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In new application areas of relational database systems, such as artificial intelligence, the join 
operator is used more extensively than in conventional applications. In this paper, we propose a 
simple data structure, called a join index, for improving the performance of joins in the context of 
complex queries. For most of the joins, updates to join indices incur very little overhead. Some 
properties of a join index are (i) its efficient use of memory and adaptiveness to parallel execution, 
(ii) its compatibility with other operations (including select and union), (iii) its support for abstract 
data type join predicates, (iv) its support for multirelation clustering, and (v) its use in representing 
directed graphs and in evaluating recursive queries. Finally, the analysis of the join algorithm using 
join indices shows its excellent performance. 
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1. INTRODUCTION 

Relational database technology is widely accepted as a basic support technology 
for evolving application areas like artificial intelligence, CAD/CAM, and so forth. 
Indeed, relational technology must be extended to fulfill the requirements of 
these new applications. Compared to conventional (business) applications, they 
tend to consist of large numbers of more complex queries. Efficient query 
processing becomes a more difficult problem since complex operations are used 
extensively. A first step toward the efficient processing of complex queries is 
the optimization of all primitive operations and the compatibility of these 
optimizations. 

In this paper, we consider the join operation as a paradigm of basic complex 
operations. Although many join algorithms have been proposed [3, 4, 5, 10, 211, 
they are generally designed independently of the effect on other operations in 
the global query optimization. With new database applications, the effect can be 
important. For example, a transitive closure operator, which we expect to be a 
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primitive operator for knowledge base support, will use joins and unions repeat- 
edly. Thus, the join operation must be optimized for repetitive use. Also the 
combination of join and union must be efficient. 

Join algorithms have been studied in depth in the context of business appli- 
cations. With no indices, two basic algorithms based on sorting [4] and hashing 
[5, lo] avoid the prohibitive cost of the nested loop method. Parallel versions of 
these algorithms can significantly improve join performance [4, 211. 

Indices on join attributes can also be employed [4, 111. Clustered indices on 
the join attribute (tuples are clustered in the relation according to the join 
attribute) yield excellent performance, but at most one clustered index can be 
defined on a relation. Inverted indices are efficient only for very selective joins 
(producing a small result). An important result of [4] is that the sort merge join 
algorithm is almost always better than the join algorithm using inverted indices 
on join attributes. Another recent and important result shows that the availability 
of large main memories in database systems makes hash-based algorithms much 
more efficient than the sort merge join algorithm [lo]. Consequently, we deduce 
that hash-based algorithms should be more efficient than algorithms using 
inverted indices. 

A different concept useful for joins is the link [13, 15, 201. The concept is the 
same as the Conference on Data Systems Languages (CODASYL) set notion. 
Tsichritzis [20] uses links in a model that allows the coexistence of hierarchical, 
network, and relational models. Similarly, [15] employs the so-called indirect 
join in the Pascal R environment. These two papers do not specify the data 
structure and join algorithms. Haerder [13] also uses the concept of link to 
optimize relational joins. He proposes an implementation very similar to that of 
CODASYL systems. Links are implemented by chaining tuples using tuples 
identifiers (instead of pointers as in CODASYL) mixed with the data. He also 
argues for a generalized access path structure that combines links on several 
relations and indices (called images). Although a unique access path for different 
access patterns can lead to high performance under particular workloads, we 
believe that in a highly concurrent environment, it is likely to become a highly 
contended resource. 

Another way of optimizing joins is to prejoin all relations by storing each 
domain separately where each domain value associates the list of identifiers of 
matching tuples [ 171. This storage model favors joins but at the expense of other 
operations. 

In this paper, we propose a simple solution for optimizing joins in the context 
of complex queries. This solution is based on two design principles. 

(1) An algorithm’s performance is proportional to the amount of useful infor- 
mation. We thus strive to make the size of useful information for query processing 
as small as possible. 

(2) Future computers will have a parallel processing capability and large 
amounts of random-access memory (RAM). We intend to take advantage of the 
availability of such hardware when designing our algorithms. 

The application of these design principles to the problem of complex query 
evaluation led us to the notion of join indices. A join index is a particular 

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987. 



220 l Patrick Valduriez 

implementation of the concept of link (mentioned above). It is a prejoined 
relation, usually much smaller than the joined relation, and is stored separately 
from the operand relations. This will be the main reason for performance 
improvement. It is intended to improve the performance of complex operations 
by using a small and simple data structure. Furthermore, for most of the joins, 
updates of join indices incur very little overhead. Some properties of a join 
index are (i) its efficient use of memory and adaptiveness to parallel execution, 
(ii) its compatibility with other operations (including select, union), (iii) its 
support for abstract data type join predicates, (iv) its support for multirelation 
clustering, and (v) its use in representing directed graphs and in evaluating 
recursive queries. 

The contribution of this paper is that it proposes an efficient implementation 
of join indices, gives algorithms for joins and updates, shows the compatibility of 
join indices with inverted indices and their value in answering complex queries, 
and, finally, shows the superior performance of the proposed implementation 
through a detailed analysis. We believe that join indices represent a carefully 
designed accelerator that can effectively use large RAM to increase performance 
and constitute an interesting alternative to hashing. Also, and perhaps more 
important, join indices optimize recursive as well as traditional complex queries. 

The remainder of this paper is organized as follows. In Section 2, we formally 
define join indices and their implementation. In Section 3, we propose algorithms 
for supporting relational queries with join indices and managing these indices 
during updates. In Section 4, we analyze the performance of the join algorithm 
using join indices. We compare our algorithm with the hybrid-hash join algorithm 
[lo], since the latter is efficient and makes effective use of the available main 
memory, like our algorithm. In Section 5, we summarize some interesting prop- 
erties of join indices. Our conclusions and extensions of our ideas are given in 
Section 6. 

2. CONCEPT OF JOIN INDEX 

2.1 Definitions 

Let R and S be two relations, not necessarily distinct. We consider the join of R 
and S on attributes A from R and B from S, giving a result relation T. Intuitively, 
a join index is an abstraction of the join of the two relations. We assume each 
tuple of a relation is uniquely identified by a surrogate [6, 141. A surrogate is a 
system generated identifier that never changes. The surrogate of R (respectively, 
S) is noted r (respectively, s). The surrogate of tuple i of R is noted Fi and the 
surrogate of tuple j of S is noted sj. Tuple ri refers to the tuple having ri as 
surrogate. More formally, the join index on R and S representing T is the set 

JI = ((rip sj) ]f(tuple ri.A, tuple Sj.B) is true), 

where f is a boolean function that defines the join predicate. The join predicate 
can be arbitrary, and thus very general. 

Thus, a join index is a relation of arity two. It is created by joining the relations 
R and S and projecting the result on (r, s). 
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CUSTOMER 

csur mama city we job 

1 Smith Boston 21 clerk 

2 Collins Austin 26 secretary 

3 Ross AU.& 36 manager 

4 Jones Paris 29 engineer 
JI caur cpstu 

12 q 13 
3 1 

Fig. 1. Join index for relations CUSTOMER and CP on attribute 
cname. 

In the rest of this paper, we will often base our examples on the following 
database: 

CUSTOMER (cname, city, age, job) 
CP (cname, pname, qty, date) 
PART (pname, dept, price, age) 

(The age of a part is the number of years since it first appeared on the market.) 
Figure 1 gives an example of a join index summarizing the equi-join of the 
relations CUSTOMER and CP on attribute cname. 

2.2 Implementation of Join Indices 

A join index is a binary relation. It only contains pairs of surrogates which makes 
( it small. However, for generality, we assume that it does not always fit in RAM. 
Therefore, a join index must be clustered. Since we may need fast access to JI 
tuples via either r values or s values depending on whether there are selects on 
relations R or S, a JI should be clustered on (r, s). A simple and uniform solution 
is to maintain two copies of the JI, one clustered on r and the other clustered on 
s. Each copy is implemented by a W-tree an efficient variation of the versatile 
B-tree [l, 71. Simplicity and uniformity will lead to increased performance. The 
JI clustered on r (respectively on s) makes join accesses from R to S (respectively 
from S to R) efficient. Note that for limited access patterns, a single copy is 
sufficient (e.g., when one always goes from R to 8). Figure 2 illustrates the 
implementation of the join index and of the relations of Figure 1, where the copy 
clustered on surrogate csur (respectively cpsur) is named JI,,, (respec- 
tively JIcpeur). Figure 3 shows the use of the join index on relations R (r, A, B) 
and S (s, C, D) with join predicate (R.A = S.D) to process a query for which the 
qualification is (R.B = “b” and R.A = S.D). For each tuple of R satisfying the 
selection predicate (R.B = “b”), its surrogate ri permits accessing the join index 
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index a on CstJr 

index 

a 

on cp3ur 

CUSTOMER 

Fig. 2. Implementation of the join index on CUSTOMER and CP. 

S s c D 
33 

a %l 
Fig. 3. Example of use of the join index clustered on r. 

clustered on r. The surrogate sj associated with ri is in turn used to access the 
matching tuples of S through the index on s. 

The way in which joined relations are physically clustered will generally have 
an impact on join performance. Surrogates contained in a join index are used for 
retrieving attribute values in physical relations. Therefore, a data structure that 
associates surrogates with page addresses is necessary. It can be implemented by 
either a clustered index or an inverted index (often called secondary index). In 
the first case, tuples having adjacent surrogate values will be in the same pages. 
Since the join index is clustered on surrogates, clustered access to the physical 
relations makes joins efficient. In the second case, tuples having surrogate values 
that are close will seldom be physically close. Thus, random access to tuples is 
necessary, which makes joins of many tuples less efficient. Effects of a clustered 
versus inverted index will be carefully analyzed in this paper. 

A join index, like any other index, is an acceleration mechanism and should be 
used only for the most important joins. The efficiency of a join index will be 
proportional to its size. A tuple in a join index is small. For example, we consider 
an impure generation of surrogates in which a surrogate is unique within a 
relation and not in the whole database. Impure surrogates are sufficient to insure 
uniqueness in a relational database [9]. In the remainder of this paper we will 
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987. 
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assume that the size of an impure surrogate is four bytes, which allows more 
than four billion tuples per relation. 

The size of the join index depends on the join selectivity factor. The join 
selectivity factor, noted JS, is defined as follows, where 11 X 11 indicates the number 
of tuples in relation X. 

II R w S II 
Js = II R II * II S II ’ 

The number of tuples in a join index is 11 R w S Il. If the join has good selectivity 
(JS is low), the join index is small. This is a frequent case in existing databases 
(e.g., join on foreign key). However, a join of poor selectivity, which can be close 
to the Cartesian product, can make the index quite large. In this case, we claim 
that no good optimization is possible, and a simple nested loop join algorithm is 
sufficient. The effect of join selectivity is analyzed in our performance evaluation. 

3. ALGORITHMS FOR RELATIONAL QUERIES 

In this section, we propose algorithms that use and manage join indices. The 
specification of the algorithms is given independently of a machine model, 
although particular architectures, like parallel architectures, could improve their 
performance. Our only assumption is that a large amount of main memory is 
allocated to the operation. We denote the number of pages of main memory 
allocated as 1 M 1. The following algorithms take advantage of the available 
memory space. We first present solutions for updating the join indices. We next 
present algorithms for semijoin and join operations using join indices. Finally, 
we point out the impact of join indices on query processing. 

3.1 Update 

Join indices, like other accelerators, incur an update overhead. A join index 
must reflect updates to the base relations. We limit ourselves to a JI with an 
equi-join predicate. Updates with more general predicates are discussed in 
Section 5.3. We only consider delete and insert operations. We assume that 
modify is done by delete followed by insert, which is a nice way of handling 
reliable updates, assuming a workspace model of updates. 

The deletion algorithm is obvious. The surrogates of deleted tuples are retrieved 
when deletion is performed and are removed from the join index. Since one copy 
of the join index is clustered on the surrogates of the tuples deleted, this operation 
is efficient. For example, let us consider the following deletion in relation CP 
(given in Figure 1) expressed in SQL-like language: 

delete CP where CP.cname = “Smith” 

When performing the deletion, the tuples with cname Smith must be accessed 
either using an inverted index on cname if it exists or by the scanning relation 
CP. Thus, the set of cpsur {2, 3) would result from the deletion and be used to 
update the join index on the basis of the copy clustered on cpsur. In the process 
of deleting tuples from the JI copy clustered on cpsur, we can obtain the csur 
values and thus efficiently access and update the JI copy clustered on csur. The 
cost of deleting a tuple in a JI copy, assuming a two level B+-tree, is an average 
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of three 10s (two page reads and one page write). If two copies of the join index 
are maintained, the average cost becomes six 10s. 

We now consider updates of the join index when insertions into base relations 
occur. We distinguish between joins on foreign keys versus all other joins. Joins 
over foreign keys are the most frequent (probably more than 90 percent of the 
cases). In this case, the cost of updating the join index can be shared largely with 
the cost of performing referential integrity checks. This update optimization is 
done just before actually committing the updates when referential integrity 
checking must be applied 1191. For example, let us consider the relations 
CUSTOMER and CP where CP.cname is a foreign key. The insertion of 
a new customer does not generate any update of the join index, because 
referential integrity guarantees that there does not exist a corresponding 
CP tuple. The insertion of a new tuple in CP requires a referential integrity 
check, that is, that a corresponding cname actually exists. Thus, the tuple of 
CUSTOMER is accessed anyway, and its surrogate can be used for updating the 
join index. The overhead incurred is only the cost of reading and writing the join 
index. The cost of inserting a tuple in a JI copy is thus the same as the cost of 
deletion. 

Joins not on a foreign key are much less frequently executed. However, in this 
case, updating the join index can be more costly. For example, if we want to 
propagate the insertion of a tuple ri in relation R of join value A onto the join 
index, we need to select all tuples sj in relation S, such that tuple sj.B = A. This 
operation is efficient if S has a clustered index or inverted index on attribute B. 
Such indices are likely to exist if the join attribute is used for selections or if 
updates of a few tuples are frequent. The cost of inserting a tuple in a JI copy, 
assuming a three-level inverted index on a join attribute, is six 10s (three page 
reads of the inverted index to build the join index tuple and three 10s to update 
the JI copy). Inserting the tuple in the other join index copy is cheaper because 
the join index tuple has been previously built. Thus, we need just update the join 
index copy that incurs three 10s. If we assume the size of the two JI copies to be 
roughly equal to the size on an index of a join attribute (surrogates are much 
smaller than key values), this discussion indicates that for joins not on foreign 
keys, updates of join indices increase the update cost of the joined relations by a 
factor of approximately two. 

If there is no index on the join attribute, the whole relation S must be scanned. 
If many tuple updates occur, the overhead can be significant. We believe that 
the use of a JI in this case is not worthwhile because the update overhead is too 
high. Join indices would only be useful in this case if the updates are done in a 
batch mode. Then, a simple solution can reduce the overhead by using a tebhnique 
similar to view updates [ 181. The update of a join index can be deferred until the 
next join is required. The relation updates are kept in a file containing the 
surrogates of updated tuples together with the update type. Thus, when the join 
is called, a semijoin of the joining relation with the updated relation is used to 
update the join indices. 

3.2 Semijoin 

The algorithm for semijoin, a very frequent operation, is straightforward with a 
join index. Consider the semijoin of R by S, denoted R K S. The attribute r of 
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the join index JI indicates which tuples of R are useful. Thus, relation S does not 
need to be accessed. For example, with the following semijoin query, where C 
stands for CUSTOMER: 

select Ccname, C.age where C.cname = CP.cname 

The join index in Figure 1 provides the set of surrogates 11, 3) that answer the 
query. 

The access to tuples of R is based on the access path defined on its surrogate, 
that is, clustered index or inverted index. If R has a clustered index on the 
surrogate, using a copy of the JI clustered on r minimizes the number of 10s 
required to access R. 

If R has an inverted index on the surrogate, additional accesses to the index 
occur. The inverted index on the surrogate is a set of (sur, page#) tuples sorted 
on sur. When accessing the index based on surrogates, the set of useful (sur, 
page#) is not ordered by page# and the same page in R can be read several times. 
To avoid reading the same page more than once, the set of pages to access is 
sorted on page# before reading relevant pages of R. 

3.3 Join 

The join algorithm accesses matching tuples of R and S using the join index in 
order to produce a result relation. For example, the join query 

selert C.cname, C.age, CP.pname where C.cname = CP.cname 

will be processed by accessing a Customer tuple and a CP tuple and by producing 
a result tuple for each tuple in the join index. For instance, the first tuple of the 
join index represents the tuple (Smith, 21, jeans). 

In this section, we concentrate on the join algorithm itself. However, as we 
will see in Section 3.4, since it reads the join index sequentially, this algorithm 
is applicable for joins preceded by selection. In this case, the join index used by 
the join algorithm is first reduced by the selection. 

We suppose that the number of distinct r values in the join index is greater 
than the number of distinct s values. We use the join index copy clustered on r. 
The reason will be given in the analysis. We call R the external relation and S 
the internal relation. 

For the sake of clarity, we first present a naive version of the join algorithm 
using a JI that we will subsequently improve. 

for i := 1 to 1 .JI 1 do {assume 1 JI 1 pages in ,711 
begin 

read page i of’.11 into JI, 
Iassume k distinct surrogates from R and 1 surrogates from S in this page) 
read k tuples of R into R, 
read I tuples of S into S, 
join R, and S, 

end 

This algorithm has several important shortcomings. First, the memory of ) M ) 
page frames is poorly utilized. It is likely that JI;, R,, and S, require much less 
than 1 M ) pages. The rest of memory should be used for optimization. Since we 
use the join index clustered on r, the access to R is efficient. However, the access 
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to S can be inefficient. The tuples of S must be randomly accessed via the index 
with a worst case of one IO per tuple. Furthermore we can have repeated tuple 
accesses to S since a page j can contain surrogates of tuples that were also in a 
page i where i < j. 

We now propose an improved version of the algorithm that avoids the preceding 
drawbacks. The improvement is essentially based on a memory management 
strategy adapted to the operation. The main improvements are 

(1) read as much of the JI and R K JI into memory as possible, 
(2) optimize the accesses to S by sorting the list of surrogates s of the subset of 

JI in memory, which leads to clustered accesses to S and minimizes repetitive 
accesses to S. 

The algorithm sequentially reads the join index JI page by page, composes 
R K JI (equal to R DC S), and joins it with S K JI (equal to S K R) obtained page 
by page. If R K JI does not fit entirely in memory, the operation is divided into 
several passes. At each pass, a subset of R K JI that fits in memory is composed, 
and for each (ri, s;) in the join index such that tuple ri is in memory, tuple s; is 
accessed and joined with r,. At each pass k, the next subset of pages of the join 
index, noted JIk, is processed. 

The allocation of 1 M 1 page frames of main memory between operand and 
result relations and the join index is an important component of the algorithm. 
Relations R and S and the result relation Tare each allocated one page for input 
and output data. When a page of T is full, it is written in cache memory (which 
can lead to an IO operation). S K JI will be read page by page and thus requires 
one page frame. We also reserve some extra working space for internal optimi- 
zations that we will define later on. After this static allocation of memory, we 
denote by 1 M’ 1 the number of remaining pages that are dynamically allocated 
between the join index and R K JI. They are allocated in such a way that we 
have in memory as many tuples of R as possible with their corresponding subset 
JIk of the join index. Therefore for each tuple of R in the buffer, we know which 
tuples of S match with it. Assuming the subset JIk of JI in memory, we denote 
as Rk the set: 

Rk = {tuple of surrogate ri E R 1 ri E JIk 1. 

At each pass, JIk and Rk are such that 

I JL I + I Rk I 5 I M’ I, 
where 1 X 1 denotes the number of pages of X. The relationship between JIk and 
Rk depends on the semijoin selectivity factor for Rk, which can be different for 
some 1# k. For example, we can have 11 JIk 11 # 11 JIk-, 11. 

The optimized join algorithm is summarized below in the procedure JOINJI 
(Figure 4). The algorithm handles the general case in which the semijoin of R by 
a page of the join index does not fit in memory. 

At each pass of the algorithm, steps (1) through (4) are executed. Step (1) 
reads the subsets JIk of JI and Rk of R K JI in memory. Step (2) sorts JIk on s. 
The goal of step (2) is to improve the performance of the semijoin of S by JIk by 
reducing the number of accesses to S. We use the working space for performing 
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JOINJI (R, S: operand relation; T: result relation; Jhjoin index; 
1 M’ 1 :number of memory pages) 

begin 
k := 0 
read first page of Jl into Jlpage 
m:=IM’)-1 (current number of pages for 54 and Rk) 

(0) while not “end Jl” do 
begin 

k:=k+l (start a new press) 
(1) while m > 0 and not “end Jl” do (produce Jlk and Rk ] 

begin 
while not “new tuples in R K Jlpage” and m # 0 do 

begin 
perform next R K Jlpage until filling one page 
m:=m-1 

end 
ifm#Othen 

begin 
read next page of Jl into Jlpage 
m:=m-1 

end 
end WP WI 

(2) sort Jib on s 
(3) while not “new tuples in S K Jlk” do 

begin 
read next page of S containing tuples of S K Jlk into Spage 
join Spage with R,, 

end Istep (3)) 
(4) if “Jlpage entirely processed” then 

begin 
m:=IM’l-1 
read next page of Jl into Jlpage 

end 
else m := 1 M’ 1 - 1 

end Istep WI 
end [JOINJIJ 

Fig. 4. Join algorithm using a join index. 

the sort internally. The access to S is based on an inverted or clustered index on 
s. Thus, the access to the index is in order and minimal. Step (3) performs the 
join of relation S with Rk. Step 4 handles the case in which the last page read 
from the JI in JIpage has not been entirely processed; that is, there remain tuples 
in JIpage whose corresponding tuples in R did not fit in RAM. 

As presented, the algorithm minimizes the number of 10s. In order to minimize 
the central processing unit (CPU) time, we need to perform the internal join 
rapidly. This can be done by adding to each (ri, sj) of JIk the address of tuple Fi 

in memory. Therefore, for each tuple sj accessed, the matching tuple Fi is directly 
found. In the proposed algorithm, the same page of S may be reread at different 
passes. However, in most cases, the useful subset of the JI and R K JI fit in 
memory, making the scheduling of page accesses optimal (only useful pages are 
read, and only once). 
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Join indices can be derived from classical indices on join attributes. Most 
relational systems use indices on join attributes to speed up joins [3]. We now 
give a brief comparison of the performance of a join using join indices and a join 
using indices on join attributes as proposed in [4]. In each method, the indices 
must be scanned entirely; thus the performance difference is related to the 
difference between the index sizes. An index on a join attribute is supposed to be 
of the form ((att-value, surrogate)). It has an entry for each different surrogate 
value (i.e., for each tuple of the relation), where each entry contains an attribute 
value with its surrogate. Assuming that the cardinalities of R and S are respec- 
tively ]] R ]] and ]I S ]I and that each tuple of S matches with one tuple of R (e.g., 
a hierarchical case like Customer + CP), then the amount of extra data accessed 
by the method based on join attribute indices is roughly ( I] R II + II S II ) * 
att-size, which can be quite large. For joins of poorer selectivity, the difference 
would be even bigger. Also, a join index can be easily compacted using run length 
compression, making it even smaller. Thus, the number of 10s necessary for the 
method based on join attribute indices is generally much higher. 

3.4 Relational Queries 

We now illustrate the use of join indices and other indices for performing 
relational queries. For simplicity, we consider queries involving selections, joins, 
and projections. We assume that the compiled relational query has been optimized 
and thus exhibits the best possible decomposition in relational operations. The 
basic idea is to use indices as much as possible and to postpone access to relevant 
base data (generally much larger) to the very end. 

We consider a first type of relational query involving a selection followed by a 
join. We suppose a join index exists for the join. The selection operation will 
produce a list of surrogates of tuples that satisfy the selection criteria. There are 
basically three possible access paths for selection: inverted index, clustered index, 
or sequential scan. An inverted index associates attribute values with surrogates. 
Therefore, accessing the inverted index for given attribute values produces the 
relevant surrogates. When using the two other access paths, the base data must 
be accessed. In this case, the result of the selection is an intermediate relation 
containing relevant tuples together with a list of their surrogates. The list of 
surrogates is semijoined with the join index to find the relevant surrogates of the 
other relation. Since as much of the join index as possible will be kept in RAM, 
the best way for performing the semijoin is to probe the join index for each 
surrogate value of the list. Remember that a join index is implemented by a B+- 
tree and thus provides direct access based on surrogate. If the join index cannot 
fit in RAM, sorting the surrogate list first is an interesting alternative. Consider 
the following example: 

select &name, CP.name, Cjob 
where city = “Austin” and C.cname = CP.cname 

Figure 5 illustrates the corresponding relational query tree and its operation 
tree when there is an inverted index on attribute City in relation C. If the access 
path were not an inverted index, the selection would have also produced an 
intermediate relation C’. C’ would be stored in a hashed table on the join 
attribute and used during the final join instead of C. The City-index provides 
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Fig. 5. A query tree and its operation tree. 

the set of surrogates (2, 3). Thus, the JI’ is ((3, l)]. The final access to 
CUSTOMER with csur = 3 and to CP with cpsur = 1 enables the construction 
of the tuple {Ross, jacket, manager). The join index JI is thus accessed directly 
through its B-tree during the semijoin. JI’, the result of the semijoin, is stored 
in a sequential file, since it is accessed sequentially during the final join phase. 

If the selection is very strong for this type of query, classical indexing can 
outperform join indices. With the classical approach of [4], the example query of 
Figure 5 is processed by first accessing the C tuples that satisfy the select 
predicate, and, for each tuple selected, the matching CP tuples are accessed 
through an index on the join attribute (cname). If the selection is very strong 
(e.g., one C tuple is selected), then the indirect access to the join index will incur 
one or two additional 10s. 

We now consider relational queries with multiple joins possibly combined with 
selections. If every join can be processed using a join index, then all the join 
indices are first joined. They produce subsets of join indices that store the 
surrogates of relevant tuples. Then, the joins on base data are applied at the very 
end using join index subsets. Therefore, only useful base data are accessed. 

If not every join can be processed using a join index, then we must combine 
joins using join indices with more classical join algorithms. Examples of classical 
joins in which the base data are accessed are the sort merge join algorithm [4] or 
some hash join algorithms [5, lo]. We consider the query whose optimized 
decomposition is (R w S) w T, where the second join involves an attribute of S 
and an attribute of T. We assume only one join index exists. Two cases can 
occur: There is JI(s, t) for (S w T) or JI(r, s) for (R w S). In the first case, the 
classical join precedes the join using the join index. Thus, the classical join 
produces a result relation U together with a set of surrogates (s) of tuples in U. 
A tuple in U is of the form (s, attl, att*, . . .). However, since U is a temporary 
relation, its tuples do not have their own surrogates. Therefore, s cannot be 
considered a unique surrogate of a tuple in U; that is, there can be several tuples 
in U having the same s value. The set of surrogates is then semijoined with 
JI(s, t), giving a subset of the join index JI’(s, t) in a sequential file. The join 
algorithm using the join index is then applied on T and Uusing JI’. In the second 
case, the join using the join index JI precedes the classical join. The join using 
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Fig. 6. Operation trees for different join indices. 

the JI is applied giving a result relation U that can be used by the subsequent 
join U w T. Figure 6 shows the two different operation trees for the same query 
tree where classical joins and joins using join indices are combined. 

4. PERFORMANCE ANALYSIS 

In this section, we analyze the performance of the join algorithm presented in 
Section 3. We first define the analysis parameters and then derive the execution 
times of our join algorithm for different clusterings of the operand relations. Our 
algorithm is then compared with the hybrid-hash join algorithm [lo]. The latter 
is one of the most efficient that we know of and, like our algorithm, makes use 
of all the available main memory. We choose it also because it is much more 
efficient than the sort merge join algorithm, which in turn is generally better 
than join algorithms using secondary indices on join attributes. 

As in [4], we do not include the update overhead incurred by join indices for 
two reasons. The first reason is that we showed in Section 3.1 that, for the most 
frequent joins, the update overhead is very little. It should be acceptable and 
conditional upon a significant gain against other efficient algorithms. The second 
reason is that an analysis including a cost factor for updates in the join algorithm 
cost is not realistic because this factor depends on update/retrieval frequencies. 
Such an analysis would be too complex and is beyond the scope of this paper. 
Instead, we plan to measure the update cost of join indices through implemen- 
tation. Initial results are given in [23]. 

4.1 Analysis Parameters 
4.1.1 Database Dependent Parameters. The following notation will be used to 
evaluate algorithms: 

IRIS ISI Number of pages in relations R and S, respectively 
]I R I], I] S ]I Number of tuples in relations R and S, respectively 
JS Join selectivity factor defined by JS = ]I R w S II/II R II * II S II 
SR Semijoin of (R by S) selectivity factor defined by SR = 

II R K S II/II R II 
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ss Semijoin of (S by R) selectivity factor defined by SS = 
II S K R II/II 5’ II 

IJII Number of pages in the join index 
II JI II Number of tuples in the join index given by 11 JI 11 = ( 11 R II * 11 S II ) 

* JS= IIRw Slj 
TR, Ts, TJr Size (in bytes) of a tuple of R, S, and JI, respectively 

Join selectivity is related to the semijoin selectivities, since each tuple of the 
join is constructed from two tuples, each belonging to a semijoin by the following 
inequality, 

max(s,fi)sJSaSS*SR. 

The lower bound is attained when each tuple in the larger semijoin is matched 
exactly once. The upper bound is attained when the two semijoined relations 
produce the join using a Cartesian product. 

4.1.2 System Dependent Parameters. We use the following parameters to 
describe the capabilities of the database system: 

1 M 1 Main memory size (in number of pages) allocated to the operation 
F Universal fudge factor for hashing 
PO Average page occupancy factor 
P Page size (in number of bytes) 
FO Fan-out of a node in a B-tree 
ssur Surrogate size (in number of bytes) 

4.1.3 System Performance Dependent Parameters. The following performance 
parameters, dependent on computer capabilities, are used in measuring the IO 
and CPU times of the algorithms: 

IO Time to perform an IO operation 
camp Time to compare two keys 
hash Time to hash a key 
move Time to move a tuple 

4.2 Analysis of Join Algorithms 

In this section, we analyze the performance of the join algorithm using join 
indices when relations are stored separately. We also summarize the performance 
of the hybrid-hash join algorithm. We make a number of simplifying assumptions. 
The basic assumption is that there is no overlap between IO and CPU. Since we 
will compare the algorithms on a conventional architecture, we believe that the 
effect of overlap between IO and CPU would be the same for both algorithms 
(this may not be true for parallel architectures). We suppose that the operand 
relations are stored on magnetic disks. Also, we ignore the cost for writing the 
result relation, since it is roughly the same for all algorithms. We assume that 
the root page of a B+-tree index is always kept in memory. The small size of a 
surrogate implies a high fan-out of B-tree nodes. Assuming that a page# has the 
same size as a surrogate and considering that the page occupation factor is high 
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(we use the classical factor 70 percent), then there are about 400 (sur, page#) 
tuples per 4K bytes page. According to the values that we will use for relation 
sizes, we assume that- the B-tree of an index based on a surrogate will always 
have two levels. 

4.2.1 Join Using Join Indices. In this section, we evaluate the execution time 
of the join algorithm presented in Section 3. The performance of this algorithm 
is greatly influenced by the join and semijoin selectivity factors. To simplify our 
evaluation, we assume that the participation in the join is uniformly distributed 
among matching tuples; that is, there is no tuple that participates in the join 
more times than any other tuple. This implies that each subset JIk of the join 
index processed in a pass is of same size. Thus, we have 11 JIi 11 = 11 JIZ 11 = 
. . . 11 JIk 11 . . . . Relaxing this assumption implies that the proportion of JI and 
R K JI that fit in memory would vary from one pass to another. Therefore, the 
number of tuples of S K JI accessed would vary over passes. In several experiments 
we found that the performance becomes significantly better under the nonuni- 
formity assumption only when the variations in the number of tuples accessed 
from R K JI are high. Thus, our assumption is pessimistic. Also, we do not take 
into account the effect of run-length compression of the join index, although it 
would make the algorithm more efficient. Finally, we note that our assumptions 
favor the hybrid-hash join algorithm. 

We divided the analysis into four steps corresponding to phases in the 
algorithm: 

(1) read the join index, 
(2) perform R K JI, 
(3) internally sort the join index JIk on s, 
(4) perform S K JI. 

4.2.1.1 Number of Passes in the Algorithm. The join algorithm allocates three 
memory pages for operand and result relations and one page for reading S K R. 
The amount 1 M’ 1 memory dynamically allocated for R K S and the join index 
is thus 

lM’(= [Ml-4. 

If R K S and the join index do not fit in 1 M’ 1 pages of memory, the four steps 
of the algorithm must be repeated during several passes. Assuming a uniform 
distribution of the semijoin selectivity among tuples of R, the number of passes 
is simply the sum of the sizes of R K S and the join index divided by 1 M’ 1. The 
size of R K S is 

11 R II * SR * Ts/P. 

The size of JI is 1 JI 1. We also provide for some amount of working memory 
space for internal optimizations (sorting and direct access to tuple by a surrogate). 
This amount is proportional to 1 JI l/l M’ 1 an d is measured by a factor denoted 
by PR. The size of the working space is thus PR * 1 JI l/l M’ 1. We will need as 
much space as the join index in memory to internally sort it. Thus, PR = 1. 
Furthermore, for each surrogate ri in memory, we add the internal address 
(= size of surrogate) of tuple i. Thus, PR = PR + 0.5 = 1.5. The number of 
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passes, denoted by N, is 

N=max 
( 

]JIl + ]JI] * PR + (]]R(( * SR * TR)/P 

IM’I 1. 
4.2.1.2 Basic Formulas. The following basic formulas will be commonly used 

in evaluating the different steps of the algorithm. 

(1) Number of tuples per page. The number of tuples per page of relation X, 
where X will be R, S, or JI is 

P * PO 
nx = ____ 

TX * 

(2) Number of page accesses. For accessing k records randomly distributed in 
a file of n records stored in m pages, a formula for the expected optimal number 
of page accesses is given in [24]: 

k 

Y(k, m, n) = m* 1 - n 
n - (n/m) - i + 1 

i=l 1 n-i+1 ’ 

This formula assumes that the scheduling of page accesses is optimal; that is, 
the same page is not accessed more than once. 

(3) IO time for accessing k tuples. We determine the IO time incurred in 
accessing k tuples of relation X based on a surrogate, where X will be R or S. 
The access to relation X is based either on a clustered index oran inverted index. 
In both cases, the k tuples are supposed to be randomly distributed because the 
relation is not clustered on the join attribute (tuples with the same join attribute 
value are not physically close). Thus, the number of page accesses to relation X 
is given by K = Y(k, m, n), where m = ] X ] and n = 11 X 11. 

In the first case, relation X has a clustered index, denoted by CX, on a 
surrogate. We assume that the index is maintained as a two-level B+-tree whose 
leaves associate a surrogate with a page# in X. We also assume that the root 
resides in cache memory and thus ignore the cost of accessing it. Thus, we need 
just evaluate the number of accesses, denoted by nbacx, to the last level of the 
clustered index. nbacx is the number of page accesses for locating, for example, 
x records randomly distributed in the index. One tuple of the index must be 
accessed for each page accessed in relation X. Since there are K pages accessed 
in relation X, we have n = K. The total number of pages in the second level of 
the index depends on the node fan-out and is m/FO. Since there is one index 
tuple per page of relation X, the total number of tuples in the last level of the 
index is m. Therefore, the number of page accesses to the index is 

nbacx = Y(K,g, m). 

Finally, the IO time for accessing k tuples in relation X using a clustered 
index is 

IO,i(k, m, n, X) = (K + nbacx) * IO. 
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In the second case, the access to pages of relation X is based on an inverted 
index on a surrogate. An inverted index is larger than a clustered index. We 
assume that the inverted index is a three-level B+-tree whose leaves associate a 
surrogate with a page# in X. Let us first evaluate the number of accesses to 
the index on X, noted IX, for retrieving k records. Assuming that the size of 
a page# equals the size of a surrogate, the number of pages of the last level of 
the index is 

,ix, = IIXll * 2 * ssur 
P*PO * 

For each tuple of X, one tuple of the inverted index must be accessed. The 
number of accesses to k records randomly distributed in the last level of the 
index, where m ’ = I IX ] is 

nbaix = Y(k, m’, n). 

The number of accesses, noted nba fx, to the second level of the index can be 
evaluated similarly to nbacx above. Therefore, we have 

nbafx = 
I 

E 
FO’ 

The IO time using an inverted index is thus 

IOii(k, m, n, X) = (K + nbaix + nbafx) * IO. 

(4) CPU time for semijoin. We now derive the CPU time incurred in per- 
forming the semijoin of relation X by the join index, where X means R or S. 
The semijoin is done in N passes where, at each pass, k tuples of X must be 
accessed. The number of page accesses to relation X is given by K = Y(k, m, n). 
Each tuple of each page of X is compared with the JI, which requires 
N + K : nx * camp. The semijoin selectivity factor is noted SX and will be 
SR or SS. The I] XI] * SX tuples of the semijoin must be moved in memory 
from their input page to the buffer allocated to the semijoin, which needs 
I] X ]I t SX * move. Thus, the CPU time for the semijoin of relation X by N 
passes of K pages is 

CPUsj(k, m, n, X) = N * K * nx * camp + ]I X ]] * SX * move. 

(5) Internal sort of n tuples. Sorting internally n tuples [16] requires a time 

CPUst (n) = n * logzn * camp + n * move. 

4.2.1.3 Analysis of Step 1. Step 1 consists of reading the join index one page 
at a time. The execution time of step 1 is 

tl = ]JI] : IO. 

4.2.1.4 Analysis of Step 2. Step 2 consists of accessing relation R on the basis 
of surrogate values found in the join index and producing R # JI. The access to 
relation R depends on whether R has a clustered index or an inverted index on a 
surrogate. 
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(1) R is clustered on a surrogate. At each pass, the number of tuples of the 
semijoin to retrieve in R is 

k= IIRII *SR 
N ’ 

The tuples are randomly distributed because the relation has a clustered index 
on a surrogate (not on a join attribute). Since the JI is clustered on a surrogate 
F, and relation R is also clustered on F, then at each pass i, the subset Ri of R 
corresponding to the subset JIi of the join index in memory is accessed. Therefore, 
we have 

For N passes, the IO time of step 2 incurred with a clustered relation is 

&IO = N * IO,i(K, m, n, R). 

The CPU time consists of doing the semijoin of R by JI, which is 

t 2cc~u = CPU,j(nbaz,, R). 

The total time of step 2 when R is clustered on F is 

t2e = tmo + t2eCPU. 

(2) R is indexed on a surrogate. The join index is read by sets JIk of pages, 
where for each JIk, the subset Rk of R K S is retrieved. Even in the case of 
nonuniform distribution of join selectivity among tuples of R, we are always able 
to determine JIk such that Rk fits in memory, since the join index tells us which 
tuples of R to retrieve. At each pass, the number of tuples of the semijoin to 
retrieve in R is 

k= IIRII *SR 
N ’ 

For each semijoin subset, the entire relation R must be accessed because the 
tuples are randomly spread over R (R is not clustered on a surrogate); thus 

m= IRI and n = II R 11. 

The IO time to access R is thus 

t2iIO = N * IOii(k, m, n, R). 

We now evaluate tzicpue The main difference with the previous case is that the 
inverted index provides the relevant tuples (F, page#) sorted on F but not on 
page#. In order to optimally schedule the disk accesses to R, the set of couples 
(F, page#) is sorted on page#. The number of pages of JIk is in the average 
1 JI l/N. Thus, the number of tuples in JIk, nJIk, is 

nJIK = nJ1 * I JI I 
N ’ 
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The tuples (r, page#) obtained from the index for each JIk must be sorted on 
page#, which requires for all passes 

N * cpu,thI1Id. 

By adding the semijoin time, we obtain 

hcpu = N * CPU~(~JIK) + CPUsj(k m, n, RI. 

The total time of step 2 when R is indexed on r is 

hi = hI0 + tPiCPU- 

4.2.1.5 Analysis of Step 3. Step 3 consists of internally sorting each subset JIk 
on s. Assuming that all JIk are of the same size (this is consistent with our basic 
assumption of uniform distribution of join selectivity among the tuples), we get 

For N passes, the time of step 3 is 

ts = N * CPU,, . 

4.2.1.6 Analysis of Step 4. At each pass of the join algorithm, step 4 accesses 
page by page the semijoin of S by JI for tuples of R in memory. The analysis is 
similar to that of step 2. The main difference is that the join index is not clustered 
on surrogate s. Therefore, for each subset of the semijoin (S by JI), we have to 
access the whole relation S. Therefore, we have 

k= IISII * ss 
N ’ m= ISI, and n = II s II * 

(1) S is clustered on s. The time of step 4 is simply the time for reading the 
semijoin of S by the JI using the clustered index, and the CPU time for performing 
the semijoin, which gives 

tk = N * IO,i(lz, m, n, S) + CPUsj(k, m, n, S). 

(2) S is indexed on s. The IO time is incurred in reading the semijoin of S by 
the JI using the inverted index. The tuples (s, page#) obtained from the index 
must be sorted on page#. Thus, the CPU time is the time of sorting at each pass 
a set of ]] JI ]]/N tuples (s, page#) plus the time for performing the semijoin, 
which leads to 

+ CPUsj(k, m, n, S). 

In conclusion, the time of the join algorithm using the join index is as follows, 
where ] means “exclusive or”: 

t (JOINJI) = tl + t% ] t2i + t3 + tdc ] tdi. 

4.2.2 Hybrid-Hash Join Algorithm. The hybrid-hash join algorithm is proposed 
and analyzed in [lo]. It makes use of all available memory ( ] M ] ). We briefly 
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review the algorithm and its performance. Relations R and S are sequentially 
read from disk and partitioned into sets on the basis of the same hash function 
applied to the join attributes. Let 

f 

The algorithm consists of B + 1 steps where R and S are partitioned into 
compatible sets Ro, RI, . . . , RB, and So, E&, . . . , SB. Furthermore R. has 
IMI - B pages and is processed at the same time that R and S are being 
partitioned. The join is then divided into B joins of RI CU S1, R:! w Sz, . . . , 
RB w Se. Let 

)R(=I”I-B IRol 
0 F 

and q = - 
IRI ’ 

The time of the hybrid-hash join algorithm using our model is 

t(JOINHH) 
= (IRI + IS() *IO 

+ (IIRII + IISII) * hash + (IIRII + IlSll) * (1 -9) * move 
+(IRl+lSI)*(l-q~*IO+(llRll+llS)l)*U-q)*hash 
+ 11 S 11 * F * camp + ll R II * move + ( 1 R 1 + 1 S I ) * (1 - q) * IO. 

4.3 Performance Comparisons 
This section presents performance comparisons of the join algorithm using join 
indices (JOINJI) and the hybrid-hash join algorithm (JOINHH) using the 
previous cost formulas. We fix the values of the analysis parameters assuming a 
conventional system as in [lo]. Other comparisons have been run with different 
parameter settings, and similar results have been found. The parameter values 
are set as follows: 

F 
PO 
P 
FO 
ssur 
IO 
camp 
hash 

Universal “fudge” factor for hashing is 1.2 
Average page occupancy factor is 0.7 
Page size is 4000 bytes 
B-tree node fan-out is 400 
Surrogate size is 4 bytes 
Time of an IO operation is 25 milliseconds 
Time to compare two keys is 3 microseconds 
Time to hash a key is 9 microseconds 
Time to move a tuple is 20 microseconds 

From the cost formulas previously derived, we see that the performance of 
JOINJI relative to JOINHH is strongly influenced by the join and semijoin 
selectivity factors and by the fact the operand relations are clustered or indexed 
on a surrogate. Relation sizes and memory size will also significantly affect both 
algorithms. 

Figure 7 illustrates the performance ratio of JOINJI versus JOINHH for 
varying semijoin selectivity factors (with SS = SR). HH denotes the execution 
time of JOINHH, whereas JI denotes the execution time of JOINJI. The join 
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= SR 

0.001 0.01 0.1 1 

1K 20K 200K 2M result tuples 

Fig. 7. Performance ratio of JOINJI vereue JOINHH ( 1 R 1 = 1 S 1 = 
10,000, 11 R II = 1) S 11 = 200,000, I M I = 1,000, JS = 10 = SS/jj R 11). 

selectivity factor is proportional to SS. It has been chosen in order to produce a 
result-joined relation of realistic size. For example, when SS = 0.1, the result 
relation is as big as an operand relation. The graph shows clearly the influence 
of join selectivity. The curve clustered (respectively indexed) means that the 
operand relations are clustered (respectively indexed) on a surrogate, which 
impacts on the performance of JOINJI. The difference between the curves 
remains constant on the graph, which means that the performance difference 
between JOINJI clustered and JOINJI indexed decreases significantly as SS 
increases. JOINHH outperforms JOINJI only in the presence of poor join 
selectivity, that is, when producing a very large result relation. 

Figure 8 presents the execution times of JOINHH and JOINJI versus the 
semijoin selectivity factor. The graph illustrates in a different way the influence 
of join selectivity on JOINJI. The two curves of JOINJI correspond to the 
minimum and maximum join selectivity factors that can be derived from the 
semijoin selectivity factors. For the fixed values of parameters, all possible joins 
using join indices would show performance curves between these two extremes. 

Figure 9 shows the effect of varying the semijoin selectivity factors on the 
performance of JOINJI for relations of equal size clustered on a surrogate. The 
X axis represents SS for the curve of SR and SR for the curve of SS. The graph 
tells us what we can intuitively guess. The relation that produces the biggest 
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0.001 0.01 0.1 1 

Fig. 8. Performance of JOINJI and JOINHH versus join 
selectivity ( 1 R 1 = 1 S 1 = 10,000, ( M ( = 1,000); R and S are 
clustered on surrogate. 

Semi-join selectivity factor SS or SR 

1 I I 

0.001 0.01 0.1 1 

Fig. 9. Effect of varying the semijoin selectivity for JOINJI 
((R~=~S~=10,OOO,~M~=1,0OO,JS=10*max(SS/~~R~~, 
@R/II S II)); R and S are clustered on surrogate. 
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Fig. 10. Performance of JOINJI and JOINHH versus mem- 
ory size (R 1 = 15’ 1 = 10,000, SR = 0.5, SS = 0.1,20,000 result 
tuples). 

semijoin should be used as an external relation in the JOINJI algorithm. This 
minimizes the number of accesses to the internal relation. 

Figure 10 illustrates the behavior of the algorithms versus memory size. Both 
algorithms take advantage of the available memory. When the operand relations 
are clustered on a surrogate, the performance of JOINJI is linear in ] M ]. This 
is not true when relations are indexed on a surrogate because the performance of 
JOINJI degrades significantly as the number of passes of the algorithm increases. 
The performance difference between the algorithms versus relation sizes 
(Figure 11) remains constant provided that the memory size is proportional to 
relation sizes. 

In conclusion, the performance comparisons show that except for the high join 
selectivity factor JS, the algorithm using the join index outperforms the hybrid- 
hash join algorithm. The performance difference between the algorithms in- 
creases as the size of the joined result decreases. For some joins of the low-join 
selectivity factor (JS) values, JOINJI can be 100 times more efficient than 
JOINHH (Figure 7). The cost formula used for JOINHH is independent of JS. 
This assumes that JS is low, which is true for most of the joins. However, when 
JS is high, hashing becomes inefficient [21], since the number of duplicate join 
attribute values is very high and leads to many collisions (the number of useful 
buckets becomes very low). Also, when JS is high, the number of duplicate 
surrogates in the index is high, making run-length compression very effective. 
Taking into account the deficiency of hashing for high JS and considering the 
run-length compression of the join index, we predict that the algorithm using the 
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Fig. 11. Performance of JOINJI and JOINHH versus relation 
size ( 1 M 1 = 1 R 1 * 0.1, SR = 0.5, SS = 0.1, JS = 5 * lo-‘). 

join index would always outperform the hybrid-hash join algorithm. However, 
note that the hybrid-hash join algorithm does not incur the index update 
overhead. 

5. PROPERTIES OF JOIN INDICES 

This section describes several properties of join indices. All these properties 
result from the fact that a join index is stored in a simple and separate data 
structure. 

5.1 Algorithms Exploiting Hardware Availability 

Future computers will have large amounts of RAM and a parallel processing 
capability. The join algorithm using the join index presented in Section 3 takes 
advantage of all available RAM. As shown in the performance evaluation, the 
algorithm’s performance is proportional to the memory size. The adaptation of 
the join algorithm to parallel execution is easy. The join index can be divided 
into independent subsets, each being carried out by a different processing unit. 
The algorithm would guarantee that a page of the external relation is not read 
by more than one processor. However, the same page of the internal relation 
might be read by several processors. 

5.2 Compatibility with Other Operations 

The real value of join indices becomes apparent when they are combined with 
other indices for processing relational queries. A complex relational query is 
divided into two steps. The first step applies the query to indices (join indices, 
select indices, and others), producing an abstract of the result (the set of 
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surrogates of relevant tuples). In the second step, the base data that satisfy the 
query are accessed. Therefore, the most complex operations are performed using 
data structures smaller than the base relations. To the maximum extent, these 
data structures should be kept in memory. 

5.3 ADT Join Predicate 

The definition of a relational equi-join predicate is restricted to the equality of 
the join attributes. We can generalize the notion of conventional joins by defining 
the join predicate in terms of abstract data types (ADT) [12]. The motivation is 
that functionality as well as performance can be significantly improved if users 
are allowed to define join predicates according to the ADT operations that are 
most often used. 

By storing separately the relationships existing between tuples, join indices 
can support ADT join predicates. For example, if a frequent query is to list the 
information about customers of Austin and parts, such that the customer was 
twenty years old when the part appeared on the market, the following ADT 
predicate can be used to specify a join index between CUSTOMER, noted C, and 
PART, noted P: 

C.City = “Austin” and C.age - 20 = P.age 

The ADT operations used for the join predicate must be computed only for 
updating the join index according to updates of the joined relations. Therefore, 
the update overhead incurred with ADT join predicates is significantly greater 
than that of equi-join predicates. On the other hand, the retrieval of tuples 
satisfying the ADT join predicate does not require reexecution of the ADT 
operation. It uses the join algorithm defined in Section 3. 

5.4 Multirelation Clustering 

The ideal clustering for improving the performance of joins places matching 
tuples of different relations physically close to each other. Below, we propose a 
multirelation clustering scheme used in combination with join indices. The 
multirelation scheme is similar to the CODASYL set implemented via a pointer 
array. A physical multirelation is organized as a B+-tree on the basis of a multikey. 
The multikey is defined on surrogates, where the number of keys in the multikey 
is equal to the number of joins. The tuples in the leaves of the B+-tree are ordered 
according to the tuples of the join index. An example of a multirelation is given 
in Figure 12, where the surrogates in leaves are the actual tuples. For a multire- 
lation with three relations R, S, and Z’, the multikey might be (r, s). 

The classical algorithms for B+-trees must be slightly modified to keep the 
tuples of an internal relation sorted on a surrogate. Access (for any purpose) to 
only tuples of an internal relation requires access to the join indices defined on 
relations external to it for finding the parent tuples. For example, the access to 
tuple ss in Figure 12 implies accessing the join index on R and S to find r3, which 
is used to locate the correct page in the multirelation. The join of relations 
clustered together is obviously performed by a sequential scan of the multi- 
relation. Therefore, the join index does not need to be accessed. However, if the 
join is preceded by a selection on an internal relation, the access to the join index 
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JI r1 %O 
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1Il r2 %2 

r2 s21 
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Fig. 12. Multirelation for R and S. 
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Fig. 13. Join index coding a directed graph. 

is necessary for determining the subset of the multirelation that must be accessed. 
Multirelation clustering is clearly the most efficient scheme for particular cases 

of joins. For example, the join of tuple r4 (perhaps after selection) with sl, sa, s15 
results in an access to a single data page, which is optimal. However, this scheme 
presents the shortcomings known in CODASYL systems that preclude its 
systematic application. Indeed, this scheme is well suited for hierarchies 
(l-m relationship), a very frequent case. 

5.5 Coding of Graphs 

A join index captures the semantic links that exist between tuples. If we represent 
the join of two tuples by an arc connecting those tuple surrogates, the join index 
can represent directed graphs in a very compact way. Therefore, it will be very 
useful for graph operations such as transitive closure. Figure 13 gives an example 
of a graph encoded as a join index. The index is clustered on the first attribute 
and depicts the parent-child relationship. Therefore, it is well suited for traversals 
in the parent-child direction. A join index clustered on the second attribute 
allows efficient traversals that follow the child-parent direction. 

Applied to a single relation, a join index can capture its self-join as shown in 
Figure 14, where the join predicate is X.advisee = Y.advisor. For example, if we 
want to list the genealogy of advisee Ross, we may compute the transitive closure 
of relation Ph.D. Applying the operation on the join index that is smaller than 
the base relation is shown to be very efficient in [22]. Transitive closure preceded 
by select is also handled by our scheme. 
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Doe 
Smith 
Ross 
Hayes 
James 

Fig. 14. Join index coding a self-join. 

6. CONCLUSION 

In this paper, we have proposed a simple data structure, called a join index, for 
optimizing semijoin and join operations in the context of complex queries. We 
presented algorithms for update, semijoin, and join and illustrated the use of join 
indices in relational queries. The overhead incurred in updating join indices 
appears to be small for the most frequent joins (joins on a foreign key). For all 
other joins, updates of join indices can increase the update cost of joined relations 
by a factor of approximately two. The join algorithm using a join index takes 
advantage of all available memory and is easily adaptable to parallel execution. 
The interesting features of join indices derive from the fact that they are stored 
separately, usually in a small data structure. Join indices support ADT join 
predicates, are independent of the storage model, and are helpful for multirelation 
clustering. They also represent directed graphs succinctly and thus can serve as 
a basic tool for recursive queries. 

The analysis of the join algorithm using a join index shows its excellent 
performance. It generally outperforms the hybrid-hash join algorithm. Except 
for joins of very poor selectivity in which no optimization seems possible (the 
join becomes close to a Cartesian product), or for joins preceded by a strong 
selection (in which case classical indexing can be better), we claim that join 
indices should be employed. We limited our analysis to the join algorithm itself, 
since it is the most critical operation. However, the real value of join indices 
increases as queries become complex because the most complex operations are 
done on small data structures (select indices, join indices, etc). 

For most of the joins, the join index whose size is proportional to the join 
selectivity factor will be small. Transitive closure, which appears to be a basic 
operator for supporting recursive queries, can be realized using a loop of joins 
and unions, two complex operations. In [22], we propose and analyze two 
algorithms for the transitive closure. It is shown that, for various values of 
parameters, applying either algorithm to a join index rather than the base data 
yields better performance. Again, the idea is to apply all complex operations 
(join, union) on join indices and to access the data at the very end. Thus, join 
indices appear very attractive in the evaluation of relational queries as well as in 
recursive queries. 

In order to obtain empirical data to verify the analysis in [22] and in this 
paper, join indices have been implemented as part of a decomposition storage 
model [8] and a complex-object storage model [23]. In the latter paper, the 
concept of a join index is extended to capture the structure of complex objects, 
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and initial performance measurements using the Wisconsin benchmark [3] are 
given, which so far confirm our analysis. More thorough performance measure- 
ments are ongoing. 
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