
AN APPROXIMATE ANALYSIS OF THE LRU AND FIFO BUFFER
REPLACEMENT SCHEMES”

Asit Dantand Don Towsley:
University of Massachusetts

Amherst, MA 01003

ABSTRACT

In this paper, we develop approximate analytical models for
predicting the buffer hit probability under the Least Re-
cently Used (LRU) and First In First Out (FIFO) buffer re-
placement policies under the independent reference model.
In the case of the analysis of the LRU policy, the compu-
tational complexity for estimating the buffer hit probability
is O(KB) where B is the size of the buffer and K denotes
the number of items having distinct access probabilities. In
the case of the FIFO policy, the solution algorithm is iter-
ative and the computational complexity of each iteration is
O(K). Results from these models are compared to exact
results for models originally developed by King [KING711
for small values of the buffer size, B, and the total number
of items sharing the buffer, D. Results are also compared
with results from a simulation for large values of B and D.
In most cases, the error is extremely small (less than 0.1%)
for both LRU and FIFO, and a maximum error of 3% is
observed for very small buffer size (less than 5) when the
access probabilities are extremely skewed. To demonstrate
the usefulness of the model, we consider two applications.
In our first application, we compare the LRU and FIFO
policies to an optimal static buffer allocation policy for a
database consisting of two classes of data items. We observe
that the performance of LRU is close to that of the optimal
allocation. As the optimal allocation requires knowledge of
the access probabilities, the LRU policy is preferred when
this information is unavailable. We also observe that the
LRU policy always performs better than the FIFO policy in
our experiments. In our second application, we show that
if multiple independent reference streams on mutually dis-
joint sets of data compete for the same buffer, it is better to
partition the buffer using an optimal allocation policy than
to share a common buffer.

*This work was supported by a grant from Digital Equipment
Corporation.

tDcpartment of Electrical and Computer Engineering
rDepartment of Computer and Information Science

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the pubhcatlon and its date appear.
and notice is given that copying is by pem~ss~?n of the Association for
Computing Machinery. To copy otherwise, or to republish, requres a fee
and/or specific permission.
0 1990 ACM 089791-359s0/90/ooO5/0143 $1.50

1 Introduction

In this paper, we develop approximate analytical mod-
els for predicting the buffer hit probability under the
Least Recently Used (LRU) and First In First Out

(FIFO) buffer replacement policies under the indepen-

dent reference model. This problem was first studied
by King [KING711 who p rovided an exact analysis for
both policies. This analysis was used by several re-
searchers [RA078,BABA83] to study the merits of dif-
ferent hardware cache organizations and buffer replace-
ment policies. Unfortunately, the computational com-
plexity of evaluating the buffer hit probability using
King’s model grows exponentially with the buffer size
or the number of data items, and hence, is not very use-
ful for large buffer sizes and large number of data items.
Consequently, the later studies resorted to simulation
in order to study the behavior of large buffers. More
recently Flajolet, et.al. [FLAJ87] developed a simpler
expression for the buffer hit probability under LRU.
However, the computational complexity of evaluating
this quantity remains unchanged. Apart from the ex-
act analysis, various performance bounds were obtained
by Franaszek and Wagner [FRAN74], and by Aven et.
al. [AVEN 761. A n asymptotic analysis has also been per-
formed by Flajolet, et .al. [FLAJ 871. There does not ap-
pear to exist any simple analysis for estimating buffer
hit probabilities.

The models developed in this paper are computation-
ally efficient. The computational complexity for esti-
mating the buffer hit probability of the LRU policy is
O(KB) where B is the size of the buffer and K denotes
the number of items having distinct access probabilities.

In the case of the FIFO policy, the solution algorithm
is iterative and the computational complexity of each
iteration is O(K). The error in our analysis decreases
with increasing values of B and K (less than 0.1% for
K > 20) and it is also very small for small values of K
and B(maximum error is less than 3%).

Dynamic buffer(cache) replacement policies such as
LRU and FIFO have wide applications in hardware

143

cache management [SMIT82,STON89,RA078], operat-
ing system memory management [COFF73], and data
base buffer management [LANG77,TENG84,SACC87].
We believe, the simple approximate analytical models
developed in this paper, will be useful to gain quali-
tative insights for various applications, where different
sets of data have different access probabilities. For ex-
ample, the model can be used to investigate the issues
of skewness in data access, optimal set size in hardware
cache, buffer coherency policies in multi-computer sys-
tems. The model has successfully been used for pre-
dicting buffer hit probability under a. data sharing en-
vironment by one of the authors [DAN89].

We present two applications of our models in this pa-
per. In the first application, we consider the behavior of
LRU and FIFO in a database environment where there
are two classes of data items, a hot set and a cold set.
We show, for a wide range of parameters, that the buffer
hit probability under LRU is close to that achieved un-
der a static optimal policy. The static optimal policy
has the disadvantage that it requires knowledge of the
access probabilities of the data items. Hence, we ob-
serve that the LRU policy is preferable in an environ-
ment where the hotness of the data changes over time.
The assumption of independent references not only sim-
plifies the analysis and makes it tractable, but is also
quite realistic for various applications such as database
systems, where independent transactions access a small
set of data [VERK85,KEAR89]. Finally, the LRU pol-
icy always performs better than the FIFO policy in all
our experiments.

In our second application, we show that if multiple in-
dependent reference streams on mutually disjoint data
sets compete for the same buffer space, it is better to
partition the buffer amongst the reference streams us-
ing an optimal policy, rather than sharing a common
buffer. The performance gain due to partitioning de-
pends on the relative skewness of the data streams, and
the buffer size. The pohcy can be used for partitioning
of disk cache and partitioning of cache for the instruc-
tion and data set of a program [STON89].

We develop the analytical model for the LRU and
FIFO policies in Section 2. Results from these mod-
els are compared to exact results obtained from King
[KING711 and to results obtained from simulations in
Section 3. Section 4 contains two applications of the
models and Section 5 summarizes and concludes the
paper.

2 Analysis of Replacement Policies

We consider a collection of D fixed size items that
share a buffer that can store B items. An item may
correspond to a line in a cache, a page in memory,

or a granule in a database system. The collection of
items is partitioned into K partitions labelled k =
1, 2, . . .) K where the k-th partition contains Dk items,
D = Cf=‘=, Dk, and the probability that any access lies
in partition k is crk, cfE1 Qk = 1. Let {A;}%%, be
a sequence of i.i.d. r.v.‘s where Ai denotes the parti-
tion from which the i-th item is requested. According
to our assumptions, Pr[ai = k] = ak, k = 1, ... , K,
i = 1,2,. . . . This corresponds to the Independence Ref-
eTence Model (IRM) used in many studies of buffer be-
havior [KING71].

We are interested in the behavior of the LRU and
FIFO replacement polices for such a system. Let
x, = (Xl.n, . . . , XB.~) be the state of the system af-
ter the n-th request. Here Xi.% denotes the occupancy
of the i-th position in the buffer; Xi,n = k iff an item
from partition k resides in position i after the n-th re-
quest. Define Y,:n to be the number of items from par-
tition k that are in the buffer after the n-th request,
Yk.n = Cf!!l l(Xi., = k), k = 1, ..., K. Here l(P) = 1
if the predicate P is true and 0 otherwise. We are inter-
ested in the stationary behavior of the buffer when it ex-
ists, x = lim,,, x,, Yk = lirn,+,, Yk.n, 1 5 k 5 K.
It is easy to show that the LRU and FIFO policies ex-
hibit such stationary behavior [COFF73]. The focus
of our analysis is the determination of the stationary
buffer hit probability for partition k, hk = E[Yk]/Dk,
k = l,..., K.

2.1 The LRU Buffer Replacement-Policy

The buffer can be thought of as a stack under LRU
replacement policy. If the newly requested item is not
found, it is brought from outside and placed on the
stack top pushing all the others down by one position
and the least recently used item (the one at the bottom
of the stack) is removed from the buffer. However, if
the newly requested item is found in the buffer then
it is removed from the stack and placed at the top. If
the item was originally the j-th element in the stack,
then all items in positions 1,. . . , j - 1 move down one
position. The remaining items are unaffected by the
move.

The top of the stack is located at position 1 in the
buffer and the bottom of the stack in position B.
The j-th most recently used item is found in posi-
tion j, j = 1,. .-, B. Let +z) = Pr[x = & where
g = (q,..., ZB) E S the set of feasible buffer occu-
pancy states. Here

S={:: cf!, l(zi = k) 5 Dk, 1 5 k 5 K,

cf=‘=, C;!, l(ai = k) = B).

144

These probabilities satisfy

Here 6,,, = 1 if 2 = y and 0 otherwise.

King [KING711 h as p resented an exact solution for this
Markov chain which yields E[I,i]. Using a different sp-
preach which exploits the stack properties of LRU, Fla-
jolet, et.al. [FLAJ87] h ave derived a simpler alternate
expression for E[Yk]. However, in both cases the com-
putational complexity for evaluating E[llj;] grows expo-
nentially as a function of B and.D. Hence, we present
an approximate analysis yielding E[Yk].

Let Yk(j) denote whether an item from partition Ic is
stored at the j-th position. It takes value 1 if it is
present in position j and 0 otherwise, Yk(j) = l(Xj =
k). we have Yk = c,“=, r;(j), k = 1, .a., K. Let
m(j) = Pr[Xk(j) = 11, 1 5 Ic 5 K, 1 2 j < B. Clearly,
pk(I) is the probability that the last access was from
partition k, and is given by pk(I) = ak. Let rl;(j - 1) be
the conditional probability that an item from partition
Ic moves from location j - 1 to location j in the stack
after a request, given that an item moves from location
j - 1 to j. We approximate the steady state probability,
Pk(j) = “k(j - I), 1 5 k < K, 1 5 j 5 B. Let bk(j)
represent the the average number of items from parti-
tion k contained in the first j positions of the buffer (the
top j positions of the stack is equivalent to considering
a buffer of size j - 1). This is expressed as

bk(j) = eE[&(j)l = km(l), j = l,Z...,B, (1)

I=1 I=1

and we have

Pk(j) = Tk(j - l) =
T(j-1) ’

j = 1,2,..., B - 1; k = l,...,K, (2)

where

r(j-l)=F (pi [I- ““~“‘])‘, j=1,2,...,B-l.
i=l

and (a)+ takes value a whenever a > 0 and value 0
otherwise.

Using the above two equations recursively, we can cal-
culate the buffer hit probability of partition k as hk =
E[Jk]/Dk = b(B)/&.

The approximation in the above expression for pk(j),
uses the average values of the number of granules of
partition k in the top j - 1 locations, rather than the
exact distribution. This causes an error for small values
of D and B. We have encountered situations where the
estimates for the hit probability hi exceed 1 for some
i. To alleviate this, hi(j) is capped at Di. This results
in a lower value in p;(j) and the extra probability is
redistributed to other partitions proportionally so that

C;“=,Pl(j) = 1. 1 n our iterative algorithm, once b;(j)
reaches the value Di, for all subsequent steps, 1 (1 > j)
partition i is not considered, i.e., p;(l) = 0.

2.2 FIFO Buffer Replacement Policy

We now consider the FIFO buffer replacement policy.
Under FIFO, the buffer can be thought of as a queue
with position B considered as the head of the queue
and position 1 as the tail of the queue. If a request is
to an item already in the buffer, then the buffer remains
unchanged. If a request is to an item not in the queue,
then the item is placed in position 1 and all of the items
within the buffer are moved one position. The item at
the head of the queue (the oldest item in the buffer) is
removed from the buffer.

The following equations describe the behavior of the
stationary probability distribution of r(g),

B

'd:) = "k)~dD,;
i=l

King [KING711 h as obtained an exact solution to this
Markov chain. We present, instead an approximate
analysis that yields estimates of D[Yk].

Let R be the probability that an item is removed from
the buffer when a request is served. This is identical to
the probability that a new item is brought in, hence

R = f&(1 - y).
k=l

(3)

According to flow conservation, the probability that an
item from partition k is removed from the buffer equals
the probability that an item from partition k is brought
in. The probability that an item from partition k re-
sides in any position is E[Yk]/B. Hence the probability

145

that an item from partition Ic is removed from the buffer
is RE[Yi]/B. The probability that an item from par-
tition k is brought in is ok(l - E[Yk]/DI;]). Equating
these two probabilities yields

After some algebric manipulation we get

E[Yk] = Dk
1+RDL’

a&B
(5)

By solving the above set of equations (3) and (5) we
get E[Yk]. Th is can be done in an iterative manner.
However, the convergence of the algorithm is sensitive
to the way E[Yk] is adjusted at each iteration step. We
have found the following algorithm to work well.

step 1: Intialize R := 1; Yszlm := 0;
step 2: Repeat while (1Ysz~m - BI > 6)

E[Yk] := Dk/(l + RDk/akB);

k= 1,2**.K
Ysum := cf=‘=, E[Yk]
R := R * Ysum/B;

step 3: hk := E[Yk]/Dk,k = 1,2...K

3 Validation of the Analysis

In this section, we validate our analytical models
against exact results given by King’s analysis for a small
number of data items (5 10) and against results ob-
tained by simulation for larger number of data items.
To introduce skewness in the access pattern of the data
items, we choose their access probabilities according to
truncated arithmetic and truncated geometric distribu-
tions [BABA83]. Under the truncated arithmetic prob-
ability distribution, the access probability of the i-th
item is pi = &+I) - * i. Here, we assume that the

access probability of each data granule is unique, i.e,
K = D. The probability of the i-th item under the

truncated geometric distribution is pi = e*ci, where
c is a constant. The variance in pi provides a measure
of skewness in the access probabilities. It is higher for
the truncated geometric distribution than for the trun-
cated arithmetic distribution. In the next section we
will give a more formal definition of skewness based on
the optimal buffer hit probability. Figures 1 through 4
compare the buffer hit probability of the approximate
analysis to that of exact analysis for LRU and FIFO
replacement policies. The value of c for the geometric
distribution is taken to be 2. The model prediction is
optimistic for the LRU policy and pessimistic for the
FIFO policy. The error in the approximation for both
cases is very small and decreases with the number of
data items. It is greater for the truncated geometric

probability distribution (the skewness is higher for ge-
ometric distribution).

To validate our model for large buffer size, we simulate
a skewed data access pattern for 2 and 3 partitions.
Figures 5 and 6 show the buffer hit probability of each
component as well as the overall buffer hit probabil-
ity for 2 and 3 partitions case under the LRU policy.
As can be observed from these graphs, the match be-
tween the approximate analysis and the simulation is
excellent. In the case of 2 partitions, the total database
size is 1000 items, and 80% of the data accesses go to
20% of the data items (i.e., the partition sizes are 200
and 800, and the corresponding access probabilities are
80% and 20%.). In th e case of 3 partitions, the sizes of
the partitions are 100, 200 and 400 and the respective
probabilities that an access will go to the partitions are
57%, 29% and 14% (t runcated geometric distribution).
The simulation was run for a long initial period so as to
fill up the buffer (20,000 accesses) and then for an ad-
ditional duration of 20,000 accesses to gather statistics.
The results from the simulation and the approximate
analysis are found in figures 7 and 8 for both the LRU
and the FIFO policies. The match between analysis
and simulation is very good for the FIFO policy as well
as the LRU policy. In both cases, LRU performs better
than FIFO.

4 Applications

To demonstrate the usefulness of the model, we now
consider two applications. In our first application, we
compare the LRU and FIFO policies to an optimal
static buffer allocation policy for a database consist-
ing of two classes of data items, a hot set and a cold
set. In our second application, we compare the policy
of optimal partitioning of buffer to a policy of shared
common buffer for the case of multiple independent ref-
erence streams on mutually disjoint data sets competing
for the same buffer.

4.1 Database under Skewed Access

In this application we consider the problem of buffer
allocation in a database system. We compare the per-
formance of the LRU and FIFO policies with that of
an optimal static allocation. We observe that the LRU
policy provides most of the performance of the optimal
policy. This is of interest because the static allocation
requires knowledge of the access probabilities whereas
the LRU policy does not. Furthermore, the LRU pol-
icy adapts easily to time varying changes in the access
probabilities whereas the optimal policy does not.

We begin with a description of the optimal static allo-
cation. Given the K partitions with known sizes and
access probabilities, we allocate BI; units of the buffer

146

to partition Ic, I 5 le < K so as to maximize the overall
buffer hit rate, H = cfzl aI;Bk fDk.

If ak/Dk > aj/Dj, then reallocating buffer from par-
tition j to partition Ic increases H. Hence, the optimal
solution is obtained in the following manner. Order
the K partitions in decreasing value of ok/&. First
allocate a buffer of size max(B, 01) to partition 1. If
B > DI then allocate a buffer of size max(B - D1, D2)
to partition 2. The procedure is continued until all the
buffers are allocated. The general solution is given by,

(

k-l

Bk =max O,min(&,B-x&) , k= l,...,K.
I=1 1

(6)

Consider a database of size D consisting of two par-
titions where the first partition is of size PD and the
second of size (1 - /3)D. Let (Y denote the fraction of
accesses made to the first partition. Let A = (cY,~)
define an access pattern to a database. We will or-
der the access patterns in terms of skewness. Two ac-
cess patterns are different if they differ in one or both
the attributes. Let H(A, B, D) represent the buffer hit
probability under the optimal buffer allocation policy,
where the access pattern, buffer size and database size
are given by A, B and D respectively. We say that ac-
cess pattern Al is more skewed than access pattern Al,
if H(A1, B, D) > H(A2, B, D) for all values of B and D
and if H(A1, B, D) > H(Az, B, D) for at least one set
of values of B and D. Figures 9 through 12 compare
the buffer hit probability of LRU and FIFO schemes
to that of static optimal allocation scheme, for various
degree of skewness and buffer size. The database size,
D, in all of these cases is 10,000. The straight lines
(dotted lines) correspond to the policy when the buffer
is allocated to a particular partition first and then the
remaining buffer is allocated to the other partition. As
the relative frequency of access to the first partition (ty)
changes, the optimal buffer hit probability follows the
straight line corresponding to that partition, until it is
no longer optimal to prefer that partition. The inter-
section of the straight lines represents that point.

We make the following observations from these figures.
Both LRU and FIFO track the optimal allocation pol-
icy for all parameters. However, their relative perfor-
mance depends on the parameters A, B, D. When the
buffer size is small (B = 3,000), and the data access
patterns are highly skewed (p = 0.4, cy > 0.4), both
LRU and FIFO fail to retain sufficient hot data gran-
ules in the buffer. Hence, they perform considerably
worse than the optimal allocation (compare figures 9
and 10). This degradation is much less for a larger
buffer size (B=8,000, compare figures 11 and 12).

In all cases the LRU policy performs better than the
FIFO policy. Consider the case, where both the hot-set

and the buffer sizes are small (p = 0.2 and B = 3000).
As the LRU retains more hot granules than FIFO, the
difference in their performance is significant (figure 9).
This difference is less for a larger hot-set size and small
buffer size (figure 10). For a larger buffer size (B =
800), if the hot-set is small then all three policies retain
the hot-set and their performances are close (figure 11).
However, for a larger hot-set size, FIFO fails to retain
the hot-set even for a large buffer size, and performs
worse (figure 12).

Another observation to be made from all these figures
is that at the point where no partition is preferred the
performance of all three policies are the same. As the
hotness migrates, i.e., as Q: changes, the performance
of LRU and FIFO changes very little. However, the
performance of the optimal allocation is very sensitive
to correct knowledge of the access probabilities, and a
large penalty may be incurred if the wrong partition is
chosen. This points out the danger of a static allocation
in an environment where the access probabilities are not
well known.

As observed from the earlier figures, the difference in
performance between the LRU and the optimal al-
location policies, depends on the relative size of the
buffer compared to the database. We next explore the
degradation of LRU performance as a function of the
database size while keeping the buffer size fixed (figures
13 through 15). A s we increase the database size, both
of the partition sizes increase proportionally, but their
relative sizes remain constant. For a small database,
both the LRU and optimal policies retain the hot-set
and the difference between their performances is neg-
ligible. The first break-point occurs when the LRU
policy begins to lose some of the hot granules (figure
13). From this point onwards the performance of LRU
degrades more quickly with increasing database size.
The second break-point occurs when the optimal policy
fails to satisfy the hot-set, i.e., the size of the hot-set
is greater than the buffer size (figure 14). From this
point onwards, the difference between the performance
of the optimal and the LRU policies decreases. Figure
16 shows the percentage degradation in performance of
the LRU policy for various access patterns. The degra-
dation reaches a maximum (note, a peak occurs at the
second break-point) when the hot-set is small and a
significant fraction(say, 50%) of accesses goes to the
cold-set. For a system with multiple partitions, several
break-points can be observed, each corresponding to a
point when one less partition can not be satisfied un-
der the optimal policy. In figure 17, we plot the buffer
hit probabilities of the LRU and the optimal policies as
well their difference (in same unit), for a three partition
case.

147

4.2 Optimal Buffer Partitioning

We have observed from our first application that the
identification of the partitions and the knowledge of
their access probabilities are essential for obtaining the
optimal buffer allocation. In many applications the ex-
act knowledge of the partitions may be hard to gather
without a substantial overhead. However, the par-
titions may be grouped into identifiable groups. In
the database context, this may correspond to multi-
ple database relations (files) sharing a common buffer
and access to each relation is skewed dividing each re-
lation into multiple partitions. The exact knowledge of
skewness in each relation may not be known. A sec-
ond example in the context of program execution is the
instruction and data set of a program, where the refer-
ence streams to instruction and data can be separated
and where accesses within the data and instruction sets
are skewed.

We observed in the previous subsection that LRU is the
policy of choice for buffer management for each relation
when nothing is known about the skewness in each rela-
tion. However, it is not clear whether a common buffer
should be shared by multiple relations under one LRU
policy or the buffer should be partitioned in some op-
timal way among the relations. In the later case, each
relation uses its portion of the buffer under its LRU
policy. For a real life application, an online adaptive
algorithm may be used for the optimal partitioning of
the buffer [STON89]. F rom the analysis point of view,
we will assume knowledge of the access pattern in each
relation to derive the near optimal partition sizes. We
will describe below an algorithm to derive the near op-
timal partition sizes along with an informal argument
for why this should be a near optimal buffer allocation
for this problem. In both cases, the performance metric
of interest is the overall buffer hit probability.

All of our experimental observations suggest that the
buffer hit probablity of the LRU policy under the IRM
model is a concave function of the buffer size. This
conjecture has been shown to be true by van den Berg
[VAN89]. Consequently, the optimal partitioning of the
buffer can be formulated as a simple integer convex pro-
gramming problem which can be solved using a greedy
algorithm first proposed by Fox [FOXSS]. This algo-
rithm allocates one unit of buffer at each step to the
group that will yield the highest incremental change in
buffer hit probability. As we do not evaluate the buffer
hit probability exactly, we use the approximate analysis
of section 2.1. Since the algorithm for obtaining esti-
mates for the hit probability under the LRU policy is
recursive and requires a single step for the addition of
a buffer unit, it is easily merged with Fox’s algorithm.

Figure 18 compares the two buffer policies for a
database application with two relations (groups). Each

relation consists of 1000 data granules, but the access
probabilities within each relation is different. In rela-
tion 1, 80% of the accesses go to 20% of the items,
and in relation 2, 60% of the accesses go to 40% of the
items. The relative frequency of accessing each relation
is given by the parameter y. Increasing y increases the
difference in the access frequency between the most fre-
quently accessed partition (hot partition of relation 1)
and the least frequently accessed partition (cold parti-
tion of relation 2). For a large buffer size both shared
and partitioned policies retain the hot data items of
both the relations. But for a small buffer, the per-
formance gain due to partitoning is significant. In all
cases, the partitioned policy performs better than the
shared policy. This provides evidence that the buffer
pool mechanism used in DB2 system [TENG84] is a
good one.

5 Summary

In this paper, we have developed approximate analyti-
cal models for predicting the buffer hit probability un-
der the Least Recently Used (LRU) and First In First
Out (FIFO) buffer replacement policies under the inde-
pendent reference model. The computational complex-
ity of the analysis of the LRU policy is O(KB) where
B is the size of the buffer and K denotes the number of
items having distinct access probabilities. In the case
of the FIFO policy, the solution algorithm is iterative
and the computational complexity of each iteration is
O(K). We have compared results from these models to
exact-results from models originally developed by King
[KING711 for small values of the buffer size, B, and the
total number of items sharing the buffer, D. In most
cases, the error is extremely small (less than 0.1%) for
both LRU and FIFO policy, and a maximum error of
3% was observed for very small buffer size(less than 5)
and extreme skewness in access probabilities. Results
of the approximate models are also compared with the
results from simulations for large values of B and D
and the match is found to be excellent.

To demonstrate the usefulness of the model, we have
considered two applications. In our first application,
we compared the LRU and FIFO policies to an optimal
static buffer allocation policy for a database consisting
of two classes of data items, hot and cold. Both LRU
and FIFO track the optimal allocation policy, and the
performance of LRU is always better than FIFO. Both
LRU and FIFO do not require explicit knowledge of
the access frequency of the data items. On the other
hand, the optimal allocation policy requires the precise
knowledge of the access frequency of all data granules.
The penalty in performance for preferring a wrong par-
tition to keep in buffer, is rather large. In the case
that the hotness may migrate from one class to an-

148

other over time, this makes LRU the preferred policy.
We have also explored the difference in performance
between the optimal policy and the LRU policy as a
function of database size, for a fixed buffer size. In our
second application, we show that if multiple indepen-
dent reference streams on mutually disjoint data sets
compete for the same buffer, it is better to partition
the buffer using an optimal allocation policy than to
share a common buffer.

References

[AVEN76]

[BABA83]

[COFF73]

[DAN891

[FLAJ87]

[FOX661

[FRAN741

[KEAR89]

[KING711

[LANG771

Aven, O.I., L.B. Boguslavsky, and Y. A. Ko-
.w, “Some Results on Distribution-Free
Analysis of Paging Algorithms,” IEEE
Transactions on Computers, Vol. C-25,
No. 7, pp. 737-745, July 1976.

Babaoglu, 0. and D. Ferrari, “Two-Level
Replacement Decisions in Paging Stores,”
IEEE Transactions on Computers, Vol. C-
32, No. 12, pp. 1151-1159, December 1983.

Coffman, E. G. and P. J. Denning, Operat-
ing Systems Theory, Prentice-Hall, Engle-
wood Cliffs, N.J., 1973.

Dan, A., D. Dias and P. S. Yu, “Buffer
Model under Skewed Data Access for a Data
Sharing Environment”(Work in progress).

Flajolet, P., D. Gardy and L. Thimonier,
“Birthday Paradox, Coupon Collectors,
Caching Algorithms and Self-organizing
Search”, Tech Rep. 720 INRIA, Domaine
Voluceau, Rocquencourt, BP 105 78153 Le
Chesnay Cedex (France), August 1987.

Fox, B.,“Discrete Optimization via
Marginal Analysis,” Management Science,
Vol. 13, pp. 210-216, November 1966.

Franaszek, P. A. and T. J. Wagner,“Some
Distribution-Free Aspects of Paging Algo-
rithm Performance,” Journal of the ACM,
Vol. 21, No. 1, pp. 31-39, January 1974.

Kearns, J. P. and S. DeFazio, “Diversity
in Database Reference Behavior,” Perfor-
mance Evaluation Review, Vol. 17, No. 1,
pp. 11-19, May 1989.

King, W. F., “Analysis of Paging Algo-
rithms,” In Proc. IFIP Congress, pages 485-
490, Ljublanjana, Yugoslavia, aug 1971.

Lang, T., C. Wood, and I. B. Fernandez,
“Database Buffer Paging in Virtual Storage
Systems,” ACM Transactions on Database
Systems, Vol. 2, No. 4, pp. 339-351, Decem-
ber 1977.

[RA078]

[SACC87]

[SMIT82]

[STON89]

[TENG84]

[VAN891

[VERK85]

Rao, G. S., “Performance Analysis of Cache
Memories,” Journal of the ACM, Vol. 25,
No. 3, pp. 378-395, July 1978.

Sacco, G. M., “Index Access with a Finite
Buffer,” In Proc. of 13th VLDB Conference,
pages 301-309, Brighton, 1987.

Smith, A. J., “Cache Memories,” ACM
Computing Surveys, Vol. 14, No. 3, pp. 473-
530, September 1982.

Stone, H. S., J. L. Wolf, and J. Turek,
Optimal Partitioning of Cache Memory,
Research Report RC14444 (64697), IBM,
March 1989.

Teng, J. Z. and R. A. Gumaer, “Managing
IBM Database 2 Buffers to Maximize Per-
formance, “IBM System Journal, Vol. 23,
No. 2, pp. 211-218, 1984.

J.L. van den Berg, private communication,
November 1989.

Verkamo, A. I., “Empirical Results on Lo-
cality in Database Referencing,” In Proceed-
ings of the ACM SIGMETRICS Conference
on Measurement and modeling of Computer
systems, pages 49-58, 1985.

149

. . . -.K-,
- -*-a
.,_........ -.#-a
--4- A=YmK.:K-8

-:K-a
-6 -x-8
. -:*-,o
-e- bsw?ox.:Y-Io

2 4 8 8

elJFFER SIZE

Figure 1: Comparison with King’s analysis
(LRU: Arithmetic Probability Distribution)

2 8 8

MS-4
-c #PPWx:K-I

-*y-I
--c NmQXK-8

-g-,0
--c cppRDx.:K- IO

BUFFER SIZE

Figure 2: Comparison with King’s analysis
(LRU: Geometric Probability Distribution)

. -*-*
- Ic-*-4
. -$+*
-8- APPROKS-8
. -,K-B
- AFTwK.tY-8
. -*-,a
---b ApPwK.*-IO

2 8 8

BUFFER SIZE

Figure 3: Comparison with King’s analysis
(FIFO: Arithmetic Probability Distribution)

- -.I(-8
. . . . &y&y.w-,o -..- ._
--b UW?OK.:K-IO

BUFFER SIZE

Figure 4: Comparison with King’s analysis
(FIFO: Geometric Probability Distribution)

Figure 5: Comparison with simulation (LRU: 2 Partitions)

BUFFER SIZE

Figure 6: Comparison with simulation (LRU: 3 Partitions)

150

Figure 7: Comparison of LRU and FIFO policies
(2 Partitions)

Figure 10: Comparison of Buffer schemes
(B = 3K; p = 0.4)

Figure 8: Comparison of LRU and FIFO policies
(3 Partitions)

t
‘....

a %.

Figure 9: Comparison of Buffer schemes
(B = 3K; p = 0.2)

t

“...
“...,,_

2
“..*,

‘X,,,

L . . . I I I I I I 1
‘k .,

1
02 0.4 0.1 0.1

NPt44

Figure 11: Comparison of Buffer schemes
(B = 8K; p = 0.2)

5 i s

I

,,.._..” ‘.
,,,.,......- ,..*“’

“~.1.,.,~ “Xi ‘l,. ‘I... “... “. %.,,,
‘1. -...,

L 1 I , I I I I x
01 0.4 0.S 0.1

NJw4

Figure 12: Comparison of Buffer schemes
(I3 = 8K; j3 = 0.4)

151

DAlABA5E SIZE(K)

Figure 13: Effect of Database Size (B = 2K; p = 0.2)

MTAWSE SIZE(K)

Figure 14: Effect of Database Size (B = 2K; ,8 = 0.4)

MT&USE SIZE(K)

Figure 15: Effect of Database Size (B = IK; /I = 0.2)

9
t

c

A *Lpw-o.&mA-02
*..- ~t.N-o.8.mko.4

- ww-o3,mA-0.1

+ wlu-a.8.mA-0.4

2 4 10
MT*BISE SIZE(K)

Figure 16: Degradation in Buffer Hit Probability of LRU

policy (B = 1K)

Q... opnyu
k... M”

‘xl. - mmnmcum
5

‘.‘.L,.: “HO...
Px

“I.. “0. 0 .,,,

E

‘I L..,,,
Q--o- -.* ._. Q

%’ ‘0..
.L.

‘lo

5
L.. “‘a....

.‘%.. ‘a...

p. . : “.L ““-~~-o .._. s ,,_(,

MTMVSE SZE(K)

Figure 17: Degradation in LRU Buffer Hit Probability
(3 partitions: B = IK; a :0.6,0.3,0.1; p : 0.06,0.3,0.62)

Figure 18: Comparison of Partitioned and Shared Buffer

Policies

152

