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Abstract

Many commercial database systems maintain histograms to sum-
marize the contents of relations and permit efficient estimation of
query result sizes and access plan costs. Although several types of
histograms have been proposed in the past, there has never been a
systematic study of all histogram aspects, the available choicesfor
each aspect, and theimpact of such choiceson histogram effective-
ness. In this paper, we provide a taxonomy of histogramsthat cap-
tures all previously proposed histogram types and indicates many
new possibilities. Weintroduce novel choicesfor several of the tax-
onomy dimensions, and derive hew histogram types by combining
choicesin effective ways. We also show how sampling techniques
can be usedto reducethe cost of histogram construction. Finally, we
present results from an empirical study of the proposed histogram
types used in selectivity estimation of range predicates and identify
the histogram typesthat have the best overall performance.

1

Several modules of a database system require estimates of
guery result sizes. For example, query optimizers select the
most efficient access plan for a query based on the estimated
costs of competing plans. These costs are in turn based on
estimates of intermediate result sizes. Sophisticated user
interfaces also use estimates of result sizes as feedback to
users before a query is actually executed. Such feedback
helps to detect errors in queries or misconceptions about the
database.

Query result sizes are usualy estimated using a variety
of statistics that are maintained for relationsin the database.
These statistics merely approximate the distribution of data
valuesin attributes of the relations. Consequently, they rep-
resent an inaccurate picture of the actual contents of the
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database. The resulting size-estimation errors may under-
mine the validity of the optimizer’s decisions or render the
user interface applicationunreliable. Earlier work has shown
that errorsin query result size estimates may increase expo-
nentially with the number of joins[1C91]. Thisresult, in con-
junction with the increasing complexity of queries, demon-
strates the critical importance of accurate estimation.

Several techniques have been proposed in the literature to
estimate query result sizes [MCS88], including histograms
[Koo80], sampling [LNS90, HS95], and parametric tech-
niques [CR94, SLRD93]. Of these, histograms approxi-
mate the frequency distribution of an attribute by grouping
attribute values into “buckets’ (subsets) and approximating
true attribute values and their frequencies in the data based
on summary statistics maintained in each bucket. The main
advantages of histograms over other techniques are that they
incur aimost no run-time overhead, they do not require the
datato fit a probability distribution or a polynomial and, for
most real-world databases, there exist histograms that pro-
duce low-error estimates while occupying reasonably small
space (of the order of 200 bytesin a catalog)®. Hence, they
are the most commonly used form of statistics in practice
(e.g., they areused in DB2, Informix, Ingres, Microsoft SQL
Server, Sybase) and are the focus of this paper.

Although histograms are used in many systems, the his-
tograms proposed in earlier works are not aways effective
or practical. For example, equi-depth histograms [K0080,
PSC84, MD88] work well for range queries only when the
datadistributionhaslow skew, whileserial histograms[1C93,
10893, 1P95] have only been proven optimal for equality joins
and selections when allist of all the attribute values in each
bucket is maintained. (In serial histograms, attribute values
gned to the same bucket need not be contiguous.)

In this paper, motivated by the above issues, we identify
severa key properties that characterize histograms and de-
termine their effectiveness in query result size estimation.
These properties are mutually orthogonal and form the basis
for a general taxonomy of histograms. After placing all ex-
isting histogram typesin the appropriate places in the taxon-
omy, we introduce novel techniques for severa of thetaxon-

I Nevertheless, one can construct data distributions that cannot be ap-
proximated well using a small number of buckets.



Abstract partitioning rule

Equi-width partitioning rule

¢ Adjoin to 7 athird column derived from the first two and
sort 7 on it. Histogram buckets correspond to groups of
elements of 7 that are contiguous in the order of the sorted
third column.

o Specify arestricted subclass of all possible histograms on
a distribution 7, based on the number of elements of 7
allowed in each bucket, and consider only histogramsin this
subclass.

¢ Adjoin afourth column derived from the first two.
o Determine the unique partition of 7 into 3 buckets such

that the histogram belongs to the restricted subclass and sat-
isfies a specified constraint on the fourth column.

e Thethird column is equal to the value column.

o Thereareno restrictionson the number of elementsallowed
in each bucket.

o Thefourth columnisidentical to the value column.

o Partition 7 so that the buckets contain attribute valuesin
ranges of equal size.

Figure 1: Abstract partitioning rule and an example

omy dimensions, e.g., for assigning attribute val ues to buck-
ets and approximating the data in a bucket, and then derive
new histogram types by combining these techniquesin effec-
tive ways. We aso provide efficient sampling-based meth-
odsto construct several of the new histogramstogether with
guidelines on the required sample size. Finally, we compare
empirically the accuracy of both old and new histograms us-
ing alarge set of data distributions and range queries. The
results of these experiments identify the techniques that are
most effective for each property in the histogram taxonomy,
and point towards the histogram types with the best overall
performance.

2 Histogram Definitions and Usage

The predicates that we consider are of theforma < X < b,
where X isanon-negativerea or integer-valued attributeina
relation R and a and b are constantssuch that a < b. Observe
that such predicates include equality predicates (choose a =
b) and “one-sided” predicates such as X < b (choosea =
—1).

2.1 DataDistributions

The domain D of X isthe set of al possible values of X
and the (finite) value set V (C D) isthe set of values of X
that are actually presentin R. LetV = {v;: 1<i< D},
where v; < v; wheni < j. The spread s; of v; is defined
ass; = viy1 — v, forl < i < D. (Wetekesy = v; and
Sp = 1)

The frequency f; of v; isthe number of tuplest € R
with¢.X = wv;. The cumulative frequency ¢; of v; is the
number of tuplest € R witht.X < w;,ie, ¢
Z;Il f;. The data distribution of X (in R) is the set of
parsT = {(v1, f1), (va, f2), ..., (vp, fp) }. Similarly, the
cumulative data distribution of X isthe set of pairs 7¢
{(v1,¢1), (va,¢2), ..., (vp,cp) }. Finaly, the extended cu-
mulative data distribution of X', denoted by 7¢*, isthe cu-
mul ative datadistributionof 7¢ extended over the entire do-
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main D by assigningazero frequency toevery vaueinD—V.

2.2 Histogram Definition

A histogramon attribute X isconstructed by partitioningthe
data distribution 7 into 8 (> 1) mutually digoint subsets
called buckets and approximating the frequencies and values
in each bucket in some common fashion. The bucketsare de-
termined according to a partitioning rule that seeks to effec-
tively approximate 7. (Note that this notion of a histogram
ismore generd than the classical definition.)

In order to describe both new and existing partitioning
rules in a uniform manner, we first present a multi-step ab-
stract partitioning rule that captures the entire collection of
partitioningrulesinthe paper (Figurel). Toillustrate our ab-
stract definition, we a so show how each step can beinstanti-
ated to yield the partitioningrulefor classical equi-widthhis-
tograms [Koo80]. In the description, 7 isviewed as arda
tion with two columns, the value column and the frequency
column.

Based on the description in the table, every histogram is
characterized by these properties:

1. Partition class: The restricted class of histograms
considered by the partitioning rule.

2. Partitionconstraint: The mathematical constraint that
uniquely identifies the histogram within its partition
class.

3. Sort parameter and source parameter: The parame-

ters derived from 7 and placed in itsthird and fourth
column, respectively.

Each histogram is also characterized by the following addi-
tional properties:

4. Approximation of values within a bucket: The as-
sumption that determinesthe approximateval ueswithin
abucket of the histogram.

Approximation of frequencies within a bucket: The
assumption that determinestheapproximatefrequency
of each value within a bucket of the histogram.

5.



Properties 4 and 5 determine theinformation that needsto be
stored for each bucket. Note that al of the above properties
are mutually orthogonal.

2.3 Histogram Maintenance and Usage

Typicdly, histograms are stored in system catal ogs with the
number of buckets limited only by the available disk space.
Database updates are periodically propagated to histograms
so that their effectiveness does not degrade. Techniques for
determining appropriate schedules for such propagation are
beyond the scope of this paper and do not affect the results
presented here.

Therangeof abucket B C 7T istheinterval [v.(B), v*(B)],
where v, (B) and v* (B) arethe smallest and largest attribute
values covered by B. The length of its range is equa to
v*(B) — v«(B). To estimate the result size of the predicate
a < X < b, an estimation routine identifies each bucket
B for which the ranges [v.(B), v*(B)] and [a, b] overlap.
Then, using specified approximation formulas, it estimates
the number of vauesin each identified bucket that satisfy the
range predicate, along with the frequency of each such value.
These frequencies are summed over al identified buckets to
yield the estimate of the result size.

3 Previous Approachesto Histograms

Several different histograms have been proposed in the liter-
ature. This section discusses the various choices that have
been considered for instantiating the properties discussed
above. The next section presents specific histogramsas char-
acterized by properties 1-3.

3.1 Partition Class

Asindicated above, thehistogramsthat we consider are serial ?
in the sense that histogram buckets correspond to groups of
elements of 7 that are contiguousin the order of the sort pa-
rameter. Classical histograms (both “equi-height” and “equi-
depth”) have no constraints on the number of e ements of 7
that can be assigned to a bucket. On the other hand, end-
biased histograms [IC93, 1P95] require that al but one of
their buckets are singleton, i.e., they contain asingle element
of 7. One of the advantages of the end-biased histograms
is their storage efficiency. As we will see later, singleton
buckets occupy less space than buckets containing multiple
attribute values. Hence, histograms with severa singleton
buckets (such as end-biased histograms) occupy less space
than general serial histogramswiththe same number of buck-
ets.

3.2 Partition Constraint

For the seria class, three different types of histograms have
been defined, for various source parameters:

20ur current usage of the term is different from, and more general than,
the usage in our earlier work [IC93, 10a93, 1P95]. In that work frequency
was the only sort parameter considered.
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e Equi-sum: In an equi-sum histogram (with 3 buckets),
the sum of the source values in each bucket is equa
to 1/8 times the sum of al the source vaues in the
histogram.

V-optimal: Inav-optimal histogram, aweighted variance
of the source valuesis minimized. That is, the quantity
Z?Il n;V; is minimized, where n; is the number of
entries in the jth bucket and V; is the variance of the
source values in the jth bucket.

o Jline-based: Inaspline-based histogram, the maximum
absol ute difference between a source value and the aver-
age of the source valuesinits bucket is minimized.

For the end-biased class, only the v-optimal histogram has
been proposed, defined exactly as above.

3.3 Sort Parameter and Source Parameter

For the sort parameter, attribute values and frequencies have
been proposed in the past. For the source parameter, spreads,
frequencies, and cumul ativefrequencies have been proposed.

3.4 Approximation of Attribute Valuesand
Frequencies

All histograms make the uniform frequency assumption and

approximate al frequencies in a bucket by their average.

Thus, dl histogramsrequire storage of the average frequency

for each bucket.

Three different approaches exist for approximating the set
of attribute values within a bucket. The most common isthe
continuousval ues assumption, whereall possiblevaluesinD
that liein the range of the bucket are assumed to be present
[SACt79]. When D isan uncountably infinite set, (e.g., an
interval of real numbers), the contribution of a bucket to a
range query result size is estimated by linear interpolation.
This assumption requires storage of the lowest and highest
value in each bucket. Note that, for singleton buckets, this
requires storing only one attribute value.

Another approach is the point value assumption [PSC84],
where only one attributevalue is assumed to be present (usu-
ally the lowest among those actually in the bucket). Thisas-
sumption requires storage of this single attribute value. Fi-
nally, the histograms considered in [IP95] record every dis-
tinct attribute value that appears in each bucket (i.e., no as-
sumptions are made). Such histograms require an auxiliary
index for efficient access when estimating the result size of a

query.

4 PreviousHistograms

Several well-known and other relatively recent histograms
are described in this section. Each oneis primarily identified
by its partition constraint and its sort and source parameters.
If the choice in the above three properties is p, s, and u,
respectively, then the histogram is named p(s,u). For s and
u the abbreviations S, V, F, and C are used for spreads,
attribute values, frequencies, and cumulative frequencies,



respectively. When this definition is applied to a partition
class other than serial, p is enhanced with the class name
as well. Figure 2 provides an overview of the property
combinationsthat have been proposed in the past.

SORT SOURCE  PARAMETER
PARAMETER SPREAD (S) | FREQUENCY (F) | CUM. FREQ(C)
VALUE(V) EQUI-SUM EQUI-SUM SPLINE-BASED

FREQUENCY(F) V-OPTIMAL

Figure 2: Histogram Taxonomy.

Each of these histogramsis discussed in aseparate subsec-
tion. Within each bucket, each histogram makes the uniform
distribution assumption for frequencies and usually the con-
tinuous values assumption for attribute val ues.

4.1 Trivial Histogram

Trivial histogramshave asinglebucket and vacuously belong
to all histogram classes. They are equivalent to the popular
uniform distribution assumption, used in most of the early
and afew of the current database systems [SACT79)].

4.2 Equi-sum(V,S) alias Equi-width

Equi-sum(V,S) histograms group contiguous ranges of at-
tributevaluesinto buckets, and the sum of the spreadsin each
bucket (i.e., the maximum minus the minimum vaue in the
bucket) is approximately equal to 1/ times the maximum
minus the minimum value that appearsin V [Koo80]. They
are commonly known as equi-width histograms and are used
in many commercial systems.

4.3 Equi-sum(V,F) alias Equi-depth

Equi-sum(V,F) histogramsare like equi-width histogramsbut
have the sum of thefrequenciesin each bucket beequal rather
than the sum of the spreads [K0080, PSC84]. They are popu-
larly called equi-depth (or equi-height) histograms. If thefre-
guency f; of somevauev; isgreater than thetotal frequency
allowed for abucket, v; appearsin multiplecontiguousbuck-
ets, so that the total frequency of »; (summed over al buck-
ets in which v; appears) equals f;. Piatetsky-Shapiro and
Conndll [PSC84] considered equi-depth histogramsin con-
junction with the point val ue assumption and derived place-
ments of the single point in each bucket for effective size es-
timation. Use of these histogramsin commercia systemshas
been limited, because exact determination of “bucket bound-
aries’ (i.e., thelowest and highest value in each bucket) can
be very expensive. In Section 7, we discuss severa ap-
proximate techniquesfor determining bucket boundariesthat
make practical implementation of essentialy al typesof his-
tograms (including equi-depth histograms) feasible.

4.4 Spline-based(V,C)

Spline-based(V,C) histograms have not been actualy pro-
posed in the database literature, but are inspired by effortsin
numerical analysisto approximate curves. Such ahistogram
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isconstructed effectively by obtaininga piece-wiselinear ap-
proximation to 7¢*. Since any range-query result size can
be expressed in terms of cumulative frequencies, the better
the approximation, thelower theresult size estimation errors.

The problem of identifying optimal piecewise-linear ap-
proximationsis known in numerical analysis as the optimal
knot placement problem, which unfortunately, has no effi-
cient solution [dB95]. We have adapted a heuristic algorithm
due to deBoor [dB78]. Although rather complicated, the a-
gorithm has very low time and space complexity; a detailed
description appears el sewhere [dB78].

45 V-Optimal(FF)

V-optimal (F,F) histograms group contiguous sets of frequen-
cies into buckets so as to minimize the variance of the over-
all frequency approximation. In earlier work [1C93, 10893,
IP95], they were simply called v-optimal serial histograms,
and it was assumed that they would record every distinct at-
tribute value that appeared in each bucket. The importance
of these histograms is due to the fact that, under the above
assumption and under a definition of optimality that captures
the average over al possible queries and databases, these
histograms have been proven to be optima for estimating
the result size of tree, function-free, equality join and selec-
tion queries[1P95]. The canonical constructionalgorithmin-
volves an exhaustive (exponentia -complexity) enumeration
of al serid histograms and is clearly impractical. In Sec-
tion 6, we show how to adapt arandomized al gorithmto com-
puting the v-optimal histogram.

4.6 V-Optimal-End-Biased(F,F)

V-optimal-end-biased(F,F) histograms are seria histograms
in which some of the highest frequencies and some of the
lowest frequenciesare placed inindividua buckets, whilethe
remaining (middle) frequencies are all grouped in a single
bucket. In earlier work [IP95], they were called v-optimal
end-biased histograms. The importance of these histograms
is due to their competitiveness with the v-optima (F,F) his-
tograms in many redl-life situations [IP95]. The canoni-
cal construction agorithm involves an exhaustive enumera-
tion of all end-biased histogramsin dightly over linear time

[1P9S).

5 New Approachesto Histograms

None of the histograms described above are sufficiently ac-
curate for general use in range query result size estimation.
In this section, we propose several new choices for many
of the histogram properties. We motivate each one by iden-
tifying the particular problem that it solves. The next sec-
tion presents the specific combinations of these choiceswith
which we experimented.

5.1 Partition Class

Biased histograms form an interesting class of histograms
that falls between the serial and end-biased classes (i.e, itis



a subclass of the former and a superclass of the latter). Bi-
ased histograms have at least one singleton bucket and pos-
sibly multiple non-singleton buckets. This new class alows
systematic tradeoffs between the high accuracy of serid his-
tograms and the low storage costs and computationa effi-
ciency of end-biased histograms.

5.2 Partition Constraint

We introduce two new partition constraints, which (as a-
ways) can be combined with various sort and source parame-
ters. Thegoa of al thenew partition constraints(and the ear-
lier v-optimality constraint) isto avoid grouping vastly differ-
ent source parameter values into a bucket.

o Maxdiff: Inamaxdiff histogram, thereisabucket bound-
ary between two source parameter values that are adja
cent (in sort parameter order) if the difference between
thesevauesisoneof the 3 — 1 largest such differences.

Compressed: In a compressed histogram, the n_highest
source vaues are stored separately in n singleton buck-
ets, the rest are partitioned as in an equi-sum histogram.
In our implementation, we choose n to be the number of
sourcevaluesthat (a) exceed the sum of all sourcevaues
divided by the number of bucketsand (b) can be accom-
modated in a histogram with 3 buckets. It turns out that
most compressed histograms bel ong to the biased class.

5.3 Sort Parameter and Source Parameter

In most earlier serial histograms, the sort and source parame-
ters have been either attribute values or frequencies, and the
resulting histograms have been reasonably effective for ap-
proximating either value sets or frequency sets, respectively.
The goa of any histogram, however, is to approximate well
the entire data distribution 7, i.e., to approximate well both
the value and frequency sets. Therefore, seria partitionings
should contiguously group quantitiesthat reflect proximity of
both attribute values and frequencies. Toward this end, we
introduce area as a possible choice for the sort and source
parameters, defined as the product of the frequency and the
spread. That is, thearea a; of v; isgivenby a; = f;s;. The
area parameter is abbreviated below by A.

5.4 Approximation of Attribute ValuesWithin a
Bucket

One of the most serious drawbacks of previous histograms
is their inaccuracy in approximating value sets with non-
uniform spreads. Asindicated by the experimenta resultsin
Section 8, the continuousval ues and point val ue assumptions
used in previoushistograms can | ead to significant estimation
errors.

To overcomethisproblem, weintroducethe uniformspread
assumption, under which each attributeval ue withinabucket
is assumed to have a spread equal to the bucket average.
This assumption requires storage of the lowest and high-
est value in each bucket together with the number of dis-
tinct attribute values in the bucket. The continuous vaues
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and point val ue assumptions a so assume that attributevalues
have equal spreads. However, instead of storing the actual
number of distinct valuesin each bucket, they make crude as-
sumptions about it.

Example5.1 Consider an equi-width histogram for an at-
tribute with domain D {0,1,2,...}. Assume that the
range of a given bucket is equa to [1, 100], the number of
digtinct valuesinitisequd to 10, and the sum of frequencies
of attributevaluesin it is 200. Suppose we wish to estimate
theresult size for therange predicate 10 < X < 25. Under
the uniform spread assumption, the values in the bucket are
1,12,23,...,89, 100, each having afreguency of 20, so that
the estimated result size is 40. Under the continuous values
assumption, the values in the bucket are 1, 2, . . ., 100, each
valuehaving afrequency of 2, sothat theestimated result size
is16 x 2 = 32. Finally, under the point value assumption,
the only valueinthebucket is1 (with afrequency of 200), so
that the estimated result sizeisO.

6 New Histograms

In this section, we introduce several new types of histograms
obtai ned by specifying new choices for histogram properties
as above or by combining earlier choices in novel ways.
Figure 3 provides an overview of the new combinations that
we introduce (enclosed in boxes) together with the earlier
combinations discussed in Section 4. Note that all locations
in the table correspond to valid histograms. We focus on
histograms that intuitively appear to have good potential.

SOURCE PARAMETER

SORT
PARAMETER SPREAD (S) | FREQUENCY (F) AREA (A) CUM. FREQ (C)

SPLINE-BASED

EQUI-SUM EQUI-SUM

| V-OPTIMAL | | | V-OPTIMAL
} MAX-DIFF } } MAXDIFF
| COMPRESSED | | | COMPRESSED |
- J - J

VALUE (V)

FREQUENCY (F)

AREA (A | V-OPTIMAL
® } MAXDIFF }

Figure 3: Augmented Histogram Taxonomy.

Each one of the new histogramsis discussed in a separate
subsection. All histograms make the uniform spread and the
uniform frequency assumptionswhen approximatingthe data
distribution within a bucket.

6.1 V-Optimal(V,F), V-Optimal (V,A), V-Optimal (A,A),
and V-Optimal (V,C)

These histograms are identical to v-optimal (F,F) histograms,

except that they use different sort and source parameters.
The v-optima (V,F) and v-optimal (V,A) histograms min-

imize the variances in frequencies and areas respectively,

while grouping contiguous attribute values. Using F' (resp.,

A) asthe source parameter ensuresthat skew inthefrequency



(resp., frequency and value) domains are considered in the
bucketization, while using V' as the sort parameter often re-
sultsin a good approximation of the value domain.

By definition, the v-optimal (A,A) histograms minimize
the variance of the overall approximation of area. Therefore,
such a histogram should achieve a close approximation to
both the value and frequency sets.

The reason for using the cumulative frequency parameter
is somewhat different. Since the result sizes for any range
guery can be expressed in terms of cumulative frequencies,
by grouping into buckets cumulative frequencies that are
similar (v-optimal constraint), we should obtain a good ap-
proximation of 7°¢.

To avoid the exponential cost of the canonica agorithm
to construct these histograms, we provide a randomized d-
gorithm that with high probability finds a histogram close to
the actual v-optimal histogram. The agorithm is applicable
independent of the sort and source parameter choice. Ex-
perimentation with the Iterative-lmprovement (11) and Two-
Phase Optimization (2PO) randomized agorithms, which
have been proposed as search strategiesin query optimization
[SG88, 1K9(0], has shown that the ssimpler Il agorithm pro-
duces very effective serial histograms, so we use Il through-
out. Detailsabout || may befoundintheabovereferences. In
our specific adaptation of 11 to the current problem, we define
the neighborsof ahistogram H tobeall vaid histogramsthat
can be obtained by incrementing or decrementing a bucket
boundary of H by one position in the domain of source val-
ues.

6.2 V-Optimal-End-Biased(A,A)
V-optimal-end-biased(A,A) histograms histograms are iden-
tical to the v-optimal -end-bi ased(F,F) histograms, except that
they use area for the sort and source parameters.

6.3 Maxdiff(V,F), Maxdiff(V,A)

Asmentioned in Section 5.2, the goal of al the new partition
congtraints is to avoid grouping attribute values with vastly
different source parameter values into a bucket. The maxd-
iff histograms try to achieve this goal by inserting bucket
boundaries between adjacent source values (in sort param-
eter order) that differ by large amounts. The motivations for
using various sort and source parameters is exactly the same
asthosefor the corresponding v-optimal histograms (Section
6.1).

These histograms can be efficiently constructed by first
computing the differences between adjacent source parame-
ters, and then placing the bucket boundarieswherethe 5 — 1
highest differences occur.

6.4 Compressed(V,F) and Compressed(V,A)
Compressed(V,F) histograms (resp., compressed(V,A) his-
tograms) group contiguousattributeval uesintobuckets, place
the attribute values with the highest frequencies (resp., areas)
in singleton buckets, and then divide the remaining values
among multiple buckets in an equi-sum fashion.

By keeping valueswith highfrequenciesor areasin single-
ton buckets, these histograms achieve great accuracy in ap-
proximating the skewed frequency distributionsand/or nonuni-
form spreads that are typical of many real-life data sets.

7 Some Computational Techniques

As can be seen from the above discussion, construction of
the histograms considered in thispaper reguires, anong other
things,

e computationof “quantiles’ (see definition bel ow) for equi-
depth histograms,

e computation of the frequency and cumulative frequency
of each attributevalue;

e computation of the number of distinct attribute values
that liein agiven range; and

e computation of the spread of each attribute value.

In thissection, we consider techniquesfor efficient computa-
tion of these quantities. We focus on methods that require at
most one complete scan through therelation. (Suchascanis
required when the dataisinitially loaded. Moreover, a com-
plete scan is typically required by current DBMSs in order
to compute quantities such as the largest and smallest key
valuein acolumn.) To be useful in practice, computational
algorithms need to minimize the CPU cost per tuple of the
relation, the number of 1/O’s required (over and above the
compl ete scan), and theamount of main memory required for
storage of intermediate results.

Throughout, we denotethe number of tuplesintherelation
by N. We also denote by f(v) the fraction of tuples in
the relation with attribute value equal to v and by F'(v) the
fraction of tuples with attribute value less than or equal to v.
When » coincideswithsome v; € V, wehave f(v;) = fi/N
and F(UZ) = CZ'/N.

7.1 Quantiles

To construct an equi-depth histogram with 5 buckets, we
need to compute 3 bucket boundariesq, ¢2, . . ., ¢ such that
¢i = min{v>0: F(v) >i/8}. In datistical terminol-
ogy, ¢; isthe (i¢//)-quantile of the attribute-value distribu-
tion. Exact computationof ¢4, ¢s, . . ., g3 requiressorting the
entire relation in order of increasing attribute value. Then
q; 1s computed as the attribute value of the r(7)th tuple in
the sorted relation, where » = [Ni/3]. Although this ap-
proach is simple and exact, it istoo expensive to be used for
the large relationstypically encountered in practice. Interna
sorting a gorithms require too much main memory and CPU
time, while external agorithms[GS91] incur multiple scans.
We therefore focus on agorithmsthat compute approximate
quantiles.

One well-known technique is the P2 agorithm proposed
by Jain and Chlamtac [JC85]. The basic idea behind this
one-pass agorithm is to maintain a set of five “markers’
that approximatethe quantileof interest, the minimum value,



the maximum value, and the two additional quantiles lo-
cated midway between the quantile of interest and the maxi-
mum (resp., minimum) value. Whenever anew datavalueis
read, the value of each marker is updated using a piecewise-
parabolic curve-fitting technique. After the last datavaueis
read, themiddlemarker isused astheestimate of thequantile.
Raatikainen [Raa87] generalized the P? procedure to permit
simultaneous estimation of more than one quantile during a
single pass. As observed both in [Raa37] and in our own
work, the accuracy of the procedure can be improved by us-
ing additional markersfor each percentileto be estimated; we
incorporatethis enhancement intothe version of the P2 algo-
rithm that we use in our experiments.

Another well-known approach to estimating quantilesisto
use random sampling [MD88, PSC84]. Theideaisto sample
n (& N) tuplesfrom the relation randomly and uniformly,
without replacement. (Such asampleiscalled asimpleran-
dom sample.)) Then the quantile values for the sample are
used as estimates of the corresponding quantile values for
the entire relation. To obtain the random sample, we use a
reservoir sampling algorithm due to Vitter [Vit85]. This al-
gorithm (called Algorithm X in Vitter’spaper) obtainsaran-
dom sample of size n during a single pass through the rela
tion. The number of tuplesin the relation does not need to
be known beforehand. The algorithm proceeds by inserting
thefirst n tuplesintoa“reservoir.” Then arandom number of
records are skipped, and the next tuple replaces a randomly
selected tuple in the reservoir. Another random number of
records are then skipped, and so forth, until the last record
has been scanned. The distribution function of the length of
each random skip depends explicitly on the number of tuples
scanned so far, and is chosen such that each tuplein therela
tionisequaly likely to be in the reservoir after the last tuple
has been scanned. An advantage of the reservoir sampling
approach is that it does not require the database system to
support individual retrieval of randomly selected pages, and
hence can be implemented in most current systems.

Both the sampling-based algorithm and the P? agorithm
require exactly one passthrough the rel ation, and hence have
the same 1/O cost. The intermediate storage requirements
of these algorithms are also comparable. The P? agorithm,
however, performssomefairly el aborate cal cul ationsfor each
tuple in the relation, while the sampling-based algorithm
skipsover most of thetuplesintherelation, resultingin alow
CPU cost per tuple. Unlikethe P? algorithm, the sampling-
based agorithm permits the subsequent adjustment of the
histogram buckets required for constructing compressed his-
tograms. Moreover only the sampling-based a gorithm pro-
vides an estimate of the error in the approximation. Both of
the abovetechniques can be extended to equi-sum histograms
based on source parameters other than frequency.

7.2 Frequencies

Exact computation of frequencies and cumulative frequen-
cies requires that a counter be maintained for each distinct
attribute value and that each tuple in the relation be hashed

300

on its attribute value and the appropriate counter be incre-
mented. Such hashing can lead to excessive CPU costs. As
with quantiles, the desired frequencies can be estimated from
arandom sampl e obtained using reservoir sampling. The es-
timated frequency of avaluev; isssimply n; N/n, wheren; is
the number of tuplesin the sample with attribute value v;.
Of particular importancein histogram construction are the
frequencies of the most frequent values. In some situations,
it may be possibleto obtainavery small “pilot” random sam-
ple of the tuplesin the relation prior to the complete scan of
the relation. Then, by adapting a technique due to Haas and
Swami [HS95], the frequencies of the most frequent values
can be obtained exactly with high probability. Theideaisto
obtain the pilot sample and observe the distinct attribute val -
ues that appear in the sample. During the full scan of there-
lation, the frequencies for these attribute val ues can be com-
puted exactly using arelatively inexpensive hashing scheme.
If the frequency of an attributevalueishigh, then withavery
high probability thevaluewill appear in the pilot sample, and
the frequency of the value will be computed exactly. It is
shown in [HS95], for example, that if the attribute values of
arelation containing 10° tuplesare distributed accordingto a
Zipf distribution [Zip49] with parameter z = 0.86 (roughly,
an “80-20" law), then with a probability of approximately
99.9% the 10 most frequent valueswill all appear inasample
of 1000tuples(i.e., in a0.1% sample). The more skewed the
attribute-value distribution, the better the scheme works.

7.3 Distinct Values

Use of the uniform spread assumption (Section 5.4) requires
techniquesfor computation of the number of distinct attribute
values, denoted d({, u), that lie between given limits/ and
u. As with other statistics on the data distribution, exact
computation of d(/, u) typically requirestoo much CPU time
and intermediate storage, due to the extensive hashing and/or
sorting required.

The number of distinct values can be estimated based on a
reservoir sample. The simplest procedure isto use the num-
ber of distinct vaues in the sample that lie between [ and
u, denoted D(/, u), as an estimate of d(/,u). Our experi-
ments indicated that this simple estimate works reasonably
well in practice. D(L, u) typicaly underestimates d(/, u) be-
cause some of the attributevaluesin therelation do not show
up in the sample. The frequencies of the missing attribute
values tend to be low, however, so that the absence of these
values does nhot introduce serious errors into the final query-
size estimate. In future work, we will investigate the util-
ity of more sophisticated estimation methods such as those
in [HNSS95].

7.4 Spreads

Histograms that use the area as a source and/or sort param-
eter require computation of the spreads of different attribute
values. Aswith frequencies, spreads are expensive to cal cu-
late exactly. In our experiments, we simply used the spreads
that appeared inareservoir sample; thisapproach appeared to



be adequate for our purposes. More sophisticated techniques
for estimation of the spread can be derived directly from ad-
vanced techniques for estimation of the number of distinct
values d(!, u) (as defined in the previous section); thisis a
topic for future research.

75 Required Sample Size

The required sample size for various techniques presented in
the previous sections depends upon the desired accuracy of
the result size estimates. 1n general, there will be errors be-
cause the sample does not accurately represent the entire re-
lation. For example, the relative error in estimating the re-
sult size for a predicate of the form X < v is given by
|Fn(v) — F(v)|, where F,, (v) isthe (random) fraction of tu-
plesin asimplerandom sample of size n with attributevaue
lessthan or equal to v. We call such error the sampling error.
In thissubsection we discuss therel ation between the sample
size and the sampling error. To simplify the mathematics, we
derive methodsfor determining the sample size under the (in-
accurate) assumption that samples are obtai ned with replace-
ment; for small sample sizes (<10%) thisresultsin a dlight
overestimate of the number of samples needed.

A conservative estimate of the sample size required to
control the relative sampling error to a desired level can
be based on the following bound, originally due to Kol-
mogorov [Kol4l]. Fixn > O andlet Uy,Us,...,U, bea
collection of independent and identically distributed random
variables uniformly distributed on [0,1]. For0 < z < 1,

denote by ﬁ,(LU)(;v) the (random) fraction of these random
variables with values less than or equa to z. Findly, de-
note by GG,, the distribution function of the random variable

SUPg<z<1 |fA7,SU)(a7) —z|. Then

g

for ¢ > 0. Observe that G,, does not depend on either N,
the size of therelation, or F', the form of the attribute value
distributionfunction. ThedistributionG,, has been tabulated
for small valuesof n by Massey [Masb1]; for large va ues of
n (> 100), G, () iswell-approximated by G (n'/%z), where
G(z) = 1 — 2exp(—2z?); cf [Mas51].

Consider a range predicate of the form v; < X <
vj, where v;,v; € V withvy; < w; (we allow equality
predicates). The estimated result size based on a sample
of szen is N (ﬁn(uj) - ﬁn(ui_l)). Thus, the relative

sampling error Ry, is

sup |f7n(v) — F(v)| <e
v>0

bra0

~

<ﬁn(’£’j) - Fn(t’i—1)) — (F(vj) = F(vi-1))

= (Fale) = F(e)) = (Falvicr) = Fluin))
Since, by the Triangle Inequality,
Ral < [ Fu(vy) = F(uj)| + [ Fa(vio) = F(uih)]

2sup |F(v) — F(v)|
v>0

Ry

IN A
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it followsfrom (1) that
P{|R,| <e¢} > P{sup |}A7n(v) —F(w)|<¢/2}
v>0

>

Gnle/2).

For example, asamplesize of 1064 tuplesissufficient to give
a relative sampling error of less that 10% with 99% proba-
bility. Similar arguments show that for one-sided predicates
such as X > w;, only about 270 samples are needed to
achieve the above accuracy.

The above guidelines are conservative in that fewer sam-
plesare actually needed in practice to achieve agiven degree
of accuracy. (For example, Theorem 1 in Hoeffding [Hoe63]
implies that only about 190 samples are actualy needed to
achieve the above accuracy for an equality predicate X = v;
in the specific case f(v;) = 0.2.) Inour experiments, we
used a sample size of 2000 tuples.

7.6 Construction Cost

Table 1 illustrates the difference in the construction costs of
varioushistograms. It containsactual timings collected from
running the corresponding algorithms on a SUN-SPARC,
for varying amounts of space allocated to the histograms.
The specific timings are for histograms with V' and A as
the sort and source parameters, respectively, but all other
combinations of sort and source parameters produce quite
similar results. These timings do not include the time taken
to scan the relation and compute the sample. The cardinality
of 7 (i.e, the number of distinct values) was fixed at 200
and the total number of tuples was equal to 100,000. All
but the equidepth- P? histogramswere constructed based ona
reservoir sampleof 2000 tuples. Ascan beseenfrom Table 1,
the construction cost is negligiblefor most of the histograms
when sampling techniques are used. The P2 dgorithm is
expensive because of the significant processing cost incurred
for each tuplein therelation.

Time Taken (msec)
Histogram Space= 160b | Space= 4005 |
Compressed 59 9.3
Equi-sum 6.2 10.9
MaxDiff 7.0 12.8
V-optimal-end-biased 7.2 109
Spline-Based 20.3 41.7
V-optimal 429 67.0
Equi-Depth: by P2 4992 10524

Table 1: Construction cost for various histograms

8 Experimental Results

Weinvestigated the effectiveness of different histogramtypes
for estimating range query result sizes. Theaverage error due
to a histogram was computed over a set of queries and ex-
pressed as a percentage of therelation size. That is, for a set



Q of N queries, the error E' was computed as

_ 100 = 185 = Sl

N o Sy

E

where S, and S;, are the actua and the estimated size of the
query result, respectively. The histogram types, data distri-
butions, and queries considered in our experiments are de-
scribed below. Observations on the sensitivity of our results
to the all otted storage space, sample size, and number of dis-
tinct values in the data distribution are presented in Section
8.4.

Histograms: Experiments were conducted using all his-
togram types described in Figure 3. In genera, the bucket of
a histogram contained four floating numbers: the number of
elementsin the bucket, thelowest and highest attributevalue
in the bucket, and the average frequency in the bucket. In
special cases, however, buckets could occupy less space. In
particular, buckets of histogramswithV asthesort parameter
contained only three floating numbers: the lowest attribute
valuein abucket was not explicitly stored but wasimplicitly
assumed to be the successor (in the attribute’sdomain) of the
highest value of the previous bucket. Also, singleton buck-
ets contained only two floating numbers: the single attribute
valueinit and the corresponding frequency.

Since different histogramsneed to store different amounts
of information per bucket, the number of buckets varied
among histogram typesin our experiments, with differences
of up to 50%. To ensure fair comparisons, all histograms
were constructed so that they occupied the same amount of
space. The amount of available space was fixed at 160 bytes
(approximately 10 bucketsfor ageneral serial histogramwith
a sort parameter other than V and 20 buckets for an end-
biased histogram). All histograms were constructed based
on samples of 2000 tuples, except for the trivial histogram,
the equi-depth histogram in which bucket boundaries were
computed exactly by sorting al of the tuplesin the relation,
denoted by equi-depth: precise, and the equi-depth histogram
constructed from all the tuplesin the relation using the P?
agorithm, denoted equi-depth: P2.

Data Distributions: Experiments were conducted using
synthetic data distributionswith 100K to 500 K tuples, and
number of attributevalues (D) between 200 and 1000. In or-
der to isolate the effects of different choices for the various
orthogonal parameters of histograms, we experimented with
severa frequency and value sets. The frequency sets were
generated independently of the value sets, and different types
of correlation were induced between each frequency set and
value set, thereby generating alarge collection of datadistri-
butions. The choicesfor each set and for their correlation are
given below:

e Frequency Sets: These were generated with frequencies
following a Zipf distribution, with the > parameter var-
ied between O (uniform) and 4 (highly skewed), which a-
lowed experimentation with several degrees of skew.
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e \alue Sats: All attribute values were nonnegative inte-
gers, and spreads were generated according to one of
five dternative distributions: uniform (equal spreads),
zipf_inc (increasing spreads following a Zipf distribu-
tion), zipf_dec (decreasing spreads followingaZipf distri-
bution), cusp_min (zipf_inc for thefirst D/2 elementsfol-
lowed by zipf_dec), cusp_max (zipf_dec for thefirst D/2
elements followed by Zipf_inc), and z pf_ran (spreadsfol-
lowing a Zipf distribution and randomly assigned to at-
tribute values). Example value sets following the above
spread distributionsare plotted in Figure4. The default =
parameter for the Zipf distributionswas 2.

—a—— uniform
——<«—— zipf_inc
—— zipf_dec
——A—— cusp_min
— — ¢ — — cusp_max
— ——— zipf_ran
A A A A A A A A A
3 O—O-Oomm
————————— S—— A ——A————— — —— — A
S-S — — - — == — = - ——— o — >0
e — — — — — — — - — - —— = e — — — O X
I T T T T T
(o] 200 400 600 800 1000

Attribute Value

Figure4: Value Sets.

Correlations: Three different types of correlation were
induced between the value and frequency sets. For posi-
tive correlation, valueswith high (resp., low) frequencies
were mapped to values with high (resp., low) spreads.
For negative correlation, high (resp., low) frequencies
were mapped to values with low (resp., high) spreads.
For zero correlation, frequencieswere mapped to spreads
randomly. Inal casesinvolving random corrélations, the
average of errorsin 10 runs of the experiment for differ-
ent random mappings was used.

Queries: Experiments were conducted using five different
query sets. All querieswere of theforma < X < b; the sets
differedinthevaluesof theconstantse and 4. Set A contained
all possible queries witha = —1 (so that the queries were
one-sided) and 4 an integer lying between the minimum and
maximum valuesin V. (Observe that b assumed vauesin
V and D-V.) Set B contained al queries with « -1
andb € V. Set C contained 1000 “low-selectivity” random
querieswith a, b € V and selectivities uniformly distributed
in [0,0.2]. Set D contained 1000 “high-selectivity” random
querieswith a, b € V and selectivities uniformly distributed
in[0.8, 1]. Set E contained 1000 “mixed-selectivity” random
querieswith a, b € V and selectivities uniformly distributed
in the composite interval [0,0.2] U [0.8, 1]. The results of
our experiments did not vary significantly for different query
sets, so we only present those obtained for query set A below.



8.1 Typical Performance

It turned out that the relative performance of various his-
tograms was fairly constant over a wide range of data and
guery sets. Due to the large number of combinations of the
testbed parameter choices, we present results from one ex-
periment that illustratesthe typical behavior of the histogram
errors. In this experiment, the value set follows cusp_max,
the frequency set follows a Zipf distribution with parame-
ter z = 1, and the correlation between vaues and frequen-
ciesis random. Table 2 shows (in decreasing order) the er-
rorsgenerated by the entire set of histograms on the query set
A. Asindicated by Table 2, a clear separation was observed

| Histogram | Error (%) |
Trivial 60.84
Equi-depth: P2 17.87
V-optimal (A,A) 15.28
V-optimal (V,C) 14.62
Equi-width 14.01
V-optimal (FF) 13.40
V-optimal-end-biased(A,A) 12.84
V-optimal-end-biased(F,F) 11.67
Equi-depth:Precise 10.92
Spline-based(V,C) 10.55
Compressed(V,A) 3.76
Compressed(V,F) 345
Maxdiff(V,F) 3.26
V-Optimal (V,F) 3.26
Maxdiff(V,A) 0.77
V-Optimal(V,A) 0.77

Table 2: Errorsdueto histograms

throughout the experiments between a set of effective his-
tograms and a set of poor histograms. Although the relative
performance of histograms in the lower set varies between
experiments, and on some occasi ons histogramsfrom the up-
per set were competitive, theresultsin Table 2 are quite char-
acteristic overal. Hence, in the remaining subsections, we
focus on the histograms in the lower part of the table. Also,
the bottom part of the table demonstrates the importance of
using V' as the sort parameter.

Theeffectiveness of samplingisclearly illustrated by com-
paring the accuracy of theequi-depth: P2 and compressed(V,F)
histograms. As shown in Section 7.6, sampling-based con-
struction of acompressed histogram requires much less CPU
time than construction of an equi-depth: P2 histogram. As
can be seen from Tables 1 and 2, use of sampling and read-
justment of bucket boundaries resultsin a histogram that is
not only much cheaper to compute, but is far more accurate
than the equi-depth: P2 histogram. (Other experiments, not
reported here, indicated that even ordinary equi-depth his-
tograms computed from a sample are both cheaper to con-
struct and more accurate than equi-depth: P2 histograms.)

8.2 Effect of Frequency Skew

To study theeffect of frequency skew, we present resultsfrom
the experiments in which the value set has uniform spreads
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whilethefrequency set followsaZipf distributionwith vary-
ing skew (z). Note that the use of either frequency or area
as the source parameter makes no difference here, since the
value spreads are uniform. The histogram errors for queries
in set A are plotted in Figure 5, with the vaue of the Zipf
parameter z indicated on the x-axis and average error indi-
cated on the y-axis. Clearly, for very low (z 0) and
very high (z = 4) skew, al histograms generate essentially
no error. The hardest to deal with were intermediate skew
levels. Since there were many frequencies that were quite
different in these distributions, grouping them into only 10
or 15 buckets was insufficient to avoid errors. Overadl, the
maxdiff(V,A) and v-optimal (V,A) histograms performed bet-
ter than the compressed(V,A) histograms.

1.5

—a— Compressed(V,A)
—0— Maxdiff(V,A)
—¢— V-Optimal(V,A)

0.5+

AverageError (% of relation Size)

0.0 T T T T
(0] 1 2 3

Skew in Frequency Set (2)

Figure 5: Frequency Set Approximation.

8.3 Effect of Non-uniform Spreads

To study the effect of non-uniform spreads, we present re-
sultsfrom the experiments in which the frequency set is uni-
form while the value set follows z pf_dec with varying skew
(). The histogram errors for queries in set A are plotted
in Figure 6, with the Zipf parameter > indicated on the x-
axis. Clearly, there is a magjor advantage to using area as
the source parameter, for all histogram types. Note that the
v-Optimal (V,A) histogram performs consistently better than
the others.

8.4 Sensitivity Analysis

In order to study theeffect on histogram accuracy of theof the
storage space, the sample size, and the number of attribute
values in the relation, we conducted the above experiments
for different values of these parameters (and their combina-
tions). The results are shown for the v-optimal(V, A) his-
togramsin Table 3 and Figure 7. Table 3 demonstrates that
the accuracy of these histogramsis not significantly affected
by modest changes in sample size and number of attribute
values. The effect of storage spaceisplottedin Figure7, with
the number of bytes on the x-axis and errors on they-axis. It
is clear that, beyond a small value of 160 bytes (10 buckets
for generd serial histogramswith a sort parameter other than
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Figure 6: Value Set Approximation.

V), storage space hasnegligibleeffect on histogram accuracy.
Also, it can be seenthat thev-optimal and maxdiff histograms
perform dightly better than the compressed histograms.

Error
Sample Size
No. of Attr. Values | 2000 | 10000 | 100000
200 0.59 0.46 0.29
500 0.68 0.49 0.31
1000 0.64 0.66 0.40
Table 3: Sengitivity Results
25
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Figure 7: Effect of Storage Space.

8.5 Other Experiments

We observedin other experimentsthat al histogramsperform
dightly better when there is no correlation between spreads
and frequencies, and that the uniform spread assumption
approximates the value domain better than the continuous
values and the point value assumptions.
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9 Conclusions

This paper studied the use of histograms for estimating the
result size of range queries. We systematically isolated and
enumerated the various properties that characterize a his-
togram, some of which have never been considered explicitly
in the literature. Motivated by our histogram taxonomy, we
introduced the following innovations:

o explicit consideration of the spread between successive
attribute values when assigning values to buckets;

novel partition constraintsthat are more accurate than the
traditional equi-sum constraint;

use of the number of distinct values in a bucket to more
accurately approximatethedistributionof valuesand fre-
guencies in the bucket;

adaptation of a randomized algorithm for efficient con-
struction of seria histograms; and

use of reservoir sampling and statistical estimation tech-
niques to efficiently construct histograms using a single
scan of the data, together with guidelineson the required
sample size that are tailored to range predicates.

Guided by our taxonomy, we combined both previousand
new techniquesin novel waystoyield several new histogram
types. We then compared the accuracy of both old and new
histograms empirically using alarge set of data distributions
and queries. Themain conclusionsfrom our experimentsare
asfollows:

e The uniform spread assumption should be used to ap-
proximate the value set within each bucket.

Area should be used as the source parameter.
Attribute val ues should be used as the sort parameter.

Equi-depth histograms constructed using reservoir sam-
pling are both less expensive to obtain and more accurate
than equi-depth histograms constructed using the P2 a-
gorithm. In general, sampling-based construction meth-
ods can produce accurate histograms at a small cost.

Thev-optimal (V,A), maxdiff(V,A), and compressed (V,A)
histograms generate very small errorsin awidevariety of
situations. Over all datadistributions, thev-optimal (V,A)
and maxdiff(V,A) histograms performed better than the
compressed(V,A) histograms. The computation times of
the v-optimal histogramsare dlightly higher than those of
the compressed and maxdiff histograms, but are still quite
small (and quite insignificant compared to the costs of
scanning the relation and generating the sample). Over-
al, we believe that maxdiff(V,A) is probably the his-
togram of choice, asitisvery closeto the best histogram
on both issues, construction time and generated error.



References

[CR94]

[dB78]

[dB9S5]
[GS91]

[HNSS95]

[Hoe63]

[HS95]

[1co1)

[1C93]

[1K90]

[10a93]

[1P95]

[JC85]

[Kol41]

[Koo80]

[LNS90]

[Mas51]

C. M. Chen and N. Roussopoulos. Adaptive selectivity
estimation using query feedback. Proc. of ACM S G-
MOD Conf, pages 161-172, May 1994.

C. de Boor. A practical guide to splines. Springer-
Verlag, New York, 1978.

C. de Boor. Private communication, 1995.

A. P.GurajadaandJ. Srivastava. Equidepth partitioning
of adataset based on finding its medians. Proc. Applied
Computing Symposium, pages 92-101, 1991.

P. J. Haas, J. F. Naughton, S. Seshadri, and L. Stokes.
Sampling-based estimation of the number of distinct
values of an attribute. Proc. of the 21st Int. Conf. on
Very Large Databases, pages 311-322, 1995.

W. Hoeffding.  Probability inequalities for sums of
bounded random variables. J. Amer. Satist. Assoc.,
58:13-30, 1963.

P.J. Haasand A. N. Swami. Sampling-based selectivity
estimation for joins using augmented frequent value
statistics.  Proc. of IEEE Conf. on Data Engineering,
pages 522-531, 1995.

Y. loannidisand S. Christodoulakis. On the propagation

of errors in the size of join results. Proc. of ACM
SIGMOD Conf, pages 268-277, 1991.
Y. loannidis and S. Christodoulakis.  Optimal his-

togramsfor limiting worst-case error propagationin the
size of join results. ACM TODS, 1993.

Y. loannidis and Y. Kang. Randomized algorithms
for optimizing large join queries. In Proc. of the
1990 ACM-SIGMOD Conference on the Management
of Data, pages 312-321, Atlantic City, NJ, May 1990.

Y. loannidis. Universality of serial histograms. Proc.
of the 19th Int. Conf. on Very Large Databases, pages
256-267, December 1993.

Y. loannidis and V. Poosala. Balancing histogram op-
timality and practicality for query result size estima-
tion. Proc. of ACM SSGMOD Conf, pages 233-244,
May 1995.

R. Jainand |. Chlamtac. The P2 algorithm for dynamic
calculation of quantiles and histograms without sorting
observations. Communications of the ACM, pages
1076-1085, Oct 1985.

A. N. Kolmogorov. Confidencelimits for an unknown
distribution function. Ann. Math. Statist., 12:461-463,
1941.

R. P. Kooi. The optimization of queries in relational
databases. PhD thesis, Case Western Reserver Univer-

sity, Sept 1980.

R. J. Lipton, J. F. Naughton, and D. A. Schneider. Prac-
tical selectivity estimation through adaptive sampling.
Proc. of ACM SSGMOD Conf, pages 1-11, May 1990.

F. J. Massey. The Kolmogorov-Smirnov test for
goodness-of-fit.  J. Amer. Statist. Assoc., 46:68-78,
1951.

305

[MCS88]

[MD88]

[PSC84]

[Raad7]

[SAC* 79]

[SG8S]

[SLRD93]

[Vit85]

[Zip49]

M. V. Mannino, P. Chu, and T. Sager. Statistical profile
estimation in database systems. ACM Computing Sur-
veys, 20(3):192—221, Sept 1988.

M. Muralikrishna and David J Dewitt.  Equi-depth
histograms for estimating selectivity factors for multi-
dimensional queries. Proc. of ACM SGMOD Conf,
pages 28-36, 1988.

G. Piatetsky-Shapiro and C. Connell. Accurate esti-
mation of the number of tuples satisfying a condition.
Proc. of ACM SIGMOD Conf, pages 256276, 1984.

K. E. E. Raatikainen.  Simultaneous estimation of
several percentiles. Smulation, 49:159-164, October
1987.

P.G. Selinger, M.M. Astrahan, D.D. Chamberlin, R.A.
Lorie, and T.T. Price. Access path selection in a re-
lational database management system. Proc. of ACM
SIGMOD Conf, pages 23-34, 1979.

A. Swami and A. Gupta. Optimization of large join
queries. In Proc. of the 1988 ACM-SIGMOD Confer-
ence on the Management of Data, pages8-17, Chicago,
IL, June 1988.

W. Sun, Y. Ling, N. Rishe, and Y. Deng. Aninstant and
accurate size estimation method for joins and selections
in a retrieval-intensive environment. Proc. of ACM
SIGMOD Conf, pages 79-88, 1993.

J. S. Vitter. Random sampling with a reservoir. ACM
Trans. Math. Software, 11:37-57, 1985.

G. K. Zipf. Human behaviour and the principle of least
effort. Addison-Wesley, Reading, MA, 1949.



