a column.) To be useful in practice, computational
algorithms need to minimize the CPU cost per tuple of the
relation, the number of I/O’s required (over and above the
complete scan), and the amount of main memory required for
storage of intermediate results.

Throughout, we denote the number of tuples in the relation
by � . We also denote by : FH� J the fraction of tuples in
the relation with attribute value equal to � and by � FH� J the
fraction of tuples with attribute value less than or equal to � .
When � coincides with some ���!< � , we have : FH�/� J  :/� 
 �
and � FK�%� J $?�� 
 � .

7.1 Quantiles
To construct an equi-depth histogram with O buckets, we
need to compute O bucket boundaries � �.I �/L I >.>/> I � � such that
� � ������ � ��P � � � FH� J P� 
 O�# . In statistical terminol-
ogy, � � is the FK 
 O J -quantile of the attribute-value distribu-
tion. Exact computation of � � I � L I >/>/> I � � requires sorting the
entire relation in order of increasing attribute value. Then
�8� is computed as the attribute value of the 	 FK J th tuple in
the sorted relation, where 	 �
��  
 O� . Although this ap-
proach is simple and exact, it is too expensive to be used for
the large relations typically encountered in practice. Internal
sorting algorithms require too much main memory and CPU
time, while external algorithms [GS91] incur multiple scans.
We therefore focus on algorithms that compute approximate
quantiles.

One well-known technique is the � L algorithm proposed
by Jain and Chlamtac [JC85]. The basic idea behind this
one-pass algorithm is to maintain a set of five “markers”
that approximate the quantile of interest, the minimum value,
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the maximum value, and the two additional quantiles lo-
cated midway between the quantile of interest and the maxi-
mum (resp., minimum) value. Whenever a new data value is
read, the value of each marker is updated using a piecewise-
parabolic curve-fitting technique. After the last data value is
read, the middle marker is used as the estimate of the quantile.
Raatikainen [Raa87] generalized the � L procedure to permit
simultaneous estimation of more than one quantile during a
single pass. As observed both in [Raa87] and in our own
work, the accuracy of the procedure can be improved by us-
ing additionalmarkers for each percentile to be estimated; we
incorporate this enhancement into the version of the � L algo-
rithm that we use in our experiments.

Another well-known approach to estimating quantiles is to
use random sampling [MD88, PSC84]. The idea is to sample
� (

� � ) tuples from the relation randomly and uniformly,
without replacement. (Such a sample is called a simple ran-
dom sample.) Then the quantile values for the sample are
used as estimates of the corresponding quantile values for
the entire relation. To obtain the random sample, we use a
reservoir sampling algorithm due to Vitter [Vit85]. This al-
gorithm (called Algorithm X in Vitter’s paper) obtains a ran-
dom sample of size � during a single pass through the rela-
tion. The number of tuples in the relation does not need to
be known beforehand. The algorithm proceeds by inserting
the first � tuples into a “reservoir.” Then a random number of
records are skipped, and the next tuple replaces a randomly
selected tuple in the reservoir. Another random number of
records are then skipped, and so forth, until the last record
has been scanned. The distribution function of the length of
each random skip depends explicitly on the number of tuples
scanned so far, and is chosen such that each tuple in the rela-
tion is equally likely to be in the reservoir after the last tuple
has been scanned. An advantage of the reservoir sampling
approach is that it does not require the database system to
support individual retrieval of randomly selected pages, and
hence can be implemented in most current systems.

Both the sampling-based algorithm and the � L algorithm
require exactly one pass through the relation, and hence have
the same I/O cost. The intermediate storage requirements
of these algorithms are also comparable. The � L algorithm,
however, performs some fairly elaborate calculations for each
tuple in the relation, while the sampling-based algorithm
skips over most of the tuples in the relation, resulting in a low
CPU cost per tuple. Unlike the � L algorithm, the sampling-
based algorithm permits the subsequent adjustment of the
histogram buckets required for constructing compressed his-
tograms. Moreover only the sampling-based algorithm pro-
vides an estimate of the error in the approximation. Both of
the above techniques can be extended to equi-sum histograms
based on source parameters other than frequency.

7.2 Frequencies
Exact computation of frequencies and cumulative frequen-
cies requires that a counter be maintained for each distinct
attribute value and that each tuple in the relation be hashed

on its attribute value and the appropriate counter be incre-
mented. Such hashing can lead to excessive CPU costs. As
with quantiles, the desired frequencies can be estimated from
a random sample obtained using reservoir sampling. The es-
timated frequency of a value � � is simply � � � 
 � , where � � is
the number of tuples in the sample with attribute value � � .

Of particular importance in histogram construction are the
frequencies of the most frequent values. In some situations,
it may be possible to obtain a very small “pilot” random sam-
ple of the tuples in the relation prior to the complete scan of
the relation. Then, by adapting a technique due to Haas and
Swami [HS95], the frequencies of the most frequent values
can be obtained exactly with high probability. The idea is to
obtain the pilot sample and observe the distinct attribute val-
ues that appear in the sample. During the full scan of the re-
lation, the frequencies for these attribute values can be com-
puted exactly using a relatively inexpensive hashing scheme.
If the frequency of an attribute value is high, then with a very
high probability the value will appear in the pilot sample, and
the frequency of the value will be computed exactly. It is
shown in [HS95], for example, that if the attribute values of
a relation containing � ��� tuples are distributed according to a
Zipf distribution [Zip49] with parameter �  � > � 
 (roughly,
an “80-20” law), then with a probability of approximately
99.9% the 10 most frequent values will all appear in a sample
of 1000 tuples (i.e., in a 0.1% sample). The more skewed the
attribute-value distribution, the better the scheme works.

7.3 Distinct Values
Use of the uniform spread assumption (Section 5.4) requires
techniques for computation of the number of distinct attribute
values, denoted � F�� I�� J , that lie between given limits � and
� . As with other statistics on the data distribution, exact
computation of � F�� I	� J typically requires too much CPU time
and intermediate storage, due to the extensive hashing and/or
sorting required.

The number of distinct values can be estimated based on a
reservoir sample. The simplest procedure is to use the num-
ber of distinct values in the sample that lie between � and
� , denoted " F
� I�� J , as an estimate of � F
� I	� J . Our experi-
ments indicated that this simple estimate works reasonably
well in practice. " F�� I�� J typically underestimates � F
� I	� J be-
cause some of the attribute values in the relation do not show
up in the sample. The frequencies of the missing attribute
values tend to be low, however, so that the absence of these
values does not introduce serious errors into the final query-
size estimate. In future work, we will investigate the util-
ity of more sophisticated estimation methods such as those
in [HNSS95].

7.4 Spreads
Histograms that use the area as a source and/or sort param-
eter require computation of the spreads of different attribute
values. As with frequencies, spreads are expensive to calcu-
late exactly. In our experiments, we simply used the spreads
that appeared in a reservoir sample; this approach appeared to
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be adequate for our purposes. More sophisticated techniques
for estimation of the spread can be derived directly from ad-
vanced techniques for estimation of the number of distinct
values � F
� I	� J (as defined in the previous section); this is a
topic for future research.

7.5 Required Sample Size
The required sample size for various techniques presented in
the previous sections depends upon the desired accuracy of
the result size estimates. In general, there will be errors be-
cause the sample does not accurately represent the entire re-
lation. For example, the relative error in estimating the re-
sult size for a predicate of the form � � � is given by���
��� FH� J � � FK� J � , where

�
��� FH� J is the (random) fraction of tu-

ples in a simple random sample of size � with attribute value
less than or equal to � . We call such error the sampling error.
In this subsection we discuss the relation between the sample
size and the sampling error. To simplify the mathematics, we
derive methods for determining the sample size under the (in-
accurate) assumption that samples are obtained with replace-
ment; for small sample sizes ( & 10%) this results in a slight
overestimate of the number of samples needed.

A conservative estimate of the sample size required to
control the relative sampling error to a desired level can
be based on the following bound, originally due to Kol-
mogorov [Kol41]. Fix � P �

and let � � I � L I >.>/> I ��� be a
collection of independent and identically distributed random
variables uniformly distributed on � � I � � . For

� ��� � � ,
denote by

�
�
	���� F�� J the (random) fraction of these random

variables with values less than or equal to � . Finally, de-
note by ��� the distribution function of the random variable����� 4������ �

� �
� 	���� F�� J � � � . Then

�
� ����� "! 4 � ���� FH� J � � FH� J � �$#&% P$��� F�# J (1)

for # P �
. Observe that � � does not depend on either � ,

the size of the relation, or � , the form of the attribute value
distribution function. The distribution � � has been tabulated
for small values of � by Massey [Mas51]; for large values of
� ( ' � �	� ), � � F�� J is well-approximated by � F � ��( L � J , where� F�� J  � � �*),+ � F � � � L J ; cf [Mas51].

Consider a range predicate of the form � � � � �
��) , where �/� I ��) < � with �/�,� ��) (we allow equality
predicates). The estimated result size based on a sample

of size � is �.- �� � FH� ) J � �
� � FH� ��/ �@J�0 . Thus, the relative

sampling error �1� is

� �  - �� � FH� ) J � �
� � FH� ��/ �@J�0 � F � FH� ) J � � FK� ��/ �NJ J

 - ���� FH��) J � � FK��) J 0 � - ���� FH�/��/ � J � � FH�/��/ � J 0
Since, by the Triangle Inequality,� � � � � ���

� � FH� ) J � � FK� ) J ��23���
� � FK� ��/ �0J � � FH� ��/ �NJ �

� � ����� 4! 4 ������ FK� J � � FH� J �

it follows from (1) that

��� � � � � �5# # P ��� ����� 4! 4 � �� � FK� J � � FK� J � �6# 
 � #
P � � F�# 
 � J >

For example, a sample size of 1064 tuples is sufficient to give
a relative sampling error of less that 10% with 99% proba-
bility. Similar arguments show that for one-sided predicates
such as � ' �%� , only about 270 samples are needed to
achieve the above accuracy.

The above guidelines are conservative in that fewer sam-
ples are actually needed in practice to achieve a given degree
of accuracy. (For example, Theorem 1 in Hoeffding [Hoe63]
implies that only about 190 samples are actually needed to
achieve the above accuracy for an equality predicate � �� �
in the specific case : FK� � J  � > � .) In our experiments, we
used a sample size of 2000 tuples.

7.6 Construction Cost

Table 1 illustrates the difference in the construction costs of
various histograms. It contains actual timings collected from
running the corresponding algorithms on a SUN-SPARC,
for varying amounts of space allocated to the histograms.
The specific timings are for histograms with � and

�
as

the sort and source parameters, respectively, but all other
combinations of sort and source parameters produce quite
similar results. These timings do not include the time taken
to scan the relation and compute the sample. The cardinality
of D (i.e., the number of distinct values) was fixed at 200
and the total number of tuples was equal to 100,000. All
but the equidepth- � L histograms were constructed based on a
reservoir sample of 2000 tuples. As can be seen from Table 1,
the construction cost is negligible for most of the histograms
when sampling techniques are used. The � L algorithm is
expensive because of the significant processing cost incurred
for each tuple in the relation.

Time Taken (msec)
Histogram Space = 798;:;< Space = =>:;:><
Compressed 5.9 9.3
Equi-sum 6.2 10.9
MaxDiff 7.0 12.8
V-optimal-end-biased 7.2 10.9
Spline-Based 20.3 41.7
V-optimal 42.9 67.0
Equi-Depth: by ? � 4992 10524

Table 1: Construction cost for various histograms

8 Experimental Results

We investigated the effectiveness of different histogram types
for estimating range query result sizes. The average error due
to a histogram was computed over a set of queries and ex-
pressed as a percentage of the relation size. That is, for a set
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�
of � queries, the error � was computed as

�
 �
���

�
�

�����

� � � � �
	� �
� �

I

where
� � and

�
	� are the actual and the estimated size of the
query result, respectively. The histogram types, data distri-
butions, and queries considered in our experiments are de-
scribed below. Observations on the sensitivity of our results
to the allotted storage space, sample size, and number of dis-
tinct values in the data distribution are presented in Section
8.4.

Histograms: Experiments were conducted using all his-
togram types described in Figure 3. In general, the bucket of
a histogram contained four floating numbers: the number of
elements in the bucket, the lowest and highest attribute value
in the bucket, and the average frequency in the bucket. In
special cases, however, buckets could occupy less space. In
particular, buckets of histograms with V as the sort parameter
contained only three floating numbers: the lowest attribute
value in a bucket was not explicitly stored but was implicitly
assumed to be the successor (in the attribute’s domain) of the
highest value of the previous bucket. Also, singleton buck-
ets contained only two floating numbers: the single attribute
value in it and the corresponding frequency.

Since different histograms need to store different amounts
of information per bucket, the number of buckets varied
among histogram types in our experiments, with differences
of up to 50%. To ensure fair comparisons, all histograms
were constructed so that they occupied the same amount of
space. The amount of available space was fixed at ��
 � bytes
(approximately � � buckets for a general serial histogram with
a sort parameter other than V and � � buckets for an end-
biased histogram). All histograms were constructed based
on samples of � �	�	� tuples, except for the trivial histogram,
the equi-depth histogram in which bucket boundaries were
computed exactly by sorting all of the tuples in the relation,
denoted by equi-depth:precise, and the equi-depth histogram
constructed from all the tuples in the relation using the � L
algorithm, denoted equi-depth: � L .

Data Distributions: Experiments were conducted using
synthetic data distributions with � ����� to � �	�� tuples, and
number of attribute values ( " ) between � �	� and � �	�	� . In or-
der to isolate the effects of different choices for the various
orthogonal parameters of histograms, we experimented with
several frequency and value sets. The frequency sets were
generated independently of the value sets, and different types
of correlation were induced between each frequency set and
value set, thereby generating a large collection of data distri-
butions. The choices for each set and for their correlation are
given below:

	 Frequency Sets: These were generated with frequencies
following a Zipf distribution, with the � parameter var-
ied between 0 (uniform) and 4 (highly skewed), which al-
lowed experimentation with several degrees of skew.

	 Value Sets: All attribute values were nonnegative inte-
gers, and spreads were generated according to one of
five alternative distributions: uniform (equal spreads),
zipf inc (increasing spreads following a Zipf distribu-
tion), zipf dec (decreasing spreads followinga Zipf distri-
bution), cusp min (zipf inc for the first " 
 � elements fol-
lowed by zipf dec), cusp max (zipf dec for the first " 
 �
elements followed by zipf inc), and zipf ran (spreads fol-
lowing a Zipf distribution and randomly assigned to at-
tribute values). Example value sets following the above
spread distributions are plotted in Figure 4. The default �
parameter for the Zipf distributions was � .

0 200 400 600 800 1000
Attribute Value

uniform
zipf_inc
zipf_dec
cusp_min
cusp_max
zipf_ran

Figure 4: Value Sets.	 Correlations: Three different types of correlation were
induced between the value and frequency sets. For posi-
tive correlation, values with high (resp., low) frequencies
were mapped to values with high (resp., low) spreads.
For negative correlation, high (resp., low) frequencies
were mapped to values with low (resp., high) spreads.
For zero correlation, frequencies were mapped to spreads
randomly. In all cases involving random correlations, the
average of errors in 10 runs of the experiment for differ-
ent random mappings was used.

Queries: Experiments were conducted using five different
query sets. All queries were of the form � & ��� 	 ; the sets
differed in the values of the constants � and 	 . Set A contained
all possible queries with �$ ��� (so that the queries were
one-sided) and 	 an integer lying between the minimum and
maximum values in � . (Observe that 	 assumed values in
� and � - � .) Set B contained all queries with �  ���
and 	 < � . Set C contained 1000 “low-selectivity” random
queries with � I 	 < � and selectivities uniformly distributed
in � � I � > � � . Set D contained 1000 “high-selectivity” random
queries with � I 	 < � and selectivities uniformly distributed
in � � > � I � � . Set E contained 1000 “mixed-selectivity” random
queries with � I 	 < � and selectivities uniformly distributed
in the composite interval � � I � > � ��� � � > � I � � . The results of
our experiments did not vary significantly for different query
sets, so we only present those obtained for query set A below.
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8.1 Typical Performance
It turned out that the relative performance of various his-
tograms was fairly constant over a wide range of data and
query sets. Due to the large number of combinations of the
testbed parameter choices, we present results from one ex-
periment that illustrates the typical behavior of the histogram
errors. In this experiment, the value set follows cusp max,
the frequency set follows a Zipf distribution with parame-
ter �  � , and the correlation between values and frequen-
cies is random. Table 2 shows (in decreasing order) the er-
rors generated by the entire set of histograms on the query set
A. As indicated by Table 2, a clear separation was observed

Histogram Error (%)

Trivial 60.84
Equi-depth: ? � 17.87
V-optimal(A,A) 15.28
V-optimal(V,C) 14.62
Equi-width 14.01
V-optimal(F,F) 13.40
V-optimal-end-biased(A,A) 12.84
V-optimal-end-biased(F,F) 11.67
Equi-depth:Precise 10.92
Spline-based(V,C) 10.55
Compressed(V,A) 3.76
Compressed(V,F) 3.45
Maxdiff(V,F) 3.26
V-Optimal(V,F) 3.26
Maxdiff(V,A) 0.77
V-Optimal(V,A) 0.77

Table 2: Errors due to histograms
throughout the experiments between a set of effective his-
tograms and a set of poor histograms. Although the relative
performance of histograms in the lower set varies between
experiments, and on some occasions histograms from the up-
per set were competitive, the results in Table 2 are quite char-
acteristic overall. Hence, in the remaining subsections, we
focus on the histograms in the lower part of the table. Also,
the bottom part of the table demonstrates the importance of
using � as the sort parameter.

The effectiveness of sampling is clearly illustratedby com-
paring the accuracy of the equi-depth: � L and compressed(V,F)
histograms. As shown in Section 7.6, sampling-based con-
struction of a compressed histogram requires much less CPU
time than construction of an equi-depth: � L histogram. As
can be seen from Tables 1 and 2, use of sampling and read-
justment of bucket boundaries results in a histogram that is
not only much cheaper to compute, but is far more accurate
than the equi-depth: � L histogram. (Other experiments, not
reported here, indicated that even ordinary equi-depth his-
tograms computed from a sample are both cheaper to con-
struct and more accurate than equi-depth: � L histograms.)

8.2 Effect of Frequency Skew
To study the effect of frequency skew, we present results from
the experiments in which the value set has uniform spreads

while the frequency set follows a Zipf distributionwith vary-
ing skew ( � ). Note that the use of either frequency or area
as the source parameter makes no difference here, since the
value spreads are uniform. The histogram errors for queries
in set A are plotted in Figure 5, with the value of the Zipf
parameter � indicated on the x-axis and average error indi-
cated on the y-axis. Clearly, for very low ( �  �

) and
very high ( �  �

) skew, all histograms generate essentially
no error. The hardest to deal with were intermediate skew
levels. Since there were many frequencies that were quite
different in these distributions, grouping them into only 10
or 15 buckets was insufficient to avoid errors. Overall, the
maxdiff(V,A) and v-optimal(V,A) histograms performed bet-
ter than the compressed(V,A) histograms.
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Figure 5: Frequency Set Approximation.

8.3 Effect of Non-uniform Spreads
To study the effect of non-uniform spreads, we present re-
sults from the experiments in which the frequency set is uni-
form while the value set follows zipf dec with varying skew
( � ). The histogram errors for queries in set A are plotted
in Figure 6, with the Zipf parameter � indicated on the x-
axis. Clearly, there is a major advantage to using area as
the source parameter, for all histogram types. Note that the
v-Optimal(V,A) histogram performs consistently better than
the others.

8.4 Sensitivity Analysis
In order to study the effect on histogram accuracy of the of the
storage space, the sample size, and the number of attribute
values in the relation, we conducted the above experiments
for different values of these parameters (and their combina-
tions). The results are shown for the v-optimal(V, A) his-
tograms in Table 3 and Figure 7. Table 3 demonstrates that
the accuracy of these histograms is not significantly affected
by modest changes in sample size and number of attribute
values. The effect of storage space is plotted in Figure 7, with
the number of bytes on the x-axis and errors on the y-axis. It
is clear that, beyond a small value of ��
 � bytes ( � � buckets
for general serial histograms with a sort parameter other than
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Figure 6: Value Set Approximation.

V), storage space has negligibleeffect on histogram accuracy.
Also, it can be seen that the v-optimal and maxdiff histograms
perform slightly better than the compressed histograms.

Error
Sample Size

No. of Attr. Values 2000 10000 100000

200 0.59 0.46 0.29
500 0.68 0.49 0.31
1000 0.64 0.66 0.40

Table 3: Sensitivity Results
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Figure 7: Effect of Storage Space.

8.5 Other Experiments

We observed in other experiments that all histograms perform
slightly better when there is no correlation between spreads
and frequencies, and that the uniform spread assumption
approximates the value domain better than the continuous
values and the point value assumptions.

9 Conclusions

This paper studied the use of histograms for estimating the
result size of range queries. We systematically isolated and
enumerated the various properties that characterize a his-
togram, some of which have never been considered explicitly
in the literature. Motivated by our histogram taxonomy, we
introduced the following innovations:

	 explicit consideration of the spread between successive
attribute values when assigning values to buckets;

	 novel partition constraints that are more accurate than the
traditional equi-sum constraint;

	 use of the number of distinct values in a bucket to more
accurately approximate the distributionof values and fre-
quencies in the bucket;

	 adaptation of a randomized algorithm for efficient con-
struction of serial histograms; and

	 use of reservoir sampling and statistical estimation tech-
niques to efficiently construct histograms using a single
scan of the data, together with guidelines on the required
sample size that are tailored to range predicates.

Guided by our taxonomy, we combined both previous and
new techniques in novel ways to yield several new histogram
types. We then compared the accuracy of both old and new
histograms empirically using a large set of data distributions
and queries. The main conclusions from our experiments are
as follows:

	 The uniform spread assumption should be used to ap-
proximate the value set within each bucket.

	 Area should be used as the source parameter.

	 Attribute values should be used as the sort parameter.

	 Equi-depth histograms constructed using reservoir sam-
pling are both less expensive to obtain and more accurate
than equi-depth histograms constructed using the � L al-
gorithm. In general, sampling-based construction meth-
ods can produce accurate histograms at a small cost.

	 The v-optimal(V,A),maxdiff(V,A), and compressed (V,A)
histograms generate very small errors in a wide variety of
situations. Over all data distributions, the v-optimal(V,A)
and maxdiff(V,A) histograms performed better than the
compressed(V,A) histograms. The computation times of
the v-optimal histograms are slightly higher than those of
the compressed and maxdiff histograms, but are still quite
small (and quite insignificant compared to the costs of
scanning the relation and generating the sample). Over-
all, we believe that maxdiff(V,A) is probably the his-
togram of choice, as it is very close to the best histogram
on both issues, construction time and generated error.
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