
XJoin: A Reactively-Scheduled Pipelined Join Operator�

Tolga Urhan
University of Maryland, College Park

urhan@cs.umd.edu

Michael J. Franklin
University of California, Berkeley

franklin@cs.berkeley.edu

Abstract

Wide-area distribution raises significant performance problems for traditional query processing tech-
niques as data access becomes less predictable due to link congestion, load imbalances, and temporary
outages. Pipelined query execution is a promising approach to coping with unpredictability in such en-
vironments as it allows scheduling to adjust to the arrival properties of the data. We have developed
a non-blocking join operator, called XJoin, which has a small memory footprint, allowing many such
operators to be active in parallel. XJoin is optimized to produce initial results quickly and can hide in-
termittent delays in data arrival by reactively scheduling background processing. We show that XJoin is
an effective solution for providing fast query responses to users even in the presence of slow and bursty
remote sources.

1 Wide-Area Query Processing

The explosive growth of the Internet and the World Wide Web has made tremendous amounts of data available
on-line. Emerging standards such as XML, combined with wrapper technologies address semantic challenges
by providing relational-style interfaces to remote data. Beyond the issues of structure and semantics, however,
there remain significant technical obstacles to building responsive, usable query processing systems for wide-
area environments. A key performance issue that arises in such environments is response-time unpredictability.
Data access over wide-area networks involves a large number of remote data sources, intermediate sites, and
communications links, all of which are vulnerable to overloading, congestion, and failures. Such problems can
cause significant and unpredictable delays in the access of information from remote sources. These delays, in
turn, cause traditional distributed query processing strategies to break down, resulting in unresponsive and hence,
unusable systems.

In previous work [AFTU96] we identified three classes of delays that can affect the responsiveness of query
processing: 1) initial delay, in which there is a longer than expected wait until the first tuple arrives from a remote
source; 2) slow delivery, in which data arrive at a fairly constant but slower than expected rate; and 3) bursty ar-
rival, in which data arrive in a fluctuating manner. With traditional query processing techniques, query execution
can become blocked even if only one of the accessed data sources experiences such delays.

Copyright 2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

�This work was partially supported by the NSF under grant IRI-94-09575, by the Office of Naval Research under contract number
N66001-97-C8539 (DARPA order number F475), by a Siemens Faculty Development Award, and by an IBM Partnership Award.

1

We developed Query Scrambling to address this problem and showed how it can be used to hide initial de-
lays [UFA98] and bursty arrivals [AFT98]. Query Scrambling is a reactive approach to query execution; it reacts
to data delivery problems by on-the-fly rescheduling of query operators and restructuring of the query execution
plan. Query Scrambling is aimed at improving the response time for the entire query, and may actually slow
down the return of some initial results in order to minimize the time required to produce the remaining portion
of a query answer once all necessary data has been obtained from all of the remote sources.

In this paper we explore a complementary approach using a non-blocking join operator we call XJoin. XJoin
is based on two fundamental principles:

1. It is optimized for producing results incrementally as they become available. When used in a fully pipelined
query plan, answer tuples can be returned to the user as soon as they are produced. The early delivery of
initial answers can provide tremendous improvements in the responsiveness observed by the users.

2. It allows progress to be made even when one or more sources experience delays. There are two reasons for
this. First, XJoin requires less memory, which allows for bushier plans. Thus, some parts of a query plan
can continue while others are stalled waiting for input. Second, by employing background processing on
previously received tuples from both of its inputs, an XJoin operator can produce results even when both
inputs are stalled simultaneously.

XJoin is based on the Symmetric Hash Join (SHJ) [WA91, HS93] which was originally designed to allow a
high degree of pipelining in parallel database systems. As originally proposed, however, SHJ requires that hash
tables for both of its inputs be kept in main memory during most of the query execution. As a result, SHJ cannot
be used for joins with large inputs, and the ability to run multiple joins (e.g., in a bushy query plan) is severely
limited. XJoin extends the symmetric hash join to use less memory by allowing parts of the hash tables to be
moved to secondary storage. It does this by partitioning its inputs, similar in spirit to the way that hybrid hash
join solves the memory problems of classic hash join.

Simply extending SHJ to use secondary storage, however, is insufficient for tolerating significant delays in
receiving data from remote sources. For this reason, a key component of XJoin is a reactively scheduled back-
ground process, which opportunistically utilizes delays to produce more tuples earlier. We show that by using
XJoin it is possible to produce query execution plans that can better cope with data delivery problems and that
can deliver initial results orders of magnitude faster than traditional techniques, with in many cases, little or no
degradation in the time required to deliver the entire result.

The main challenges in developing XJoin include the following:

� Managing the flow of tuples between memory and secondary storage.

� Controlling the background processing that is initiated when inputs are delayed.

� Ensuring that the full answer is ultimately produced (i.e., no answers should be lost).

� Ensuring that no duplicate tuples are inadvertently produced.

The work described in this paper is related to other recent projects on improving the responsiveness of query
processing, including techniques for returning initial answers more quickly [BM96, CK97] and those for return-
ing continually improving answers to long running queries [VL93, HHW97]. Our work differs from this other
research due to (among other reasons) the focus on coping with unpredictable delays arising from wide-area re-
mote data access. The Tukwila system [IFFL+99] incorporates an extension of SHJ called Double Pipelined
Hash Join (DPHJ) that can work with limited memory. DPHJ differs from XJoin in several details such as the
way in which tuples are flushed to secondary storage. More importantly, as originally specified, DPHJ does not
include reactively-scheduled background processing for coping with delayed sources. Both DPHJ and XJoin can
be thought of as types of Ripple Joins [HH99] which are a class of pipelined join operators that allow the order
of data delivery to be adjusted dynamically.

2

1

SOURCE-A

DISK

fl
us

h

Tuple B

11

M
E

M
O

R
Y

1

Tuple A

partitions of source Bpartitions of source A

SOURCE-B

nk

nkn

n

hash(TupleA) = 1 hash(TupleB) = n

Memory-resident Memory-resident

Disk-resident Disk-resident
partitions of source A partitions of source B

Figure 1: Handling the partitions.

partitions of source A partitions of source B

i

M
E

M
O

R
Y ji j

insertinsert probeprobe

SOURCE A SOURCE B

Tuple A

output

hash(record A) = i hash(record B) = j
Tuple B

Figure 2: Stage 1 - Memory-to-Memory joins

2 The Design of XJoin

In this section we only give a brief overview of the mechanisms used by XJoin. A more detailed description of
XJoin is given in [UF99].

2.1 The Three Stages of XJoin

XJoin proceeds in three stages, each of which is performed by a separate thread. The first stage joins memory-
resident tuples, acting similarly to the standard symmetric hash join. The second stage joins tuples that have been
flushed to disk due to memory constraints. The third stage is a clean-up stage, which performs any necessary
matching to produce results missed by the first two stages. The first and second stages run in an interleaved
fashion — the second stage takes over when the first becomes blocked due to a lack of input. These stages are
terminated after all input has been received, at which point the third stage is initiated.
First Stage

The first stage works similarly to the original symmetric hash join. The main difference is that in XJoin,
the tuples are organized in partitions (Figure 1). In general each partition can consist of two portions: a memory-
resident portion, which stores the most recently arrived tuples for that partition, and a disk-resident portion, which
contains tuples of the partition that have been flushed to disk due to memory constraints. When an input tuple
arrives from a source, if there is memory available for the tuple then it is simply placed in its partition and used
to probe the memory-resident portion of the corresponding partition for the other source (Figure 2). If, however,
memory is full, then one of the partitions is chosen as a victim and its memory-resident tuples flushed to disk
(i.e., appended to its disk-resident portion). Join processing then continues as usual. The first stage runs as long
as at least one of its inputs is producing tuples. If the first stage ever times out on both of its inputs (e.g., due to
some unexpected delays), it blocks and the second stage is allowed to run. The first stage terminates when it has
received all of the tuples from both of its inputs.
Second Stage

The second stage is activated whenever the first stage blocks. It first chooses a partition from one source using
optimizer-generated estimates of the output cardinality and the cost of performing the stage using the partition.1

It then uses the tuples from the disk-resident portion of that partition to probe the memory-resident portion of
the corresponding partition of the other source. Any matches found are output (subject to duplicate detection
as described in Section 2.2) as result tuples. After a disk-resident portion has been completely processed, the
operator checks to see if either of the join inputs have resumed producing tuples. If so, then the second stage
halts and the first stage is resumed, otherwise a different disk-resident portion is chosen and the second stage is

1Note that the same partition can be used multiple times, as the partition grows over the course of the join execution.

3

continued. As an additional optimization, tuples brought into memory during one iteration of the Second Stage
can be probed with disk-resident tuples from the corresponding partition of the other source in the subsequent
iteration.

It is important to note that XJoin follows the Query Scrambling philosophy of hiding delays by performing
other work. In particular, the second stage incurs processing and I/O overhead in the hope of generating result
tuples. This work is essentially free as long as the inputs of the XJoin are delayed, as no progress could be made
in that situation anyway. This is where the benefit of the second stage comes in. The risk is that when one or
both of the inputs become unblocked it is not noticed until after the current disk-resident partition has been fully
processed. In this case, the overhead of the second stage is no longer completely hidden.
Third Stage

The third stage executes after all tuples have been received from both inputs. It is a clean-up stage that makes
sure that all the tuples that should be in the result set are ultimately produced. This step is necessary because the
first and second stages may only partially compute the result.

2.2 Handling Duplicates in XJoin

The multiple stages of XJoin may produce spurious duplicate tuples because they can perform overlapping work.
Duplicates can be created in both the second and third stages. To address this problem XJoin uses a duplicate
prevention mechanism based on timestamps.

XJoin augments the structure of each tuple with two persistent timestamps: an Arrival TimeStamp (ATS),
which is assigned when the tuple is first received from its source and a Departure TimeStamp (DTS), which is
assigned when the tuple is flushed from memory. The ATS and DTS together describe the time interval during
which a tuple was in the memory-resident portion of its partition.

These timestamps are used to check whether two tuples have previously been matched by the first stage or
second stage. If so these tuples are not matched again. Checking for the matches from first stage is easy. For a
pair of tuples to have been matched by the first stage they both must have been in memory at the same time, thus
they must have overlapping ATS and DTS ranges. Any such pair of tuples are not considered for joining by the
second or third stages.

TheATS andDTS are not enough to detect tuples matched in the second stage. In order to solve this problem
XJoin maintains a linked list for each partition processed by the second stage. The entries in the list are of the
form fDTSlast, ProbeTSg where DTSlast is the DTS value of the last tuple of the disk-resident portion that
was used to probe the memory-resident tuples, and ProbeTS is the timestamp value at the time that the second
stage was executed. 2 These entries can be used to infer that all tuples of disk-resident portion having DTS

values up to (and including) DTSlast were used by the second stage at time ProbeTS.
When two tuples, TA and TB , are later matched we first check when TA was used to probe memory-resident

tuples using the linked list maintained for the partition it belongs. If TB was memory-resident during this time
we do not join these two tuples again. The same check is performed for the symmetrical case to determine if TA
was memory resident when TB was used to probe memory-resident tuples.

2.3 Controlling the second stage

Recall that the overhead incurred by the second stage is hidden only when both inputs to the XJoin experience
delays. As a result, there is a tradeoff between the aggressiveness with which the second stage is run, and the
benefits to be obtained by using it. To address this tradeoff, our implementation includes a mechanism that can be
used to restrict the second stage to processing only those partitions that are likely to yield a significant number of
result tuples. This activation threshold is specified as a percentage of the total number of result tuples expected

2Note that the timestamp value remains unchanged during an execution of the second stage since no tuples can be added to or evicted
from memory while it is executing.

4

to be produced from a partition during the course of the entire join. For example, if the join of a partition is
expected to contribute 1000 tuples to the result, a threshold value of 0.01 will allow the second stage to process
the partition as long as it is expected to produce 10 or more tuples. Thus, a lower activation threshold results in
a more aggressive use of the second stage.

In our implementation of XJoin we dynamically change the value of activation threshold, starting with an ag-
gressive value (0.01) and gradually make it more conservative (up to 0.20) as more output tuples are produced.
This has the effect of emphasizing the interactive performance at the beginning of the execution and overall per-
formance (i.e., a more traditional criterion) towards the end of the execution.

3 Experimental Results

We have implemented XJoin in an extended version of PREDATOR [SP97], an Object-Relational DBMS, and
performed detailed experiments to investigate performance issues associated with various aspects of XJoin. Due
to space limitations, however, we only present a portion of the results here. Detailed results can be found in [UF99].

3.1 Experimental Environment

In the experiments we modeled the behavior of the network using trace data that was obtained by fetching large
files from 15 randomly chosen sites. From these arrival patterns, we chose two as representatives of the behavior
of a bursty and a fast source (figures 3, and 4). The arrival patterns in these figures show the quantity of data
received at the query site. We refer to the bursty pattern also as “slow” arrival pattern due to its low transfer rate.

The database used in the experiments contained up to six 100,000 tuple Wisconsin benchmark relations [BDT83].
Each input tuple is 86 bytes after projections have been applied. Join attributes used are one-to-one, producing
100,000 result tuples. We ran the experiments on a Sun Ultra 5 Workstation with 128 MBytes of memory. In the
experiments the XJoin operator is given 3 MBytes of memory.

0
20000
40000
60000
80000

100000
120000
140000
160000

0 20000 40000 60000 80000 100000 120000 140000 160000

B
yt

es
 T

ra
ns

fe
rr

ed

Time in msecs (Total bytes: 3822054 bucket: 1578 msecs)

SEMI11.Apr-30-23

Figure 3: Bursty arrival. Avg. Rate 23.5 KBytes/sec.

0

2000

4000

6000

8000

10000

12000

0 500 1000 1500 2000 2500 3000 3500 4000

B
yt

es
 T

ra
ns

fe
rr

ed

Time in msecs (Total bytes: 514780 bucket: 38 msecs)

SEMI13.Apr-30-23

Figure 4: Fast arrival. Avg. Rate 129.6 KBytes/sec.

3.2 Results

We compared the performance of XJoin to that of Hybrid Hash Join (HHJ). In order to separate out the contri-
butions of the major components of the algorithm we also examined two other XJoin variants. The first variant,
labeled XJoin-No2nd, does not use the second stage at all. The second variant, labeled XJoin-Aggr is an aggres-
sive version of XJoin which uses an aggressively set activation threshold (i.e., 0.01) . We also tried to improve
the responsiveness of HHJ by allowing base tuples to be fetched in parallel in the background. This parallelism
allows HHJ to overlap delays from one input with the processing of the other.

Figures 5 and 6 show the cumulative response times for the four algorithms for the bursty and fast arrival
cases respectively. The x-axis shows a count of the result tuples produced and the y-axis shows the time at which
that result tuple was produced. In both cases XJoin and its variants produce the first answers several orders of

5

0

100

200

300

400

500

600

700

800

900

1000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000100000

T
im

e
(s

ec
s)

Number of Tuples Output

HHJ
XJOIN

XJOIN - Aggr
XJOIN - No2nd

Figure 5: Slow arrival

0

50

100

150

200

250

300

350

0 10000 20000 30000 40000 50000 60000 70000 80000 90000100000

T
im

e
(s

ec
s)

Number of Tuples Output

HHJ
XJOIN

XJOIN - Aggr
XJOIN - No2nd

Figure 6: Fast arrival

magnitude faster than HHJ, thereby providing far superior interactive performance. XJoin also outperforms HHJ
in terms of the time to return the entire result.

A comparison between the XJoin and XJoin-No2nd highlights the importance of the second stage in improv-
ing the responsiveness of the system. XJoin-No2nd, although performing competitively for the very initial re-
sults, fails to maintain this performance for majority of the results. A comparison between XJoin and XJoin-Aggr
is perhaps more interesting as it demonstrates the tradeoff of executing the second stage. In the slow network case
XJoin-Aggr performs slightly better than XJoin in the middle range. This is because there is enough delay to hide
the extra work introduced by XJoin-Aggr. However this improvement is at the expense of poor response in the
fast network case (Figure 6). In the absence of enough delay to overlap the overhead of second stage XJoin-Aggr
falls behind XJoin.

Other results, not included in this paper, have also showed the superiority of XJoin in delivering the initial
portion of the result under variety of conditions. Experiments measuring the effect of memory size have shown
that XJoin has robust performance even with very limited memory. Further experiments stress tested XJoin by
running queries involving up to 5 join operators (up to 6 inputs). In all the cases XJoin was able to outperform
HHJ in delivering the initial portion of the result with only minor degradation in delivering the last tuple.

4 Conclusion and Future Work

In this paper, we described the design of XJoin, a reactively scheduled pipelined join operator capable of provid-
ing responsive query processing when accessing data from widely-distributed sources. XJoin incorporates the
Query Scrambling philosophy of hiding unexpected problems in data arrival by performing other (non-scheduled)
useful work. The smaller footprint is obtained through the use of partitioning. The delay-hiding feature is im-
plemented through the use of a reactively-scheduled “second stage”, which aims to produce result tuples during
periods of delayed or slow input by joining tuples of one input that have been spooled to secondary storage with
the memory-resident tuples of the other input.

In terms of future work, we plan to investigate the scheduling issues in complex query plans with multiple
XJoin operators. Currently XJoin operators are scheduled in a round-robin fashion. Rate at which initial por-
tion of the result delivered can be improved by scheduling more productive operators (i.e., low cost operators
that contribute more to the result) frequently. We also plan to work on delivering more “interesting” portions of
a result (such as some subset of columns) faster in wide-area environments. Such query behavior is desirable
when the semantics of the application are such that some identifiable portions of the data are substantially more
important than others.

In the larger context, XJoin represents one piece of technology that can help extend database systems to the
wide-area environment. In fact, there are a spectrum of techniques for making query processing more adaptive,
ranging from delayed-binding, to adaptive re-optimization and beyond. One interesting recent development is
the “Continuous Query Optimization” (CQO) developed by Avnur and Hellerstien [AH00], which foregoes tra-

6

ditional optimization for an adaptive queue-based scheduler that in effect learns an efficient query plan during the
query execution. We plan to investigate the integration of XJoin with such mechanisms as part of the Telegraph
project at Berkeley.

References

[AFTU96] L. Amsaleg, M. J. .Franklin, A. Tomasic, and T. Urhan. Scrambling Query Plans to Cope With Un-
expected Delays. PDIS Conf., Miami, USA, 1996.

[AFT98] L. Amsaleg, M. J. .Franklin, and A. Tomasic. Dynamic Query Operator Scheduling for Wide-Area
Remote Access. Journal of Distributed and Parallel Databases, Vol. 6, No. 3, July 1998.

[AH00] R. Avnur, J. Hellerstien. Continous Query Optimization. ACM SIGMOD Conf., Dallas, TX, 2000.

[BDT83] D. Bitton, D. J. DeWitt, C. Turbyfill. Benchmarking Database Systems, a Systematic Approach. VLDB
Conf., Florence, Italy, 1983.

[BM96] R. Bayardo, and D. Miranker. Processing Queries for the First Few Answers. Proc. 3rd CIKM Conf.,
Rockville, MD, 1996.

[CK97] M. J. Carey, and D. Kossman. On Saying “Enough Already!” in SQL. ACM SIGMOD Conf., Tucson,
AZ, 1997.

[HH99] P. J. Haas, J. M. Hellerstein. Ripple Joins for Online Aggregation. ACM SIGMOD Conf., Philadelipha,
PA, 1999.

[HHW97] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online Aggregation. ACM SIGMOD Conf., Tucson,
AZ, 1997.

[HS93] W. Hong, M. Stonebraker. Optimization of Parallel Query Execution Plans in XPRS. Distributed and
Parallel Databases, 1(1):9-32, 1993.

[IFFL+99] Z. Ives, D. Florescu, M. Friedman, A. Levy, D. S. Weld. An Adaptive Query Execution System for
Data Integration. ACM SIGMOD Conf., Philadelphia, PA, 1999.

[SP97] P. Seshadri, M. Paskin. PREDATOR: An OR-DBMS with Enhanced Data Types. ACM SIGMOD Conf.,
Tucson, Arizona, 1997.

[UF99] T. Urhan, M. J. .Franklin. XJoin: Getting Fast Answers from Slow and Bursty Networks. University of
Maryland Technical Report, CS-TR-3994., February, 1999.

[UFA98] T. Urhan, M. J. .Franklin, and L. Amsaleg. Cost Based Query Scrambling for Initial Delays. ACM
SIGMOD Conf., Seattle, WA, 1998.

[VL93] S. V. Vrbsky, and J. W. S. Liu. Approximate, A Query Processor that Produces Monotonically Improving
Approximate Answers. IEEE Transactions od Knowledge and Data Engineering, Vol.5, No.6, December
1993.

[WA91] A. N. Wilschut, and P. M. G. Apers. Dataflow Query Execution in a Parallel Main-Memory Environ-
ment. 1st Int’l Conf. on Parallel and Distributed Information Systems, Miami Beach, FL, 1991.

7

