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ABSTRACT 

In this paper, we develop approximate analytical models for 
predicting the buffer hit probability under the Least Re- 
cently Used (LRU) and First In First Out (FIFO) buffer re- 
placement policies under the independent reference model. 
In the case of the analysis of the LRU policy, the compu- 
tational complexity for estimating the buffer hit probability 
is O(KB) where B is the size of the buffer and K denotes 
the number of items having distinct access probabilities. In 
the case of the FIFO policy, the solution algorithm is iter- 
ative and the computational complexity of each iteration is 
O(K). Results from these models are compared to exact 
results for models originally developed by King [KING711 
for small values of the buffer size, B, and the total number 
of items sharing the buffer, D. Results are also compared 
with results from a simulation for large values of B and D. 
In most cases, the error is extremely small (less than 0.1%) 
for both LRU and FIFO, and a maximum error of 3% is 
observed for very small buffer size (less than 5) when the 
access probabilities are extremely skewed. To demonstrate 
the usefulness of the model, we consider two applications. 
In our first application, we compare the LRU and FIFO 
policies to an optimal static buffer allocation policy for a 
database consisting of two classes of data items. We observe 
that the performance of LRU is close to that of the optimal 
allocation. As the optimal allocation requires knowledge of 
the access probabilities, the LRU policy is preferred when 
this information is unavailable. We also observe that the 
LRU policy always performs better than the FIFO policy in 
our experiments. In our second application, we show that 
if multiple independent reference streams on mutually dis- 
joint sets of data compete for the same buffer, it is better to 
partition the buffer using an optimal allocation policy than 
to share a common buffer. 
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1 Introduction 

In this paper, we develop approximate analytical mod- 
els for predicting the buffer hit probability under the 
Least Recently Used (LRU) and First In First Out 

(FIFO) buffer replacement policies under the indepen- 

dent reference model. This problem was first studied 
by King [KING711 who p rovided an exact analysis for 
both policies. This analysis was used by several re- 
searchers [RA078,BABA83] to study the merits of dif- 
ferent hardware cache organizations and buffer replace- 
ment policies. Unfortunately, the computational com- 
plexity of evaluating the buffer hit probability using 
King’s model grows exponentially with the buffer size 
or the number of data items, and hence, is not very use- 
ful for large buffer sizes and large number of data items. 
Consequently, the later studies resorted to simulation 
in order to study the behavior of large buffers. More 
recently Flajolet, et.al. [FLAJ87] developed a simpler 
expression for the buffer hit probability under LRU. 
However, the computational complexity of evaluating 
this quantity remains unchanged. Apart from the ex- 
act analysis, various performance bounds were obtained 
by Franaszek and Wagner [FRAN74], and by Aven et. 
al. [AVEN 761. A n asymptotic analysis has also been per- 
formed by Flajolet, et .al. [FLAJ 871. There does not ap- 
pear to exist any simple analysis for estimating buffer 
hit probabilities. 

The models developed in this paper are computation- 
ally efficient. The computational complexity for esti- 
mating the buffer hit probability of the LRU policy is 
O(KB) where B is the size of the buffer and K denotes 
the number of items having distinct access probabilities. 

In the case of the FIFO policy, the solution algorithm 
is iterative and the computational complexity of each 
iteration is O(K). The error in our analysis decreases 
with increasing values of B and K (less than 0.1% for 
K > 20) and it is also very small for small values of K 
and B(maximum error is less than 3%). 

Dynamic buffer( cache) replacement policies such as 
LRU and FIFO have wide applications in hardware 
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cache management [SMIT82,STON89,RA078], operat- 
ing system memory management [COFF73], and data 
base buffer management [LANG77,TENG84,SACC87]. 
We believe, the simple approximate analytical models 
developed in this paper, will be useful to gain quali- 
tative insights for various applications, where different 
sets of data have different access probabilities. For ex- 
ample, the model can be used to investigate the issues 
of skewness in data access, optimal set size in hardware 
cache, buffer coherency policies in multi-computer sys- 
tems. The model has successfully been used for pre- 
dicting buffer hit probability under a. data sharing en- 
vironment by one of the authors [DAN89]. 

We present two applications of our models in this pa- 
per. In the first application, we consider the behavior of 
LRU and FIFO in a database environment where there 
are two classes of data items, a hot set and a cold set. 
We show, for a wide range of parameters, that the buffer 
hit probability under LRU is close to that achieved un- 
der a static optimal policy. The static optimal policy 
has the disadvantage that it requires knowledge of the 
access probabilities of the data items. Hence, we ob- 
serve that the LRU policy is preferable in an environ- 
ment where the hotness of the data changes over time. 
The assumption of independent references not only sim- 
plifies the analysis and makes it tractable, but is also 
quite realistic for various applications such as database 
systems, where independent transactions access a small 
set of data [VERK85,KEAR89]. Finally, the LRU pol- 
icy always performs better than the FIFO policy in all 
our experiments. 

In our second application, we show that if multiple in- 
dependent reference streams on mutually disjoint data 
sets compete for the same buffer space, it is better to 
partition the buffer amongst the reference streams us- 
ing an optimal policy, rather than sharing a common 
buffer. The performance gain due to partitioning de- 
pends on the relative skewness of the data streams, and 
the buffer size. The pohcy can be used for partitioning 
of disk cache and partitioning of cache for the instruc- 
tion and data set of a program [STON89]. 

We develop the analytical model for the LRU and 
FIFO policies in Section 2. Results from these mod- 
els are compared to exact results obtained from King 
[KING711 and to results obtained from simulations in 
Section 3. Section 4 contains two applications of the 
models and Section 5 summarizes and concludes the 
paper. 

2 Analysis of Replacement Policies 

We consider a collection of D fixed size items that 
share a buffer that can store B items. An item may 
correspond to a line in a cache, a page in memory, 

or a granule in a database system. The collection of 
items is partitioned into K partitions labelled k = 
1, 2, . . .) K where the k-th partition contains Dk items, 
D = Cf=‘=, Dk, and the probability that any access lies 
in partition k is crk, cfE1 Qk = 1. Let {A;}%%, be 
a sequence of i.i.d. r.v.‘s where Ai denotes the parti- 
tion from which the i-th item is requested. According 
to our assumptions, Pr[ai = k] = ak, k = 1, ... , K, 
i = 1,2,. . . . This corresponds to the Independence Ref- 
eTence Model (IRM) used in many studies of buffer be- 
havior [KING71]. 

We are interested in the behavior of the LRU and 
FIFO replacement polices for such a system. Let 
x, = (Xl.n, . . . , XB.~) be the state of the system af- 
ter the n-th request. Here Xi.% denotes the occupancy 
of the i-th position in the buffer; Xi,n = k iff an item 
from partition k resides in position i after the n-th re- 
quest. Define Y,:n to be the number of items from par- 
tition k that are in the buffer after the n-th request, 
Yk.n = Cf!!l l(Xi., = k), k = 1, ..., K. Here l(P) = 1 
if the predicate P is true and 0 otherwise. We are inter- 
ested in the stationary behavior of the buffer when it ex- 
ists, x = lim,,, x,, Yk = lirn,+,, Yk.n, 1 5 k 5 K. 
It is easy to show that the LRU and FIFO policies ex- 
hibit such stationary behavior [COFF73]. The focus 
of our analysis is the determination of the stationary 
buffer hit probability for partition k, hk = E[Yk]/Dk, 
k = l,..., K. 

2.1 The LRU Buffer Replacement-Policy 

The buffer can be thought of as a stack under LRU 
replacement policy. If the newly requested item is not 
found, it is brought from outside and placed on the 
stack top pushing all the others down by one position 
and the least recently used item (the one at the bottom 
of the stack) is removed from the buffer. However, if 
the newly requested item is found in the buffer then 
it is removed from the stack and placed at the top. If 
the item was originally the j-th element in the stack, 
then all items in positions 1,. . . , j - 1 move down one 
position. The remaining items are unaffected by the 
move. 

The top of the stack is located at position 1 in the 
buffer and the bottom of the stack in position B. 
The j-th most recently used item is found in posi- 
tion j, j = 1,. .-, B. Let +z) = Pr[x = & where 
g = (q,..., ZB) E S the set of feasible buffer occu- 
pancy states. Here 

S={:: cf!, l(zi = k) 5 Dk, 1 5 k 5 K, 

cf=‘=, C;!, l(ai = k) = B). 
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These probabilities satisfy 

Here 6,,, = 1 if 2 = y and 0 otherwise. 

King [KING711 h as p resented an exact solution for this 
Markov chain which yields E[I,i]. Using a different sp- 
preach which exploits the stack properties of LRU, Fla- 
jolet, et.al. [FLAJ87] h ave derived a simpler alternate 
expression for E[Yk]. However, in both cases the com- 
putational complexity for evaluating E[llj;] grows expo- 
nentially as a function of B and.D. Hence, we present 
an approximate analysis yielding E[Yk]. 

Let Yk(j) denote whether an item from partition Ic is 
stored at the j-th position. It takes value 1 if it is 
present in position j and 0 otherwise, Yk(j) = l(Xj = 
k). we have Yk = c,“=, r;(j), k = 1, .a., K. Let 
m(j) = Pr[Xk(j) = 11, 1 5 Ic 5 K, 1 2 j < B. Clearly, 
pk(I) is the probability that the last access was from 
partition k, and is given by pk( I) = ak. Let rl;(j - 1) be 
the conditional probability that an item from partition 
Ic moves from location j - 1 to location j in the stack 
after a request, given that an item moves from location 
j - 1 to j. We approximate the steady state probability, 
Pk(j) = “k(j - I), 1 5 k < K, 1 5 j 5 B. Let bk(j) 
represent the the average number of items from parti- 
tion k contained in the first j positions of the buffer (the 
top j positions of the stack is equivalent to considering 
a buffer of size j - 1). This is expressed as 

bk(j) = eE[&(j)l = km(l), j = l,Z...,B, (1) 

I=1 I=1 

and we have 

Pk(j) = Tk(j - l) = 
T(j-1) ’ 

j = 1,2,..., B - 1; k = l,...,K, (2) 

where 

r(j-l)=F (pi [I- ““~“‘])‘, j=1,2,...,B-l. 
i=l 

and (a)+ takes value a whenever a > 0 and value 0 
otherwise. 

Using the above two equations recursively, we can cal- 
culate the buffer hit probability of partition k as hk = 
E[Jk]/Dk = b(B)/&. 

The approximation in the above expression for pk(j), 
uses the average values of the number of granules of 
partition k in the top j - 1 locations, rather than the 
exact distribution. This causes an error for small values 
of D and B. We have encountered situations where the 
estimates for the hit probability hi exceed 1 for some 
i. To alleviate this, hi(j) is capped at Di. This results 
in a lower value in p;(j) and the extra probability is 
redistributed to other partitions proportionally so that 

C;“=,Pl(j) = 1. 1 n our iterative algorithm, once b;(j) 
reaches the value Di, for all subsequent steps, 1 (1 > j) 
partition i is not considered, i.e., p;(l) = 0. 

2.2 FIFO Buffer Replacement Policy 

We now consider the FIFO buffer replacement policy. 
Under FIFO, the buffer can be thought of as a queue 
with position B considered as the head of the queue 
and position 1 as the tail of the queue. If a request is 
to an item already in the buffer, then the buffer remains 
unchanged. If a request is to an item not in the queue, 
then the item is placed in position 1 and all of the items 
within the buffer are moved one position. The item at 
the head of the queue (the oldest item in the buffer) is 
removed from the buffer. 

The following equations describe the behavior of the 
stationary probability distribution of r(g), 

B 

'd:) = "k)~dD,; 
i=l 

King [KING711 h as obtained an exact solution to this 
Markov chain. We present, instead an approximate 
analysis that yields estimates of D[Yk]. 

Let R be the probability that an item is removed from 
the buffer when a request is served. This is identical to 
the probability that a new item is brought in, hence 

R = f&(1 - y). 
k=l 

(3) 

According to flow conservation, the probability that an 
item from partition k is removed from the buffer equals 
the probability that an item from partition k is brought 
in. The probability that an item from partition k re- 
sides in any position is E[Yk]/B. Hence the probability 
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that an item from partition Ic is removed from the buffer 
is RE[Yi]/B. The probability that an item from par- 
tition k is brought in is ok(l - E[Yk]/DI;]). Equating 
these two probabilities yields 

After some algebric manipulation we get 

E[Yk] = Dk 
1+RDL’ 

a&B 
(5) 

By solving the above set of equations (3) and (5) we 
get E[Yk]. Th is can be done in an iterative manner. 
However, the convergence of the algorithm is sensitive 
to the way E[Yk] is adjusted at each iteration step. We 
have found the following algorithm to work well. 

step 1: Intialize R := 1; Yszlm := 0; 
step 2: Repeat while (1Ysz~m - BI > 6) 

E[Yk] := Dk/(l + RDk/akB); 

k= 1,2**.K 
Ysum := cf=‘=, E[Yk] 
R := R * Ysum/B; 

step 3: hk := E[Yk]/Dk,k = 1,2...K 

3 Validation of the Analysis 

In this section, we validate our analytical models 
against exact results given by King’s analysis for a small 
number of data items (5 10) and against results ob- 
tained by simulation for larger number of data items. 
To introduce skewness in the access pattern of the data 
items, we choose their access probabilities according to 
truncated arithmetic and truncated geometric distribu- 
tions [BABA83]. Under the truncated arithmetic prob- 
ability distribution, the access probability of the i-th 
item is pi = &+I) - * i. Here, we assume that the 

access probability of each data granule is unique, i.e, 
K = D. The probability of the i-th item under the 

truncated geometric distribution is pi = e*ci, where 
c is a constant. The variance in pi provides a measure 
of skewness in the access probabilities. It is higher for 
the truncated geometric distribution than for the trun- 
cated arithmetic distribution. In the next section we 
will give a more formal definition of skewness based on 
the optimal buffer hit probability. Figures 1 through 4 
compare the buffer hit probability of the approximate 
analysis to that of exact analysis for LRU and FIFO 
replacement policies. The value of c for the geometric 
distribution is taken to be 2. The model prediction is 
optimistic for the LRU policy and pessimistic for the 
FIFO policy. The error in the approximation for both 
cases is very small and decreases with the number of 
data items. It is greater for the truncated geometric 

probability distribution (the skewness is higher for ge- 
ometric distribution). 

To validate our model for large buffer size, we simulate 
a skewed data access pattern for 2 and 3 partitions. 
Figures 5 and 6 show the buffer hit probability of each 
component as well as the overall buffer hit probabil- 
ity for 2 and 3 partitions case under the LRU policy. 
As can be observed from these graphs, the match be- 
tween the approximate analysis and the simulation is 
excellent. In the case of 2 partitions, the total database 
size is 1000 items, and 80% of the data accesses go to 
20% of the data items (i.e., the partition sizes are 200 
and 800, and the corresponding access probabilities are 
80% and 20%.). In th e case of 3 partitions, the sizes of 
the partitions are 100, 200 and 400 and the respective 
probabilities that an access will go to the partitions are 
57%, 29% and 14% (t runcated geometric distribution). 
The simulation was run for a long initial period so as to 
fill up the buffer (20,000 accesses) and then for an ad- 
ditional duration of 20,000 accesses to gather statistics. 
The results from the simulation and the approximate 
analysis are found in figures 7 and 8 for both the LRU 
and the FIFO policies. The match between analysis 
and simulation is very good for the FIFO policy as well 
as the LRU policy. In both cases, LRU performs better 
than FIFO. 

4 Applications 

To demonstrate the usefulness of the model, we now 
consider two applications. In our first application, we 
compare the LRU and FIFO policies to an optimal 
static buffer allocation policy for a database consist- 
ing of two classes of data items, a hot set and a cold 
set. In our second application, we compare the policy 
of optimal partitioning of buffer to a policy of shared 
common buffer for the case of multiple independent ref- 
erence streams on mutually disjoint data sets competing 
for the same buffer. 

4.1 Database under Skewed Access 

In this application we consider the problem of buffer 
allocation in a database system. We compare the per- 
formance of the LRU and FIFO policies with that of 
an optimal static allocation. We observe that the LRU 
policy provides most of the performance of the optimal 
policy. This is of interest because the static allocation 
requires knowledge of the access probabilities whereas 
the LRU policy does not. Furthermore, the LRU pol- 
icy adapts easily to time varying changes in the access 
probabilities whereas the optimal policy does not. 

We begin with a description of the optimal static allo- 
cation. Given the K partitions with known sizes and 
access probabilities, we allocate BI; units of the buffer 
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to partition Ic, I 5 le < K so as to maximize the overall 
buffer hit rate, H = cfzl aI;Bk fDk. 

If ak/Dk > aj/Dj, then reallocating buffer from par- 
tition j to partition Ic increases H. Hence, the optimal 
solution is obtained in the following manner. Order 
the K partitions in decreasing value of ok/&. First 
allocate a buffer of size max(B, 01) to partition 1. If 
B > DI then allocate a buffer of size max(B - D1, D2) 
to partition 2. The procedure is continued until all the 
buffers are allocated. The general solution is given by, 

( 

k-l 

Bk =max O,min(&,B-x&) , k= l,...,K. 
I=1 1 

(6) 

Consider a database of size D consisting of two par- 
titions where the first partition is of size PD and the 
second of size (1 - /3)D. Let (Y denote the fraction of 
accesses made to the first partition. Let A = (cY,~) 
define an access pattern to a database. We will or- 
der the access patterns in terms of skewness. Two ac- 
cess patterns are different if they differ in one or both 
the attributes. Let H(A, B, D) represent the buffer hit 
probability under the optimal buffer allocation policy, 
where the access pattern, buffer size and database size 
are given by A, B and D respectively. We say that ac- 
cess pattern Al is more skewed than access pattern Al, 
if H(A1, B, D) > H(A2, B, D) for all values of B and D 
and if H(A1, B, D) > H(Az, B, D) for at least one set 
of values of B and D. Figures 9 through 12 compare 
the buffer hit probability of LRU and FIFO schemes 
to that of static optimal allocation scheme, for various 
degree of skewness and buffer size. The database size, 
D, in all of these cases is 10,000. The straight lines 
(dotted lines) correspond to the policy when the buffer 
is allocated to a particular partition first and then the 
remaining buffer is allocated to the other partition. As 
the relative frequency of access to the first partition (ty) 
changes, the optimal buffer hit probability follows the 
straight line corresponding to that partition, until it is 
no longer optimal to prefer that partition. The inter- 
section of the straight lines represents that point. 

We make the following observations from these figures. 
Both LRU and FIFO track the optimal allocation pol- 
icy for all parameters. However, their relative perfor- 
mance depends on the parameters A, B, D. When the 
buffer size is small (B = 3,000), and the data access 
patterns are highly skewed (p = 0.4, cy > 0.4), both 
LRU and FIFO fail to retain sufficient hot data gran- 
ules in the buffer. Hence, they perform considerably 
worse than the optimal allocation (compare figures 9 
and 10). This degradation is much less for a larger 
buffer size (B=8,000, compare figures 11 and 12). 

In all cases the LRU policy performs better than the 
FIFO policy. Consider the case, where both the hot-set 

and the buffer sizes are small (p = 0.2 and B = 3000). 
As the LRU retains more hot granules than FIFO, the 
difference in their performance is significant (figure 9). 
This difference is less for a larger hot-set size and small 
buffer size (figure 10). For a larger buffer size (B = 
800), if the hot-set is small then all three policies retain 
the hot-set and their performances are close (figure 11). 
However, for a larger hot-set size, FIFO fails to retain 
the hot-set even for a large buffer size, and performs 
worse (figure 12). 

Another observation to be made from all these figures 
is that at the point where no partition is preferred the 
performance of all three policies are the same. As the 
hotness migrates, i.e., as Q: changes, the performance 
of LRU and FIFO changes very little. However, the 
performance of the optimal allocation is very sensitive 
to correct knowledge of the access probabilities, and a 
large penalty may be incurred if the wrong partition is 
chosen. This points out the danger of a static allocation 
in an environment where the access probabilities are not 
well known. 

As observed from the earlier figures, the difference in 
performance between the LRU and the optimal al- 
location policies, depends on the relative size of the 
buffer compared to the database. We next explore the 
degradation of LRU performance as a function of the 
database size while keeping the buffer size fixed (figures 
13 through 15). A s we increase the database size, both 
of the partition sizes increase proportionally, but their 
relative sizes remain constant. For a small database, 
both the LRU and optimal policies retain the hot-set 
and the difference between their performances is neg- 
ligible. The first break-point occurs when the LRU 
policy begins to lose some of the hot granules (figure 
13). From this point onwards the performance of LRU 
degrades more quickly with increasing database size. 
The second break-point occurs when the optimal policy 
fails to satisfy the hot-set, i.e., the size of the hot-set 
is greater than the buffer size (figure 14). From this 
point onwards, the difference between the performance 
of the optimal and the LRU policies decreases. Figure 
16 shows the percentage degradation in performance of 
the LRU policy for various access patterns. The degra- 
dation reaches a maximum (note, a peak occurs at the 
second break-point) when the hot-set is small and a 
significant fraction(say, 50%) of accesses goes to the 
cold-set. For a system with multiple partitions, several 
break-points can be observed, each corresponding to a 
point when one less partition can not be satisfied un- 
der the optimal policy. In figure 17, we plot the buffer 
hit probabilities of the LRU and the optimal policies as 
well their difference (in same unit), for a three partition 
case. 
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4.2 Optimal Buffer Partitioning 

We have observed from our first application that the 
identification of the partitions and the knowledge of 
their access probabilities are essential for obtaining the 
optimal buffer allocation. In many applications the ex- 
act knowledge of the partitions may be hard to gather 
without a substantial overhead. However, the par- 
titions may be grouped into identifiable groups. In 
the database context, this may correspond to multi- 
ple database relations (files) sharing a common buffer 
and access to each relation is skewed dividing each re- 
lation into multiple partitions. The exact knowledge of 
skewness in each relation may not be known. A sec- 
ond example in the context of program execution is the 
instruction and data set of a program, where the refer- 
ence streams to instruction and data can be separated 
and where accesses within the data and instruction sets 
are skewed. 

We observed in the previous subsection that LRU is the 
policy of choice for buffer management for each relation 
when nothing is known about the skewness in each rela- 
tion. However, it is not clear whether a common buffer 
should be shared by multiple relations under one LRU 
policy or the buffer should be partitioned in some op- 
timal way among the relations. In the later case, each 
relation uses its portion of the buffer under its LRU 
policy. For a real life application, an online adaptive 
algorithm may be used for the optimal partitioning of 
the buffer [STON89]. F rom the analysis point of view, 
we will assume knowledge of the access pattern in each 
relation to derive the near optimal partition sizes. We 
will describe below an algorithm to derive the near op- 
timal partition sizes along with an informal argument 
for why this should be a near optimal buffer allocation 
for this problem. In both cases, the performance metric 
of interest is the overall buffer hit probability. 

All of our experimental observations suggest that the 
buffer hit probablity of the LRU policy under the IRM 
model is a concave function of the buffer size. This 
conjecture has been shown to be true by van den Berg 
[VAN89]. Consequently, the optimal partitioning of the 
buffer can be formulated as a simple integer convex pro- 
gramming problem which can be solved using a greedy 
algorithm first proposed by Fox [FOXSS]. This algo- 
rithm allocates one unit of buffer at each step to the 
group that will yield the highest incremental change in 
buffer hit probability. As we do not evaluate the buffer 
hit probability exactly, we use the approximate analysis 
of section 2.1. Since the algorithm for obtaining esti- 
mates for the hit probability under the LRU policy is 
recursive and requires a single step for the addition of 
a buffer unit, it is easily merged with Fox’s algorithm. 

Figure 18 compares the two buffer policies for a 
database application with two relations (groups). Each 

relation consists of 1000 data granules, but the access 
probabilities within each relation is different. In rela- 
tion 1, 80% of the accesses go to 20% of the items, 
and in relation 2, 60% of the accesses go to 40% of the 
items. The relative frequency of accessing each relation 
is given by the parameter y. Increasing y increases the 
difference in the access frequency between the most fre- 
quently accessed partition (hot partition of relation 1) 
and the least frequently accessed partition (cold parti- 
tion of relation 2). For a large buffer size both shared 
and partitioned policies retain the hot data items of 
both the relations. But for a small buffer, the per- 
formance gain due to partitoning is significant. In all 
cases, the partitioned policy performs better than the 
shared policy. This provides evidence that the buffer 
pool mechanism used in DB2 system [TENG84] is a 
good one. 

5 Summary 

In this paper, we have developed approximate analyti- 
cal models for predicting the buffer hit probability un- 
der the Least Recently Used (LRU) and First In First 
Out (FIFO) buffer replacement policies under the inde- 
pendent reference model. The computational complex- 
ity of the analysis of the LRU policy is O(KB) where 
B is the size of the buffer and K denotes the number of 
items having distinct access probabilities. In the case 
of the FIFO policy, the solution algorithm is iterative 
and the computational complexity of each iteration is 
O(K). We have compared results from these models to 
exact-results from models originally developed by King 
[KING711 for small values of the buffer size, B, and the 
total number of items sharing the buffer, D. In most 
cases, the error is extremely small (less than 0.1%) for 
both LRU and FIFO policy, and a maximum error of 
3% was observed for very small buffer size(less than 5) 
and extreme skewness in access probabilities. Results 
of the approximate models are also compared with the 
results from simulations for large values of B and D 
and the match is found to be excellent. 

To demonstrate the usefulness of the model, we have 
considered two applications. In our first application, 
we compared the LRU and FIFO policies to an optimal 
static buffer allocation policy for a database consisting 
of two classes of data items, hot and cold. Both LRU 
and FIFO track the optimal allocation policy, and the 
performance of LRU is always better than FIFO. Both 
LRU and FIFO do not require explicit knowledge of 
the access frequency of the data items. On the other 
hand, the optimal allocation policy requires the precise 
knowledge of the access frequency of all data granules. 
The penalty in performance for preferring a wrong par- 
tition to keep in buffer, is rather large. In the case 
that the hotness may migrate from one class to an- 
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other over time, this makes LRU the preferred policy. 
We have also explored the difference in performance 
between the optimal policy and the LRU policy as a 
function of database size, for a fixed buffer size. In our 
second application, we show that if multiple indepen- 
dent reference streams on mutually disjoint data sets 
compete for the same buffer, it is better to partition 
the buffer using an optimal allocation policy than to 
share a common buffer. 
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Figure 1: Comparison with King’s analysis 
(LRU: Arithmetic Probability Distribution) 
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Figure 2: Comparison with King’s analysis 
(LRU: Geometric Probability Distribution) 
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Figure 3: Comparison with King’s analysis 
(FIFO: Arithmetic Probability Distribution) 
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Figure 4: Comparison with King’s analysis 
(FIFO: Geometric Probability Distribution) 

Figure 5: Comparison with simulation (LRU: 2 Partitions) 
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Figure 6: Comparison with simulation (LRU: 3 Partitions) 
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Figure 7: Comparison of LRU and FIFO policies 
(2 Partitions) 

Figure 10: Comparison of Buffer schemes 
(B = 3K; p = 0.4) 

Figure 8: Comparison of LRU and FIFO policies 
(3 Partitions) 
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Figure 9: Comparison of Buffer schemes 
(B = 3K; p = 0.2) 
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Figure 11: Comparison of Buffer schemes 
(B = 8K; p = 0.2) 
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Figure 12: Comparison of Buffer schemes 
(I3 = 8K; j3 = 0.4) 
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Figure 15: Effect of Database Size (B = IK; /I = 0.2) 

9 
t 

c 

A *Lpw-o.&mA-02 
*..- ~t.N-o.8.mko.4 

- ww-o3,mA-0.1 

+ wlu-a.8.mA-0.4 

2 4 10 
MT*BISE SIZE(K) 

Figure 16: Degradation in Buffer Hit Probability of LRU 
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Figure 17: Degradation in LRU Buffer Hit Probability 
(3 partitions: B = IK; a :0.6,0.3,0.1; p : 0.06,0.3,0.62) 

Figure 18: Comparison of Partitioned and Shared Buffer 
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